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Welcome back! So far, we've developed a monumental amount of theory regarding the motion
of rigid bodies. We've developed strong representations of rotations and general rigid body
transformations, and have devised numerous convenient parameterizations for both.

In this section, we'll finally be able to begin to appreciate the significance of our developments,
and will apply them to finding the rigid body transformations associated with real-world robots.
In studying something called the forward kinematics of robots, we'll truly be able to enjoy the
power of twists, screws, and exponential coordinates, and see that our struggle has allowed us

to come up with a truly elegant representation of complex robot motions. Let's get started!

Robot Joints

As real world robots are composed of many complex joints, having an understanding of the
motion of each individual joint of a robot arm is a good first step in developing models of
complex robot motion. In this section, we'll define three fundamental robot joints, and see how
we may apply twists and screws to describe their motion.

The first fundamental robot joint is the prismatic joint. This is a joint that corresponds to a pure

translational motion. Consider the robot arm below, for example:
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Above: a prismatic robot joint is a joint that undergoes pure translation

We see that this arm is only able to move along a single axis in space - in this case the y-axis of
the frame. Since this is a pure translational motion, we know that this robot arm has a prismatic
joint.

How can we find the twist associated with this joint? We recall that for every purely translational

motion, we may find a twist of the form:

v
£prismatic == |:0:|

Where v € R? is a unit vector pointing in the direction of translation. To describe the
transformation of translating in direction v by € units of distance, we recall that we may use the

matrix exponential of the hat map of this twist:
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The next, and perhaps most common, type of robot joint is the revolute joint. This is a joint that

purely rotates about some axis in space. Consider the following example of a revolute joint,
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pictured in red:
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Above: a revolute joint undergoes pure rotation

In the image above, the red joint of the robot arm only undergoes a pure rotation about an axis
in space, which is drawn here as a dotted green line. Because this joint undergoes a pure
rotation about an axis, we say that it is a revolute joint.

Since revolute joints undergo pure rotations, we may describe the motion of a revolute joint
with a twist corresponding to a pure rotational motion. Recall that we may express the twist of a
purely rotational motion as:

—wXgq
w

grevolute = |:

Where w is the unit vector axis of rotation and ¢ is any point on the axis of rotation, expressed in
the spatial frame.
To find the rigid body transformation associated with rotating a revolute joint by 6 radians about

its axis, we may take the matrix exponential of its twist:

Grevolute = e&mlme € SE (3)

As a brief aside, note that a convention when drawing robot arms is to draw a set of slanted
dashed lines wherever the robot is securely attached to its environment. In the picture above, for
example, the slanted dashed lines drawn on the joint in blue indicate that the robot is fixed in
space, perhaps to the ground or a wall, at that point.

The final important class of joint we'll discuss is the screw joint. Recall that previously, we
defined screw motion to be a motion involving a rotation about an axis and a translation parallel
to that axis.

The definition of screw motion leads naturally to the definition of a screw joint! A screw joint is a
joint of a robot arm that involves a rotation and translation about the same axis. Consider the

following example of a screw joint:
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Above: a screw joint corresponds to a rotation and a translation of a robot link about the same axis

In the example above, when the robot joint rotates about its axis, it also translates along the
axis. As with screw motion, we may compare the motion of these joints to the motion of nuts
and bolts! When we turn a nut on a bolt, it both spins on and translates along the axis of the
bolt.

Because the motion of a screw joint involves a rotation about an axis and a translation along
that axis - the same set of motions as a screw motion - we may use the twist of a rotational
screw motion to represent the motion of a screw joint.

We therefore write the twist of a screw joint as:

—w><q+hw]
w

gscrew = |:

Where w is the unit vector pointing along the axis of rotation, g is any point on the axis of
rotation, and h is the pitch, the ratio of translational to rotational motion. Recall that —w x ¢
comes from the rotational part of the screw motion, while hw comes from the translational part
of the screw motion.

To represent the rotational, translational motion of a screw joint, we may once again apply the

matrix exponential to the twist:

Gserew = efmuﬂ cs E(3)

Where 6 is the amount of rotation about the screw axis.

Now that we have these three fundamental robot joints and their associated rigid body
transformations, we can construct larger and more complex robot arms by attaching these joints
to each other! Consider the complex robot arm below, for example:
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Above: a complex robot arm composed of the three fundamental joints
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Which joints can we identify in the robot arm above? We see that the first joint is a screw joint,
as it involves both a rotation and a translation along a screw axis. The second joint is a revolute
joint, as the red piece of the robot arm only undergoes pure rotation. The third joint is a
prismatic joint, as it simply moves up and down with respect to its previous joint.

We refer to each of these independent segments in a robot arm as a robot link. Note that we
assume each link is a rigid body - this will allow us to apply the theory of rigid body
transformations to the motion of complex robot arms.

Describing Robot Configurations

Once we begin forming more complex manipulator arms composed of multiple joints, it
becomes more and more challenging to keep track of the possible configurations of the robot.
For example, if we have a robot arm with six independent joints, changing any one of the six
joint positions will give an entirely new robot configuration!

In this section, we'll develop a precise mathematical framework for describing the set of all of
possible positions for a robot arm. This set will provide us with a convenient way of assessing
where a robot arm is capable of moving.

We'll begin this process with a precise definition of the space of robot arm configurations.

Definition 12

Joint Space
The joint space of a robot arm is the set @ of all possible joint angle or position

combinations for the manipulator arm.

Q = {All Joint Configurations}

How may we describe this set in more mathematical terms? Let's take a moment to think about
the sets of possible joint positions and angles for the types of joints we discussed in the
previous section.

Consider the following top-down view of a revolute joint. We know that we may represent the
position of the joint using an angle 6, the displacement of the joint relative to its starting

position.
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Above: the configuration of a revolute joint changes depending on the angle 0. The end effector

traces out a circle as 6 varies.

How can we describe the set of all possible angles of the revolute joint? Let's think about the
conditions the angle @ is subject to.

We know that at the very least, 8 will always be a real number. Can we be any more specific
about the set of possible 8 values? Since 6 refers to the angle of rotation of a joint, we know that
after @ = 2, the configurations will begin to repeat themselves!

Because of this, the set of all possible configurations of a revolute joint may be described by an
angle 6 between 0 and 2, since after 27, the joint will be back where it started.

We name the set of possible 6 values for a revolute joint S!, where S refers to the circular nature

of the setll] and 1 refers to the number of angles we need to describe our position on the circle.
2]

Mathematically, the set S' may be be identified by the interval 6 € [0, 27), where we don't
include the second endpoint to avoid repeating angular configuations.

Let's now think about the set of all possible values for the position of a prismatic joint. We know
that a prismatic joint is a joint that is able to translate along a fixed direction in space. Because
this direction is fixed for every prismatic joint, all we need to describe the position of a prismatic
joint is the distance we've moved along that direction, which is a real number in R.
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Above: the position of a prismatic joint may be any real number

Is it possible to get any more specific than this set for a prismatic joint? Let's think about it in a
way similar to the case of a revolute joint.

We know that a prismatic joint involves a translation along a single direction v. If we keep
moving along v in one direction, is there any way we'll end up back where we started like we did

in the revolute case?
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Above: by translating along a single direction v, is there any way we can get back to where we

started?

As we can see in the image above, if we move along a single direction in space, there's no way
we'll ever end up back at our starting position!

This means that there is no “periodic behavior” in the position of a prismatic joint, unlike in the
case of a revolute joint. Because of this, we conclude that we must use the entire set of real
numbers, R, to represent the set of all positions of a prismatic joint.

With the sets S! and R, we're now ready to describe the set of all possible positions for any
individual robot joint. What we still need, however, is a way to mathematically write the set of all

combinations of elements of these sets. This comes in the form of the Cartesian product.[il

Definition 13

Cartesian Product
The Cartesian product of two sets A = {A1, Ay, ..., An} and B = {B1, B, ..., Bn},

written A x B, is the set of all combinations of elements of A and B.

A X B = {(Al, B]), (Ala Bg), coog (Az, Bl)7 (Az, BQ), P (An, Bm)}

We may use this Cartesian product as a tool to write out the set of all possible joint
configurations of our robots - after all, each robot configuration is just one combination of joint
positions!

As a demonstration of how the Cartesian product is used, we'll write out an expression for the

joint space, @, of the following robot arm:
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Let's first identify the types of joints in this arm. The first joint is revolute, the second joint is

revolute, and the third joint is prismatic, as it is a purely translational joint.

Now, we want to write an expression for the joint space @ - the set of all possible joint
configurations of this robot. We know that this is the set of all possible combinations of the three
joints above.

Since the first two joints are revolute, we know that the first and second joints may be described



by S. Since the third joint is prismatic, the set of all possible positions of the third joint is IR.
Since the joint space is the set of all combinations of joint positions and we know the sets

corresponding to each joint, we may express Q as:
Q=S'xS'xR

Thus, using the Cartesian product to express the set of combinations, we've identified the set of
all possible joint positions for the robot.
What does a single element of this joint space, 8 € @, actually look like? Let's rewrite the joint

space of the robot above in traditional set-builder notation to gain some perspective.
Q=S"xS"xR={(61,60,63) | 61,0, € S',03 ¢ R}

We see that each element of the joint space of this robot, 8 € @, is actually list of the three joint
positions! Because of this, we often express the configuration of a robot as a vector of the
robot's joint positions. For the robot above, for example, we could express its joint positions as

the vector:

Where 0 refers to the position of the first joint, f2 the position of the second joint, and 63 the
position of the third joint. This is a common convention that we'll use going forwards.

Let's zoom out for a moment, and take a higher level overview of our analysis of the joint space
of this robot. Are there any patterns we can extract from our final expression?

We found that when we had two revolute joints and a single prismatic joint, we had two
appearances of S! in our Cartesian product and one appearance of R. It turns out that this
pattern of the number of S's and Rs in the Cartesian product matching the number of revolute
and prismatic joints will generalize to robots composed of arbitrary numbers of revolute and
prismatic joints.

If we have a robot with n revolute joints and m prismatic joints, the joint space of the robot may
be expressed:

Q=S"xS'%...xS'xRxRx...xR

Where we have n appearances of S' and m appearances of R.

It's important to note that the order in which we write the sets in a Cartesian product has no
effect on the final resulting set! This is because the Cartesian product is simply all of the possible
combinations of each set, and thus doesn’t depend on the order in which we write the sets.
Outside of joint space, are there any other high level descriptions of a robot that provide us with
some useful information about our system? A common piece of information about a robot arm

is its degrees of freedom, which we define below.

Definition 14

Degrees of Freedom
The degrees of freedom (DOF) of a robot arm are the number of joints in the robot

which we may independently move.

Let's try to find the number of degrees of freedom of the arm below, which has a screw joint
followed by a revolute joint followed by a prismatic joint.
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Let's consider the first joint, the screw - how many degrees of freedom does this joint add to the
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system? We know that this joint introduces both a rotation and a translation into the system.
However, we know that the rotation and translation aren’t independent motions!
When we rotate a screw joint by some amount, we know that the pitch of the screw will give us

the corresponding translation:
d=ho

Where d is the distance the joint translates, h is the screw pitch, and @ is the angle the joint
rotates. Because of this relationship between rotation and translation, we may only control one
parameter at a time in a screw joint. Thus, the screw joint adds only one degree of freedom to
the system.

Next, we consider the revolute joint. Here, we only have one parameter we can control - the
angle of rotation about the axis. What's more, we may change this rotation totally independently
of the other parameters in the robot! The revolute joint therefore adds one more degree of
freedom.

Finally, we consider the prismatic joint. We're able to move the prismatic joint up and down to
any position we want. Does our ability to move this joint depend on any of the others? Since we
can control the prismatic arm entirely independently from the other joints in the robot, we
conclude that the prismatic joint also adds a degree of freedom.

Adding up each degree of freedom, we conclude that this robot arm has three total degrees of
freedom.

The Product of Exponentials

Now that we have an understanding of the different joints and the possible configurations of a
robot arm, we can tackle the practical problem of describing robot arm motion. Solving this
problem will allow us to gain a complete description of the motion of our robot arm using just

the angles.



Above: how can we find the transformation between frames S and T for arbitrary joint angles?

Let's hone in on exactly what it is that we want. Given any choice of joint angles

0 = (64,09, ...,6,), we want to be able to figure out the rigid body transformation between
two key frames on a robot: the tool frame T and the spatial frame S.

The tool frame is a frame that moves with the robot, and is rigidly attached to the end of the
final joint of the robot, a position known as the end effector. Whenever we rotate and translate
the final joint of the robot, the tool frame rotates and translates with it. You can think of the tool
frame as the frame attached to the gripper on the end of the Sawyer robots in the lab.

The spatial frame, on the other hand, is a frame fixed in space to the base of the robot. You can
think of this as a reference frame attached to the base of your Sawyer robot. This frame never
moves, even as the robot arm rotates and translates in space.

We'd now like to find the following rigid body transformation matrix for a robot with a joint
space Q:

gst(e) € SE(3)7 XS Q

Where gs¢(6) is the rigid body transformation between the spatial and tool frames of the robot

for any joint configuration 8 = (04, 6,,...,6,) € Q.
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Above: how can we find the transformation between S and T for any robot configuration?

Because gst(#) is a rigid body transformation that depends on the positions of all of the joints, it
is a function that maps from the joint space of the robot to the set of rigid body
transformations. We may express this mathematically as:

gst(0) : Q — SE(3)



Where 8 = (04,05, ...,0,) € Q is a vector containing all of the joint positions of the robot. This
map from the joint angles of a robot to the rigid body transformation between its spatial and
tool frames is called the forward kinematics map.

How can we find this forward kinematics map in a convenient way? One valid method is to start
at the tool frame, put a reference frame on each joint of the robot, and transform from joint to
joint until we reach the spatial frame. However, since each joint has an arbitrary position 8;, this
is something that will be challenging to write out!

We'll find that this problem is greatly simplified by using exponential coordinates and screw
motions. Let's begin developing the mathematics of this approach!

To do this, we'll start with a very general template for what a robot arm is - this way, our
resulting formula will apply to any robot arm. Imagine we have a robot with n arbitrary joints.
Each joint may be either a revolute, prismatic, or screw joint.
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Above: an arbitrary robot with n joints. Note that the ... refers to the remaining joints of the robot
between the three that have been drawn.

Recall that our goal is to find the transformation g(6) from the base frame S of the robot to
the tool frame T as a function of each of the joint angles (61, . . ., 8,,). Where should we begin
our search for this transformation?

First, let's think about what this transformation will do. If we apply g, to a point p; in the tool
frame, we will get back ps, the point as seen from the spatial frame. This fact comes from the
definition of a rigid body transformation.
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Above: by applying gs: to a point p; in the tool frame, we will get p,, its representation in the
spatial frame.

Let's see if we can compute the representation of p; in the spatial frame using exponential
coordinates! We may begin by transforming the point p; from frame 7" into frame .S in the
reference configuration. This is the configuration where each joint position is zero and the robot
hasn't yet moved.

We may accomplish this transformation using the matrix:



R (0 0
gst(O) _ [ st( ) pst( ):| c SE(3)
0 1
Where R,(0) is the rotation matrix between frames .S and 7" in the reference configuration and
ps¢(0) is the translation between the frames. Note that since the robot hasn't yet moved, this
matrix is relatively simple to find.

Once we have this transformation, we apply it to point p; to transform it into the spatial frame:
ps(ol = 07 92 = Oa ey on = 0) = gst(O)Pt

This takes the point p; from the tool frame into the spatial frame. Now that we have this point in
the spatial frame, we're ready to begin moving the joints of the robot! Let's look at what
happens to this point when we move the furthest out joint, joint n, by amount 8,,.
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Above: moving joint n by amount 6,,

Since joint n is one of the three fundamental joints, we know from our development of robot
joints that we may represent its motion using a twist &, and a scalar 8,,. If we solve for the twist
of joint m in the spatial frame, the transformation:

gy, = &
Will transform points by the motion of joint n in the spatial frame. Thus, to find the position of

point p; in the spatial frame after moving joint n to position 6,, we may compute:
Ps(61=0,0,=0,...,0, = 0,) = e“g(0)p;

Where g4(0) first transforms p; into the spatial frame and ezp(£,6,) moves p; in the spatial
frame according to the motion of joint n.

Now that we've found the point in the spatial frame after moving joint n, we may do the same
for the next joint, n — 1. We know that there is some twist £,,_1 in the spatial frame and some
scalar 6,,_1 corresponding to the motion of joint n — 1.

What do we know about the value of this twist? Since we started out by moving the furthest-out
joint, joint m, all of the other joints further in weren't affected at all by the motion of joint n!
This means that when computing the twist of joint » — 1, the twist will not be affected by
moving joint n, and will therefore be same as it is in the reference configuration. Since we don't
have to account for the motion of joint n, this makes £,,_1 just as easy to calculate as &,,. This is

why we start our calculation by moving the furthest-out joint.
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Above: After moving joint n, the rest of the joints are all still in the same position. This allows us to

calculate all of the twists using the reference configuration joint positions.
After moving joints n and n — 1, we compute the position of p; in the spatial frame as:
ps(01=0,00=0,...,00 1=0n 1,6, =0,) = e(§n_19u_1)e(§n€u)gst(0)pt

Where g4(0) converts p; to the spatial frame, ea:p(énen) moves the point according to the
motion of joint n, and ea:p(én,ﬂ?n,l) moves the point according to the motion of joint n — 1.
We may repeat this process of finding a twist corresponding to the motion of a joint and finding
the exponential of that twist for the remaining n — 2 joints in the robot! To avoid the problem of
inner joint motions affecting the positions of outer joints, we continue to apply these
transformations from the outside in.

After finding all of the transformations, we find that the final position of point p; in the spatial

frame after moving all n robot joints is:
Ps = 6510165292 e egnengst(o)pt

Where each of the twists is computed with respect to its reference position due to the order of
multiplication.

What does this total calculation give us? Since we start by transforming point p; into the spatial
frame in the reference configuration, and then proceed to transform it in the spatial frame
according to the motion of each joint, we know that the result is p,! This is the point p: in the
spatial frame, where the joints of the robot are in configuration 8 = (64,6, ...,0,) € Q.
Thus, the product of all of these transformations has provided us with a map between a point in
the tool frame T and its representation in the spatial frame S after moving the robot to an
arbitrary configuration.

This is exactly the map that we were looking for! Thus, we conclude that we may compute
gst(0) € SE(3) for an arbitrary configuration 6 € @ as:

gst(e) — 6519165292 . eﬁnengst(())

Where &; is the twist in the spatial frame associated with the " joint, 6; is the position of the 4t

joint, and gs:(0) € SE(3) is the transformation between S and T in the case where no joints
have been moved. This transformation formula is called the product of exponentials formula.
Let's summarize what we've just done. In this section, our goal was to find some way of getting
from an arbitrary set of joint angles for any robot, 8 = (61,02, ...,6,) € Q, to a rigid body
transformation g,;(6) between the spatial frame at the base of the robot and the end effector
frame on the end of the robot. We found that we were able to accomplish this in an elegant
manner using the product of exponentials formula.

Let's do an example to gain a feel for what it's like to use the product of exponentials formula in
practice.

Example: Find the forward kinematics map between the spatial and tool frames for the following

robot manipulator arm, which is depicted below in the reference configuration.
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The lengths of the first and second links are 11 and 15 respectively, and the z position of frame T' in

the reference configuration is lg.

In this problem, we're asked to find the forward kinematics map of a robot arm. Remember, this
is just the transformation g,(#) between the spatial and tool frames of the robot. Let's get
started!

First, to understand what we need to find, we'll lay out the product of exponentials formula for
this robot. Since the robot has three joints, we know we may use the following product of

exponentials formula to find gs:(6):
gst(e) — 651016529265303.9”(0)

Where &1, €2, and &3 are the twists associated with the first, second, and third joints of the robot.
To find the forward kinematics map, we simply need to fill in the terms in this product of
exponentials equation!

We may begin by finding gs(0), the transformation between the spatial and tool frames in the
reference configuration. Since this matrix is a rigid body transformation in SE/(3), it will have the

following form:

9::(0) = [RSB(O) pstl(())]

First, let's solve for the the rotation matrix Ry (0). Referring to the drawing provided, we know

that the frames appear as follows:
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When we take a close look at these two frames, we notice that even though we haven't yet
moved any joints, the tool frame has a naturally different orientation to the spatial frame! This
means that Rg(0) is not the identity matrix!

We may find the columns of R(0) by looking at how the basis vectors of frame T" appear from

frame S.



0 0 1
Rau(0) = [z)s [w)s [2ds]=1|1 0 O
01 0

Perfect! Now, we solve for ps(0), the vector in the spatial frame pointing from the origin of
frame S to the origin of frame T in the reference configuration. We see from the drawing that in
the reference configuration, frame T is shifted over by I1 + 2 in the y-direction of the spatial
frame, and is shifted up by [y in the z-direction of the spatial frame.

Thus, we compute the total translation vector by summing these two translations:

0 0 0
pst(0) = [ L+l + |0 = UL+
0 Iy Iy

Putting this together with the rotation matrix, we find the rigid body transformation between S

and 7" in the reference configuration:

0 0 1 0
1 0 0 I+l
5(0) =
9s¢(0) 01 0 lo
0 0 0 1

Great! Referring to the product of exponentials formula, we see that all that remains is to

compute the twists for each joint. Let's start with the first joint.

We notice that this is a revolute joint, as moving this joint gives a purely rotational motion. Using

our developments from earlier, we know that the twist of a revolute joint is of the form:
—wXxgq
w
Where w is the unit vector axis of rotation and ¢ is any point on the axis in the spatial frame.

Looking at the diagram, we notice that a movement of joint 1 will correspond to a rotation

about the z-axis in the spatial frame! Thus:
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Now, all we need to complete the twist is a point on this axis in the spatial frame. Recall that
since the product of exponentials formula goes from the outside-in, this point should be on the
position of the axis in its reference configuration.

Looking at the diagram, we notice that this axis of rotation passes straight through the origin!
Thus, we may choose the point ¢ = [0, 0, 0]” as the point on our axis of rotation. Calculating

—w X g, we find:



0 0 0
—wxg=— (0 x |0] =10
1 0 0

It's important to note that by choosing a convenient point on our axis of rotation, such as
[0, 0, 0], we can greatly simplify the calculations we need to do.

Using these vectors, we know that the twist of the first joint is:
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Next, we'll solve for &, the twist of the second joint. Looking at the drawing of the robot:
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We observe that the second joint is also revolute! It will therefore also have a twist of the form:
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Looking at the picture, we observe that the axis of rotation is the positive z axis:
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Now, we must find a point g in the spatial frame on this axis of rotation. Once again, remember
that the order multiplication in the product of exponentials formula means that we don't have to
account for the motion of joint 1 when finding this point! All we have to do is pick a point on the
axis in the reference configuration.

Since the second joint is positioned at Iy along the y-axis of the spatial frame, its axis of rotation
doesn't pass through the origin of the spatial frame! Thus, for this joint, we instead choose the

following point on the axis of rotation:

Now, we compute —w X g to complete our calculation of the twist:

0 0 Iy
—wxqg= [0 x |l1] =10
1 0 0

Remember to account for the negative sign when completing this calculation!

Using w and —w X g, we find that the second twist is:
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This completes the calculations for the second joint. Now, we turn our attention to the third

joint:

S o,

We see from the drawing that the third joint is prismatic, as it consists of a pure translation in

the negative z direction. We know that the twist of a prismatic joint is of the form:

Where v is a unit vector pointing in the direction of translation. Here, the direction of translation
points in the negative z direction in the spatial frame. Thus, we find that £3 may be computed:

Now that we've solved for g.(0) and the twists for each joint, we have all we need to fill in the
product of exponentials formula! Using the three twists and initial transformation, we compute

the forward kinematics map between S and T as:

gui(6) = bifietcbitsg  (0)

Where:
(0] (7] [0
0 0 0
0 0 -1
£1 - 0 ) 62 - 0 ) £3 - 0
0 0 0
11 1] L 0]
0 0 1 0
1 0 0 L1+
gst(o) - 0 1 0 lO
0 0 0 1

Note that if desired, the actual final matrix value for g5 (6) may be computed by multiplying the
closed-form expressions for the exponentials of twists. This completes the problem!



[1]  The letter S comes from a convention of mathematical topology, where a 2D circle is referred to as a

"1-sphere.” Interestingly, the set of quaternions of unit magnitude may be identified by S? the
three-sphere.

[2] Note that the 1 in S! doesn't refer to an exponent, but rather the number of parameters we need to
identify our position on the circle. Since for a 2D circle, we only need one angle to find our position,
we describe a position on a 2D circle using the set S*.

[3] Although the symbol x is the same, the Cartesian product is not the same thing as the vector cross
product. As a rule of thumb, when you see x applied to sets, think of the Cartesian product, while
when you see X applied to vectors, think of the cross product.
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