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Abstract

Ephaptic interactions between a neuron and axons or dendrites passing by its cell body
can be, in principle, more significant than ephaptic interactions among axons in a fiber
tract. Extracellular action potentials outside axons are small in amplitude and spatially
spread out, while they are larger in amplitude and much more spatially confined near cell
bodies.

We estimated the extracellular potentials associated with an action potential in a cor-
tical pyramidal cell using standard 1-D cable and volume conductor theory. Their spatial
and temporal pattern reveal much about the location and timing of currents in the cell,
especially in combination with a known morphology, and simple experiments could resolve
questions about spike initiation. From the extracellular potential we compute the ephap-
tically induced polarization in a nearby passive cable. The magnitude of this induced
voltage can be several mV, does not spread electrotonically and depends only weakly on
the passive properties of the cable. We discuss their possible functional relevance.
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1 Introduction

Neuroscientists usually assume that neurons communicate only through anatomical spe-
cializations such as gap junctions or synapses. The output of the neuron is thought to be
completely determined if the synaptic inputs are specified. The goal of biophysical mod-
eling has been to calculate and to understand how this output depends on the synaptic
input.

Is the extracellular environment sufficiently constant that we can make this approxi-
mation? Only a small fraction (usually about 20%) of the space in the brain is actually
extracellular (Nicholson, 1995; Sykova, 1997). There is sometimes only about 20 nm
between one cell membrane and the membrane of its neighbor (the average distance is
somewhat larger; Van Harreveld, 1972). A single spike from a neuron can cause an extra-
cellular potential of a few mV near the cell body. How much of an effect does this have on
nearby neural elements?

Studies on squid giant axons (Arvanitaki, 1942), crab motoneurons (Katz and Schmitt,
1942), frog sciatic nerve (Kocsis et al., 1982), and even algal strands (Tabata, 1990) showed
that when two axons were placed in a medium with reduced extracellular conductance, ac-
tivity in one axon could depolarize the other. (See also Bullock, 1965 and references
therein.) Such interactions are called ephaptic (Greek “touching onto”, rather than synap-
tic, “touching together”; Arvanitaki, 1942). The early studies were done before the chem-
ical nature of synaptic transmission in the central nervous system was understood, and
were thought to be evidence that transmission could be purely electrical (see Eccles, 1964;
Faber and Korn, 1989). In extreme cases an action potential can be induced in an inactive
axon by a nearby one. In fact, ephaptic transmission may underly pathological activity in
motoneurons in some kinds of facial spasms, or in crushed nerves or in nerves damaged by
multiple sclerosis (see Faber and Korn, 1989; Jefferys, 1995).

There have been only two demonstrations of electrical ephaptic effects in normal opera-
tions: between the Mauthner cell and its inhibitory afferents (Korn and Faber, 1980; Faber
and Korn, 1989), and between basket cells and Purkinje cells in the cerebellum (Korn and
Axelrad, 1980). Both of these systems have specific properties that enhance the magnitude
of ephaptic effects (in the former, an unusually resistive extracellular space; in the latter,
tight junctions around the synapse). There has been no clear evidence for ephaptic inter-
actions in healthy systems without such unusual properties. Several studies have shown
significant effects of field potentials in response to electrical stimulation, when many neu-
rons are simultaneously active (Dalkara et al., 1986; Turner and Richardson, 1991), but so
far no interactions without electrical stimulation are known except in epilepsy (Snow and
Dudek, 1984; Traub et al., 1985a, 1985b).

Most theoretical studies of ephaptic interactions have examined parallel axons, because
the geometry is simple and easy to analyze (Clark and Plonsey, 1970, 1971; Markin, 1970a,
1970b, 1973a; Scott and Luzader, 1979; Barr and Plonsey, 1992). Because the currents
involved in axonal action potential propagation are small, an axon in normal tissue has an
extracellular potential of only a few pV (e.g., Clark and Plonsey, 1968; Rosenfalck, 1969).
However, an axon in a resistive sheath such as the perineurium surrounding peripheral



nerve axon bundles can have a somewhat larger potential because of the reduced extra-
cellular volume. The extracellular space can be treated as approximately one-dimensional
(the “core-conductor” approximation; Trayanova et al., 1990). Action potentials in dif-
ferent fibers tend to phase-lock slightly out of step, and the propagation velocity can be
slightly altered. However, these ephaptic interactions amount to only minor perturbations
in the timing of action potentials; significant effects are seen only when many fibers are
simultaneously stimulated (Nelson, 1966). Under normal physiological conditions, new ac-
tion potentials are probably never created and already propagating potentials are never
blocked.

Much less attention has been given to ephaptic interactions around cell bodies. This
is somewhat surprising since the potentials can be considerably larger (up to a maximum
of 3-5 mV; e.g., see the potentials in Fatt, 1957; Freygang and Frank, 1959; Terzuolo and
Araki, 1961; Rosenthal, 1972). Potentials around cell bodies are not well understood, and
analysis is complicated by the irregular geometry of dendrites. An approximate theory
based on the concepts of “closed fields” (a spherically symmetric distribution of current
sources/sinks) and “open fields” (an asymmetric distribution) can explain many features of
extracellular recordings (Bishop and O’Leary, 1942; Lorente de N6, 1947; see Hubbard et
al., 1969, ch. 7 for a review). Rall (1962) has used the closed field and equivalent cylinder
approximations to estimate the magnitude of the extracellular action potential for stellate
motoneurons. We are unaware of other efforts to compute the shapes of the extracellular
action potentials near the cell body.

In order to understand how potentials near a cell body can affect other nearby neurons,
we computed the potential directly from a detailed compartmental model that includes the
full complexity of the dendritic geometry. We then analyzed how the resulting extracellular
potential influences axons or dendrites near the cell body. Electric potentials are much more
spatially confined near cell bodies than around axons. As a result, the mode of ephaptic
interaction is qualitatively different. Interaction near cell bodies could potentially be more
important than interaction between axons.

Other forms of non-synaptic interaction between neurons are known or possible. For
example, slow potentials in the brain due to summed electrical activity of many neurons
may be large enough to influence neural behavior (e.g., Bullock, 1997). Similarly, changes
in extracellular ion concentration accompany neural activity and may noticeably influence
nearby neurons. This paper does not attempt to address these potentially significant issues;
we focus exclusively on the electrical effect of one neuron’s spike on nearby neurons.

2 Methods

The effect of a spike in a neuron on an adjacent axon/dendrite was calculated in three
stages. First, we computed the transmembrane currents for a pyramidal neuron model on
the basis of standard 1-D cable theory. Second, we used those currents to compute the
extracellular potentials. Third, we used the computed extracellular potentials to compute
the transmembrane potential of a cable passing by the cell.



Transmembrane currents were first calculated following standard 1-D cable theory (Rall,
1977), assuming that the extracellular potential was 0. The currents from each com-
partment were calculated using the NEURON simulation of Mainen and Sejnowski (1996)
(we used their source code directly, obtaining it from http://www.cnl.salk.edu/~zach/
patdemo.html). In the original model, the neuron was activated by an electrode in the
soma. We removed the electrode and scattered synaptic input uniformly throughout the
dendrites to provide input. We used the same approximation as Bernander et al. (1991):
synapses were not, explicitly modeled, but the leak resistance and reversal potential was
changed to reflect the time-averaged synaptic conductance. A synaptic conductance of
0.2 times the leak conductance and a reversal potential of 0 mV in every compartment
supplied enough current to make the cell fire after 35 ms. The intracellular resistivity R;
was 150 © cm. At specified times, the total current (capacitive + ionic) in each segment
was recorded. The action potential was sampled at 0.01 ms during its steep rising phase,
and at larger intervals elsewhere; the time step was 0.01 ms throughout.

Given these computed currents, the extracellular potential was calculated according to
standard volume conductor theory (Stevens, 1966; Malmivuo and Plonsey, 1995). As in
all previous theoretical studies of extracellular potential, we did not explicitly model all
the elements in the space surrounding the cell. Instead, the local potential is replaced by
its average over a small volume, and the medium is treated as an homogeneous isotroptic
dielectric. Local geometrical irregularities will cause variations of extracellular potential
on a spatial scale of less than a micron. However, on distance scales of several microns,
the homogenization approximation should give approximately correct results. None of the
results of this paper will be critically affected by the irregularities of the local microstruc-
ture. We also did not take into account any glial sheath, since cortical pyramidal cells,
unlike many other kinds of cells in the nervous system, do not posess such a sheath (Pe-
ters et al., 1991). The extracellular medium has a bulk resistivity of somewhere between
200 and 400 © cm and negligible reactance for the relevant temporal frequencies (Ranck,
1963; see also references in Plonsey, 1969). We used a value of extracellular conductivity
of o, = 1/330 © cm. The potential and field amplitudes are proportional to 1/0, so the
effect of a change in o, is easy to calculate.

We assumed that the previously calculated transmembrane currents will not be affected
much by the small changes in extracellular potential. The extracellular potentials are in
most places less than 1 mV, and it is difficult to see how these could possibly have a
significant effect on the transmembrane currents. Larger potentials of 3 — 4 mV occur
very briefly and only near the axon initial segment. Depending on the transmembrane
potential, extracellular potentials of this size could cause noticeable effects. However, the
3 — 4 mV shifts occur when the membrane potential is about 0 mV (not shown). In
this voltage range, the sodium channel is not sensitive to small voltage shifts. A 3 mV
shift in the potential when it is near 0 mV changes m?, for the sodium channel in our
model by less than 0.05 (with even less of an effect on 7, or hy or 7;) and has only a 5%
effect on the driving force. Therefore neglecting the effect of the extracellular potentials
induced by a cell on its own transmembrane currents will have only a small effect on the
time course and magnitude of the calculated currents. Other factors such as unknown
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channel distributions will be more significant. Our goal is not to simulate the extracellular
field exactly, but to provide an approximate solution to address more qualitative issues.
Therefore we did not attempt to refine our estimate of the transmembrane currents after
computing the extracellular potentials.

The electric potential in the extracellular space is governed by Laplace’s equation,

V- (0.Ve) =0 (1)

where o, is the bulk conductivity tensor. At the boundaries, 6.V¢ = J,, where J,, is
the transmembrane current density. For a single point source in an unbounded isotropic
volume conductor, the solution is given by an analog of Coulomb’s law,
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where r is the distance from the point source and ¢ is current from the point source. A
cable can be treated to a good approximation as a line of point sources (the line source
model). The extracellular potential was computed as the sum of the potentials from all the
points on the dendrites. Each dendrite was broken up into straight cylinders, one cylinder
between each point recorded in the reconstruction (there were may more cylinders than
there were segments in the 1-D NEURON model; the current from a given segment was
assumed to be uniformly distributed across all cylinders composing the segment). The
soma was treated as a sphere. For more details, see Holt (1998), appendix C.

Since extracellular potentials are computed very close to the membranes, it is reason-
able to ask whether a model that treats a cable with finite diameter as a line with zero
width is dependable close to the cable membrane. We compared the approximate solution
from the line-source model with the solution of equation 1 for an infinitely long cylinder
with a finite radius (the solution by separation of variables and eigenfunction expansion
is straightforward; details can be found in Holt, 1998, appendix C). The line and cylinder
source models were compared for an infinite cable of diameter 1 pym emitting a current
over a 10 ym segment. Figure 1 shows the extracellular potential along the line r = a,
i.e., at the neural membrane. The results are virtually indistinguishable; the line source
model is definitely sufficiently accurate for computation, even close to the membranes. Us-
ing different simulations, others have also found the line source model to be very accurate
(Rosenfalck, 1969, appendix 1; Trayanova and Henriquez, 1991).

The effect of the extracellular potential on a cable passing through the region was
computed using the formalism in section 4. The equations were discretized and the resulting
tridiagonal system solved using standard numerical techniques.

3 Extracellular potential around a simulated cell

We used a previously published model of a layer V, adult cat neocortical cell (Mainen and
Sejnowski, 1996) without modification except that current injection through an electrode
was replaced by time-invariant synaptic input (section 2). The morphology of the cell was
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Figure 1: Justification of the line-
source approximation for computa-
tion of extracellular potential near
membranes. A long cable with a di-
ameter of 1 ym has a 10 ym segment
that emits current (dark region of
cable). Extracellular potential was
computed as a function of position
along the cable at the membrane us-
ing either the line-source approxima-
tion (treating the cable as a line of
zero width), or directly from equa-
tion 1 taking into account the fi-
nite diameter of the cable. Top:
Potential at the membrane for the
two methods. There are actually
two lines on the figure; the results
are almost indistinguishable. Bot-
tom: The difference between calcu-
lated potential from the line source
method and cylinder source method.
Note the different scale on the y axis.



obtained using HRP during the course of in vivo experments in the visual cortex of an
adult cat (Douglas et al., 1991). This model was designed to replicate the results of Stuart
and Sakmann (1994), in particular that action potentials initiated in the soma or axon
even when current was injected into the dendrites. The cell has a very high density of
sodium channels in the axon hillock and initial segment, and a low density in the soma
and dendrites. Potassium currents (delayed rectifier, M-current, and calcium-dependent)
and a calcium current are also present in the soma and dendrites. We could equally well
have used the model of Rapp et al. (1996) except that it does not include repolarization
currents.

Sample voltage traces are shown in figure 2. The action potential initiates approxi-
mately simultaneously in the distal part of the initial segment and the first node of Ranvier.
It then propagates up the initial segment (not shown), slowing down considerably in the
axon hillock because of the load of the soma and the dendrites (for the locations of these
parts of the neuron, see the legend to figure 3).

Apical

dendrite Figure 2: Intracellular voltages at
several points in the simulated cell.

Soma Each trace is 3 ms long. The spike
begins in the initial segment/first
node and propagates into the soma

Initial and up the dendrites.

segment

Using standard volume conductor theory, field potentials were computed from the com-
partmental model (figure 3 and figure 4). It is difficult to account for every detail of the
field potential, but most of the obvious features can be understood. First consider the
largest potentials, which occur near the axon hillock and initial segment. This area of
the neuron has an extremely high density of sodium channels in the model (maximum
conductance if all are open is 30,000 pS/pum?, in comparison with 20 pS/um? in the soma
and dendrites). The inward currents are large because current through the axon hillock is
what depolarizes the soma and proximal dendrites.

The initial negativity in the extracellular potential (called “A spike” by Terzuolo and
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Figure 3: Field potentials in a plane around the simulated layer V cortical pyramidal cell.
x and y axes are in units of ym. Each trace is the potential as a function of time at a point
located at the center of the trace. Note the different voltage scales indicated by the different
colors of traces. The superimposed neuron is a projection of the three dimensional shape
onto the plane; many of the dendrites shown are above or beneath the plane of the figure.
However, both the soma and the axon are in the plane of the figure. The axon hillock is
marked in light tan; the initial segment and the first node of Ranvier are marked in darker
tan; myelin is shown in black. Closer than 20 ym to the axon hillock, field potentials are
much larger than shown here (see figure 4 for closeup). The soma is at (0,0), and the
axon descends straight below it. The apical dendritic trunk is slightly to the left of z =0
and goes up approximately straight, so the larger potentials at the top center are from the
apical dendrite. The field potentials look roughly similar in slices at other angles through
the volume, so only this slice is shown.

Figure 4: Field potentials near the soma of the simulated layer V cortical pyramidal cell.
The peak field potential is slightly over -5 mV and occurs next to the axon hillock (light
tan). Note that the peak amplitude on this graph is much higher than in figure 3 because
the traces are closer to the axon initial segment. The black spot near the axon hillock is
the location of the cable of figures 8 and 9.

Araki, 1961 in analogy with the A and B spikes in the transmembrane potential) is due
to currents in the distal initial segment, since it occurs at the same time as the maximum
current from the distal initial segment (see figure 5). Because of charge conservation,
current flowing in through the initial segment must flow out somewhere in the cell; in fact,
there is an initial positivity near the apical dendrite (figure 3) because the potential from
the local outward current there was larger than the potential from the inward current at the
initial segment. A sign reversal is not observed in the basal tree because it is approximately
a closed field.

A second negativity (the “B spike”) in the field potential is due to the currents in
the axon hillock, especially the proximal part (figure 5). This negativity is larger because
the total current into the hillock is larger than into the initial segment. In fact, the field
potential can be as large as —5 mV within a few microns of the hillock. Again, this reverses
in sign in the apical dendrite because of current outflow there.

In the model, the action potential propagates up the apical tree!, but dV,,/dt is very
small because of the much lower sodium channel density. The field potentials are therefore
extremely small (sometimes less than 10 xV) and are difficult to observe directly.

There are several important features of the extracellular action potential for ephaptic
interaction. First, as noted above, it is much larger than the extracellular potential ex-
pected around axons under most conditions. Second, it is more confined in space than
fields from axons (figure 6A). For an axon in a sheath, for example, it is known that the

LA movie of this can be seen at http://www.klab.caltech.edu/ holt/thesis/.
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Figure 5: A comparison of the
field potential and transmembrane
currents. The first negativity in
the field potential corresponds to
the maximum current from the dis-
tal initial segment. The second
negativity corresponds to the max-
imum current from the proximal
axon hillock. The current trace la-
belled “soma” is the current through
the soma on the same scale; in this
model, somatic currents were far
smaller than hillock/initial segment
currents so the line is almost flat.



extracellular potential ¢ o< —V}, (Clark and Plonsey, 1968; Rosenfalck, 1969; Stein and
Pearson, 1971), so the field may be spread out over a mm or more depending on the speed
of propagation (figure 6A). In contrast, the extracellular field has a large amplitude over
only a small region (50 pm for this particular model, as shown in figure 6B; sometimes

over 100 ym measured experimentally).

A. Potential from axon in sheath

500 Hm 100V

B. Potential from cell

1.5mv

Figure 6: A comparison of the ex-
tracellular potential produced by a
long axon (A) and a pyramidal cell
body (B). The axon had a diame-
ter of 1 um and channels as given
by the usual Hodgkin—Huxley equa-
tions. The extracellular potential
around an axon in a sheath is sim-
ply V,, o< —=V,; the amplitude is in-
versely proportional to the square of
the sheath diameter, and is expected
to be tens to hundreds of microvolts
at most. The potential from the cell
was computed along a line perpen-
dicular to the plane of figure 3 and
intersected it at (5, —20) (near the
axon hillock). Voltage scale is arbi-
trary in A, since the voltage depends
strongly on the radius of the sheath.

4 Effect of extracellular potential on neural elements

Consider a straight passive unmyelinated cable with a varying extracellular electric poten-
tial V., as shown in figure 7. (V. is equal to the extracellular potential ¢ at the membrane
surface. If the extracellular potential ¢ varies significantly around the perimeter of the
membrane, then V, is the average value of ¢.) Summing the currents into the junction and
taking the limit as the differentials approach 0 gives (Clark and Plonsey, 1971; Plonsey

and Barr, 1995)
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Cm 02 g Vin=V; = Ve Figure 7: Circuit for computing the
effect of extracellular potentials.
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since V,,, = V; — V.. With the usual definitions 7 = ¢,,/gm, and A2 = 1/r;g,,, and assuming
r; is constant, this becomes

OV IBRYCAZIRCAY
Tw—i_vm_/\ (3,22 +8z2>' (4)

This is the standard cable equation except for the last term. It is possible to interpret
equation 4 as the normal cable equation if the effect of the extracellular potential is thought
of as a fictitious distributed current (the ephaptic current) with a magnitude of

0 10V,

leph = 5= —
P ozr; 0z

(5)

per unit length.
For an intuitive understanding, it is helpful to consider the Fourier transform of equa-
tion 4 in both space (k) and time (w):

iwT Vi + Vip = =2 X2V, — K2N2V, (6)
or

1232
Vm: . kA e-
1+ twr + k2)\2

(7)

Clearly the biggest that |Vj,| can ever be is |V;|, and that occurs for large k2X2. This
suggests that the largest V,(z) can be is —V,(z), which occurs when V;(z) is approximately
constant. In the extreme case, if the intracellular medium is a perfect conductor (e.g., the
cable is a metal wire), then V; will not change at all. V; will be almost constant if the
intracellular resistance between the point at z and another point where V, is substantially
different is small.

This upper bound is not reached in practice for two axons in a bundle. Instead, the
term fw7 in the denominator of equation 7 dominates over the relevant frequency range,
and the main ephaptic effect is on the time derivative of V,, (Clark and Plonsey, 1971).
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The potential around cells is much more confined than around axons, and therefore kA
is much bigger. For example, from figure 3, the dominant spatial frequency in the action
potential is somewhere around k£ = 27/100/pm and the dominant temporal frequency is
w = 271/0.30/ms. If an axon with a diameter of 1 ym and the same passive parameters
as the axons in Manor et al. (1991) at rest (7 = 1.1 ms, A = 220 pm) passes by this cell
body, k?\? ~ 190 and wr =~ 20. Unlike interaction between pairs of axons, near a cell body
k?)? > wr. Because of the much shorter distances involved, the intracellular medium acts
as a good conductor, so V; is approximately unchanged. As a result, we would expect that
Vi &= —V, and has the same time course as V..

Despite the crudity of this analysis, it is not a bad predictor of the transmembrane
potential. The actual transmembrane potential is shown in figure 8. In fact, V;, is almost
equal to —V,, especially near the cell body where V, is changing rapidly with position.

Kinks or bifurcations in the cable give rise to higher spatial frequencies in V,, because
the direction of the cable changes discontinuously. This would make V,, even closer to
—V,. However, in the example considered here, V,,, is already almost equal to V,, so kinks
are not expected to make a large difference. For potentials spread out more in space,
these geometrical inhomogeneities could make a significant difference. For completeness,
a method for computation of the effects of kinks, bends, bifurcations, and terminations is
described in the appendix to this paper.

Ephaptic interaction can be characterized by localized current injection (equation 5),
just as synapses can. However, this example shows that ephapses have somewhat different
properties from synapses. Because the ephaptic current depends on the second derivative
of the extracellular potential, a peak in the extracellular potential produces an ephaptic
current which is depolarizing at the peak and a hyperpolarization that flanks the peak (see
the currents (dashed lines) in figure 8). In fact, the total ephaptic current into an cable is

given by
[e’e) ) ) 1 62‘/;(75)
/_oozeph(t)dz:/_oor—i 5,2 dz

! (1 250y, 240)

L
=0.

2—00 az Z—>—00 8,2

As a result, the transmembrane potential is more localized and does not spread in the same
way as a point current source injection would.

The Fourier analysis also predicts what the effect of parameter variations is on the
induced potential. Since k*)A? > wr, changing 7 = ¢,,/g,» by changing the capacitance
within reasonable limits should have little effect on the result (figure 9A), so myelination
will not significantly affect interaction. Also changing A = \/0;d/4¢,, by changing the
intracellular resistivity (figure 9B) or the cable diameter d (figure 9C) within physiological
limits has little effect because k2)\? appears in both the numerator and the denominator.
Changing the membrane conductance g,, has the same effect on both £2)? and w and has
little effect on the result as long as wr + k*A? > 1 (figure 9D).
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Figure 8: The membrane potential of a long straight passive cable located about 2 ym
from the axon hillock of the simulated layer V pyramidal cell. Left: Extracellular potential,
transmembrane potential induced in the cable, and the ephaptic current are shown as a
function of position for several different times during an action potential in the pyramidal
cell. Right: Extracellular and transmembrane potential at the point where the axon passes
closest to the cell body. This cable was perpendicular to the plane of figure 3 and intersected
it at (5, —20) (marked by the black dot on figure 4 several microns from the axon hillock).
Parameters: d = 1 um, ¢,, = 0.8 uF/cm?, g,,, = 1/1400 Q cm? (same as the axon in Manor
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Figure 9: Effect of varying cable
parameters on the transmembrane
voltage induced by the extracellular
spike of the pyramidal cell shown in
figures 3 and 4. Only the voltage
at the center of the cable (the peak
voltage; position 200 pym in figure 8
left) is shown. In each plot, —V, is
shown in grey and the induced po-
tential V,, is shown in solid black
lines. A: Variations in capacitance
Cm, affecting only 7. B: Variations
in intracellular resistivity, affecting
only A\. C: Variations in the radius
of the axon, which affects only A. D:
Variations in the membrane conduc-
tivity, which affects both A\? and 7
proportionately. In all cases, there
is little change in the induced trans-
membrane potential within physio-
logically reasonable limits.



Similar results are to be expected from changing parameters in only a small region of
the cable. This is difficult to analyze quantitatively, but the same qualitative considera-
tions hold. Since the intracellular potential is approximately constant, the transmembrane
potential will be approximately the negative of the extracellular potential. Local changes
in conductivity or diameter will not significantly affect this relationship, and thus do not
have a large effect on the magnitude of the induced voltage.

The only parameter that has a large effect on the magnitude of ephaptic voltage tran-
sients is the location of the cable. The magnitude of the extracellular electrical field
decreases sharply with distance; more than 20 ym away from the axon hillock, the peak
extracellular potential amplitude has dropped to less than 1 mV in this simulation, and
the induced transmembrane voltages also drop by the same amount.

In these simulations, the cable runs perpendicular to the dendritic axis of the cell. How-
ever, cables running parallel to the apical dendrites would feel similar extracellular fields,
provided they pass close enough to the axon hillock, because the falloff of extracellular
potential with distance is approximately independent of direction (not shown) when the
potential is greater than 1 mV. (Below 1 mV the potential falloff is anisotropic but such
such potential magnitudes are unlikely to be important for interaction.)

5 Discussion

Using standard volume conductor theory, we computed the approximate extracellular po-
tential that would be produced by a spiking pyramidal cell in a previously published
compartmental model simulation (Mainen and Sejnowski, 1996). This model was chosen
because its spikes initiate in the axon (Mainen et al., 1995). Proper location of spik-
ing currents is important for computing the extracellular potential, because potentials are
much larger near regions of large current densities (figure 4). However, we believe that
our results—in particular as they pertain to ephaptic interactions—hold true for many
neuronal geometries and distributions of membrane currents within physiological bounds.

5.1 Extracellular potential waveforms

The simulated extracellular action potentials (figures 3 and 4) resemble a number of previ-
ously published estimates for several different kinds of neurons (e.g., Fatt, 1957; Freygang,
1958; Freygang and Frank, 1959; Nelson and Frank, 1964; Sperti et al., 1967; Rosenthal,
1972), both in magnitude and in shape. In our simulations, within a radius 10-20 microm-
eters of the axon hillock, the extracellular potentials can be over 1 mV in amplitude. They
reach a peak of about 5 mV at the membrane of the axon hillock. We used an extracellular
resistivity of 330 €2 cm; the extracellular potential is roughly proportional to the resistivity,
so the effects of different resistivities are easy to estimate.

The potentials have up to two peaks far from the cell body, and a peak with a shoulder
near the cell body (figure 5). The amplitude of the first peak is quite small in most
places, and might not be observable in many recordings. A peak with a shoulder would
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be observable near the axon initial segment. In fact, often a shoulder on the waveform
is seen near the soma of a variety of neurons, including CA1 pyramidal cells (Sperti et
al., 1967; Buzséki et al., 1996), possibly pyramidal tract neurons (figure 1 of Rosenthal,
1972), and motoneurons (Fatt, 1957; Terzuolo and Araki, 1961; Nelson and Frank, 1964).
In some published traces, two separate peaks rather than just a shoulder can sometimes
be discerned (e.g., Fatt, 1957).

By direct comparison of intracellular with extracellular voltage, the first peak (the
extracellular A spike) has classically been attributed to the axon hillock/initial segment,
and the second (the extracellular B spike) to the soma and possibly proximal dendrites
(Terzuolo and Araki, 1961). In the model here, however, both the A and the B spike are
from currents in the axon; the A spike comes from the initial segment, and the B spike comes
primarily from the axon hillock. This probably could not be discerned experimentally
because the potential in the soma very closely follows the potential in the axon hillock,
and the transmembrane currents were not measured directly.

There is some disagreement about whether strong currents exist in the axon hillock and
initial segment. The classical model of spike initiation developed for motoneurons is that
the axon hillock/initial segment has a very high density of sodium channels, causing action
potentials to initiate there first (Fuortes et al., 1957; Coombs et al., 1957a, 1957b) and
then propagate into the soma and dendrites. A similar idea has recently been proposed for
neocortex (Mainen et al., 1995; Rapp et al., 1996). On the other hand, recent measurements
in hippocampal cells (Colbert and Johnston, 1996) suggest that there is a low density of
sodium channels in the axon hillock and initial segment, and that the large currents must
be located at the first node of Ranvier. Measuring the extracellular potentials in a slice
may be a simple way to determine where the large currents are.

Extracellular potentials can also be used to infer a number of other properties of the
system. For example, 50 years before intracellular dendritic measurement became routine,
Lorente de N6 (1947) was able to conclude from extracellular potentials that branch point
failure occurs in propagation of action potentials into the dendritic tree (see also Buzséki et
al., 1996 for a similar modern inference). In general, studies of extracellular potential may
provide valuable clues to the distributions of currents in a neuron, especially when it is
possible to test interpretations of the extracellular potential with a compartmental model
and neurons with known geometries. Current-source density analysis uses approximate
anatomical information about populations of neurons to infer synaptic currents (e.g., see
Mitzdorf, 1985), but additional information is available in the spatial pattern of potential
from a single neuron which is often washed out by population-based analyses.

5.2 Effect of extracellular potential on other neurons

The effect of extracellular potential on neural elements has been studied extensively to un-
derstand the effect of stimulating electrodes (e.g., Ranck, 1975; MacNeal, 1976; Tranchina
and Nicholson, 1986; Chan and Nicholson, 1986). Similarly, influence of one axon on an-
other in a fiber tract is well understood (e.g., Clark and Plonsey, 1970, 1971; Markin, 1970a,
1970b, 1973a; Barr and Plonsey, 1992, among many other studies). We find that ephaptic
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interactions between the cell body of a neuron and a nearby axon or dendrite have quali-
tatively different properties from these cases, because the potential fields are qualitatively
different. In the case of two interacting axons, the temporal derivative of the membrane po-
tential is roughly proportional to the extracellular potential spatial differences (Clark and
Plonsey, 1971). However, for a cable passing by a cell body, the transmembrane potential
(not its derivative) is approximately equal to the negative of the extracellular potential.
The extracellular potential around a cell body is much more spatially confined than the
extracellular potential along an axon (figure 6). As a result, the relevant spatial distances
along the cable are much shorter, and the intracellular resistance is much less. As a result,
the interior of the cable is approximately isopotential, so the transmembrane potential has
almost the same magnitude as the extracellular potential.

Ephaptic interactions near cell bodies can give rise to larger depolarizations than typical
excitatory chemical synapses between pyramidal cells. Unlike chemical synapses, however,
the effect does not spread electrotonically. As a result, ephaptic depolarizations will have
no lasting effect unless there are active channels at the location of the ephaptic depolariza-
tion. This is different from ordinary synapses, because small synaptic currents from many
locations can sum together to form a substantial depolarization at a site quite distant from
the synapses.

Since the ephaptic depolarizations are localized and are only a few mV at most, they
will have an effect only on structures already close to threshold. For example, there is some
evidence that action potential propagation can fail at branch points in the axon (Swadlow
et al., 1980; Debanne et al., 1997) or dendrites (Lorente de N6, 1947; Buzsaki et al., 1996;
Hoffman et al., 1997). In this case, the potential in each of the branches would be close to
threshold and a simultaneous extracellular action potential might be enough to cause the
action potential to invade the branch.

Can ephaptic interactions from simultaneously active neurons lead to larger effects? Ex-
tracellular potentials from two neurons should approximately superpose, unless the changes
in membrane conductance change the bulk conductance of the volume significantly, or the
potential changes become large enough to affect the spiking currents noticeably. However,
since extracellular spike waveforms are brief and have positive as well as negative regions,
spikes must be aligned to significantly less than a ms if they are to add constructively to
form a larger potential. (This is one reason why spiking activity is thought to be a relatively
minor component, of bulk field potentials in EEG and current source-density analysis; e.g.,
see Mitzdorf, 1985.) It is unlikely that such precise synchrony is common.

Ephaptic interactions are more difficult to modify than chemical synapses once a neurite
is grown, because the magnitude of the depolarization is roughly independent of the cable
properties of the post-ephaptic membrane (figure 9). If ephaptic effects are to subserve
some function, then it would be reasonable to expect that growth cones are directed by
the electric fields set up by cell spiking activity. Growth cones are indeed often affected
by electrical fields, both steady state (McCaig, 1988; McCaig and Zhao, 1997) and pulsed
fields (Patel and Poo, 1984). Minimum peak field amplitudes for growth cone direction
could be as low as 6 mV/mm, which is considerably smaller than the peak field amplitudes
calculated above, so long as the pulse frequency is high enough. If spiking activity during
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development has any significant effect on growth cones, it usually would tend to guide
neurites toward the cell bodies of spiking cells.

It has been sporadically suggested that dendritic bundles might be an anatomical sub-
strate for ephaptic coupling (e.g., see Roney et al., 1979; Jefferys, 1995 and references
therein). However, unless extracellular conductivity within the bundles is dramatically dif-
ferent from the measured bulk conductivities, ephaptic coupling due to spikes propagating
up the dendritic tree will be negligible since the extracellular potentials will be only tens of
microvolts except near the axon hillock. Coupling in bundles based on slow extracellular
potentials (e.g., summed synaptic currents from many neurons) is possible but the physics
of coupling is different due to the different temporal and spatial scales.

Ephaptic interactions with magnitudes of several mV are just on the verge of being
significant. The magnitude is approximately proportional to the extracellular resistivity; if
this were much higher, ephaptic effects would be much more widespread in the central ner-
vous system. Some cross-talk may occasionally be useful for computation, but widespread
crosstalk would probably be damaging. Extracellular resistivity is controlled primarily by
the size and tortuosity of the extracellular medium. It is therefore possible that the need
to limit noise from cross-talk is what determines the minimum spacing between neural
elements.
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Appendix: Finite or bent axons, cells, and dendrites

Neural elements are straight for long distances only in nerve tracts. In neuropil, where
interactions are potentially more interesting, it is important to consider neural elements
with sharp bends, terminations, and branches. The effect of the extracellular potential is
mediated by the derivative of its gradient in the direction of the axon or dendrite, and the
gradient changes abruptly when the direction of the axon or dendrite changes. Therefore
the largest effects can be seen at bends in neural processes (Markin, 1973b; Tranchina and
Nicholson, 1986).

The modified cable equation 3 must be rewritten in terms of an arc length parameter s
instead of distance z, where the cable is described parametrically by = = z(s), v = y(s),
z = z(s). With this modification, summing the currents into the node in figure 7 gives
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As discussed previously, this is the standard cable equation except there is a distributed
current (the ephaptic current) injected into the cell of magnitude

0 (LOV _(01) oV 18, o)
h = 9s r, 0s ] \dsr;) ds = r; 0s?
per unit length. The derivatives of the extracellular potential at the surface of the cable
V. depends on the extracellular potential ¢ and the shape of the cable:
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where E is the electric field and T is the normalized tangent vector,

dx dy dz
T— <%’E,£> . (11)

The effective current is proportional to the second derivative,
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where 0(E,, Ey, E,)/0(z,y, 2) is the Jacobian of E (the Hessian of —¢).

Axons and dendrites in neuropil tend to have kinks rather than smooth bends, so T is
discontinuous and dT/ds is a sum of ¢ functions. As a result, the current source consists
of a distributed current (the first term in equation 12) and a series of point current sources
at each bend (the second term). The magnitude of each point current source is

e (2 T10)
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Figure 10: Calculation of ephaptic
current at a branch point.

where T(sT) and T(s™) are the tangent vectors on each side of the kink.
A similar situation occurs at a branch point. Summing the currents into the node in
figure 10 gives
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Therefore, if we consider the transmembrane potential instead of intracellular potential,
there is an effective point current source of magnitude
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injected at the node, in addition to the distributed current source from the Jacobian of E.
There is also an effective current at the ends of axons or dendrites. At the end of the cable,
no intracellular axial current flows (sealed end condition):
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Once again, in terms of V,,, it is as if there is a point current source of magnitude
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located at the end, in addition to the distributed current source.
These special cases are all subsumed by a general rule: at any point along the cable, there
is a point current source due to a geometrical inhomogineity at that point which is

1
Igp=) —E-T (19)

summed over all of the cable segments that join at that point. The direction of T is
taken as toward the point. This rule is also applicable for discontinuous changes in r;. In
addition, there is a distributed current source due to changes in the electrical field at that
point,

a(Eza Ey7 Ez)
o(z,y, 2)

How much influence do the geometrical irregularities have? Extracellular potentials pro-
duced by cell spiking, at least from this particular pyramidal cell model, change very
rapidly in space, and the induced transmembrane potential is already almost equal to the
extracellular potential (see above); V;, cannot grow any larger. Discontinuities would be
more important for less localized potential, perhaps around other cells. For such fields,
discontinuities focus the effects of the electrical field and are likely to be important. For ex-
ample, if electrical stimulation causes an action potential, it is much more likely to initiate
at a discontinuity (Tranchina and Nicholson, 1986).
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