
University of California, Berkeley

ME/EECS/BioE C106B

Robotic Manipulation &
Interaction

Massimiliano de Sa

ME/EECS/BioE C106B Robotic Manipulation & Interaction

These notes were written for the UC Berkeley course ME/EECS/BioE C106B
in the Spring 2023 semester. I hope you find them useful!
They are primarily based off of A Mathematical Introduction to Robotic Manip-
ulation by Murray, Li, and Sastry, Nonlinear Systems: Analysis, Stability, and
Control by Sastry, and Feedback Systems: An Introduction for Scientists and
Engineers by Astrom and Murray, and have been designed to closely follow the
106B course lectures in both ordering and content.
If you have any questions, please reach out to me at mz.desa at berkeley.edu.

1

Contents

1 Dynamical Systems 4
1.1 Modeling Dynamical Systems . 4

1.1.1 Classifying Dynamical Systems 4
1.1.2 Solving Differential Equations 12
1.1.3 Equilibrium Points . 21
1.1.4 Linearization . 23
1.1.5 Discrete Time Systems . 28

1.2 Mathematical Preliminaries . 33
1.2.1 Quantifiers . 33
1.2.2 Neighborhoods . 34
1.2.3 Bounds . 35
1.2.4 Closed & Compact Sets 37

1.3 Stability . 40
1.3.1 Naive Stability . 41
1.3.2 Lyapunov Stability . 42
1.3.3 An Energetic Approach 51
1.3.4 Energy-Like Functions . 52
1.3.5 Lyapunov Stability Theorems 58

2 Feedback Control Fundamentals 77
2.1 Motivating Feedback . 77
2.2 Linear Control . 80

2.2.1 Controllability . 83
2.2.2 Stabilization . 84

2.3 Feedback Linearization . 89
2.3.1 SISO Feedback Linearization 89
2.3.2 MIMO Feedback Linearization 99
2.3.3 Dynamic Extension . 105

3 Nonholonomic Planning 112
3.1 Kinematic Constraints . 112

3.1.1 Pfaffian Constraints . 114
3.1.2 Holonomic & Nonholonomic Constraints 119
3.1.3 Equivalent Control Systems 125

2

ME/EECS/BioE C106B Robotic Manipulation & Interaction

3.1.4 Lie Brackets & Controllability 128

4 Estimation 138
4.1 Elements of Probability . 138

4.1.1 Probability Spaces . 140
4.1.2 Random Variables and Vectors 142
4.1.3 The Gaussian Distribution 155
4.1.4 Conditional Probability 157
4.1.5 Random Processes . 158

4.2 Stochastic Estimation . 161
4.2.1 Stochastic Dynamical Systems 161
4.2.2 The Kalman Filter . 165
4.2.3 Observability . 170

3

Chapter 1

Dynamical Systems

Welcome to 106B! In this course, we’ll discuss concepts ranging from dynamics
to feedback control, path planning, vision, and beyond! We’ll build upon the
foundations of dynamics and control we built in 106A to form a comprehensive
yet deep overview of several key fields in robotics.

1.1 Modeling Dynamical Systems

In this section, we’ll begin our discussion of dynamical systems, systems who
evolve with the passage of time. We’ll consider different methods of describing
these systems, and see how differential equations provide us with the mathe-
matical tools we need for their analysis. Let’s get started!

1.1.1 Classifying Dynamical Systems

Nonlinear Systems

How can we describe the evolution of a system in time? As a robot arm moves,
for example, we know that torques and forces acting on the arm govern its path
through space. How can we mathematically describe the relationship between
these forces and the eventual trajectory of the arm?
Using the language of differential equations, we may describe how systems such
as robot arms, drones, autonomous vehicles, and more move with the passage
of time!
As we progress through the course, we’ll find it exceedingly useful to have general
descriptions for dynamical systems. This will enable us to explore results that
hold not just for one system but for arbitrary systems. To achieve this generality
in our results, it’s important that we come up with certain conventions of how
to write out the differential equations for these systems.
Let’s write out the equations of motion for a few systems and see if there are
any common elements that stand out. Let’s begin with a simple system: a mass
that oscillates on a spring in the presence of an applied force, Fa:

4

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A mass oscillates on a spring with an applied force, Fa.

From our knowledge of dynamics, we know that the equations of motion of this
system are given by the differential equation:

mẍ = −kx− Fa (1.1)

Where x is the position of the mass, ẍ is the acceleration of the mass, k is the
spring constant, and Fa is the applied force.
Note that we use dot notation for convenience when expressing the time deriva-
tive of a variable. Recall that the number of dots above a variable is the number
of time derivatives that have been taken. For instance, ẍ refers to the second
time derivative of x.
Let’s think about another physical system, a mass that swings on a pendulum
around a fixed point with an applied torque τa. As we write its equations of
motion, see if there any any common themes you can pick out between the first
two systems.

Above: A pendulum of mass m swings around a fixed point

If this pendulum has a length l, mass m, and angular position θ, its dynamics
may be described by the differential equation:

ml2θ̈ = −mg sin θ − τa (1.2)

Finally, let’s consider a third system, a turtlebot! Instead of describing the
equations of motion of the turtlebot using methods of dynamics, we can make
use of kinematic constraints to arrive at the governing differential equations.
We’ll perform an in-depth exploration of how this is done in the coming sections.

5

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A turtlebot traveling in an (x, y) coordinate frame

We may show that the kinematics of this turtlebot are described by the following
equations of motion: ẋẏ

ϕ̇

 =

v cosϕv sinϕ
ω

 (1.3)

Where (x, y, ϕ) are the coordinates and orientation of the turtlebot with respect
to a world coordinate frame and v and ω are the speed and angular steering
rate of the turtlebot, which may be controlled by a user.
What similarities do these three dynamical systems share? Firstly, something
that we notice is that all of the systems have a set of variables that describe
the position or velocity of the system at any given point! For the mass-spring
system, this was the x position of the mass, for the pendulum the angle θ, and
for the turtlebot the coordinates (x, y) and orientation ϕ.
Secondly, we observe that each system has some sort of input! For the mass,
there was an applied force, Fa, for the pendulum an applied torque, τa, and for
the turtlebot a velocity v and angular steering rate ω.
With these thoughts in mind, we may introduce the standard form for a non-
linear system, known as the state space representation:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm State Equation (1.4)

y = h(x, u), y ∈ Rp Output Equation (1.5)

The first equation, ẋ = f(x, u) is known as the state equation. This equation
completely describes how the system will move as time passes, and encodes all
of the information about the physical laws and processes governing the system.
If the state equation f(x, u) is not an explicit function of time, the system is
said to be time invariant. If the state equation is an explicit function of time,
the state equation is written by convention as f(x, u, t) and the system is said
to be time variant.
Most of the robotic systems we’ll study are time invariant, as the governing
dynamics of systems such as robot arms typically do not change as time passes.
A system such as a rocket, however, whose mass changes with time as fuel is
burned, would be considered time variant.

6

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: Robotic systems are typically time invariant, as the physical properties
of a robot arm do not change in time. A rocket is time variant, as it loses

mass by burning fuel as time passes.

The vector x ∈ Rn is known as the state vector of the system. It contains
smallest possible set of variables necessary to describe the configuration of the
system at any given point. For the turtlebot, for example, the state vector
would be:

x =

xy
ϕ

 ∈ R3 (1.6)

Notice that we cannot control the states of the system directly!
The input vector u ∈ Rm, on the other hand, is a vector of all variables that we
have complete control over! We can change the elements of the input vector at
our will to influence the behavior of the system. For the turtlebot, for example,
we can completely control the velocity and steering rate of the vehicle to drive
it to a particular location!
The input vector of the turtlebot would be:

u =

[
v
ω

]
∈ R2 (1.7)

What role does the second equation, y = h(x, u), play in the state space repre-
sentation? y = h(x, u) is known as the output equation. The output equation
has no effect on the actual dynamics of the system! We can pick the function
h(x, u) to be anything we want. The output vector of the system, y ∈ Rp,
typically contains our variables of interest.
For example, in the case of the turtlebot, we may be interested in controlling
the x and y position of the turtlebot as it moves through the environment, but
not as interested in the orientation, ϕ. In this case, we could define the output
of the system to be:

y =

[
x
y

]
∈ R2 (1.8)

7

ME/EECS/BioE C106B Robotic Manipulation & Interaction

The output of a system is typically a function of the state vector but can also
be a function of the input vector in some cases, hence the inclusion of u in
y = h(x, u).
In addition to being variables of interest, the outputs of a system are also com-
monly chosen to be the states of the system that are observable from different
sensors. This choice of output is particularly common when designing filters to
determine the state of a system.
Let’s think critically for a moment about the state space description of a system.
What challenges do we notice with this representation?

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1.9)

y = h(x, u), y ∈ Rp (1.10)

A potential problem that we notice with this formulation is that this is a first
order system of differential equations. When we take a closer look at the dy-
namics equations for the mass-spring and pendulum systems, however, what do
we observe?

mẍ = −kx− Fa (1.11)

ml2θ̈ = −mgl sin θ − τa (1.12)

Although the state space representation of a system, ẋ = f(x, u), y = h(x, u)
is a first order system of differential equations, both of these equations are
second order, due to the appearance of a second derivative with respect to time!
Does this mean that our general state space representation fails to describe all
systems, or is there a way we can transform higher order systems to first order
systems with equivalent behavior?
Let’s see if we can convert these higher order nonlinear systems into a system of
first order differential equations. Suppose that we have an nth order, nonlinear
differential equation, described by the following equation:

z(n) =
dnz

dtn
= h(z, u) (1.13)

Where z ∈ R is a scalar, u ∈ Rm is an input vector, and h(z, u) is a function
describing the dynamics of the system. Note that z(n) is shorthand for the nth

time derivative of z.
Let’s see if we can find a magic change of variables from z and its derivatives
to a new set, {x1, x2, ..., xn}, that transform this system from an nth order
differential equation to a system of n first order differential equations!

8

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Consider the following choice of variables:

x1 = z (1.14)

x2 =
dz

dt
(1.15)

x3 =
d2z

dt2
(1.16)

... (1.17)

xn =
dn−1z

dtn−1
(1.18)

We can put these xi together into a vector, which we call x:

x =

x1...
xn

 ∈ Rn (1.19)

Does this choice of variables allow us to rewrite our original system as ẋ =
f(x, u)? Let’s take the first derivative of each xi and see what happens! For
1 ≤ i < n, we find:

ẋ1 =
dz

dt
= x2 (1.20)

ẋ2 =
d2z

dt2
= x3 (1.21)

... (1.22)

ẋn−1 =
dn−1z

dtn−1
= xn (1.23)

When we take the first time derivative of each xi, for 1 ≤ i < n, we get xi+1!
What happens when we take the time derivative of xn?

ẋn =
d

dt
(z(n−1)) = z(n) = h(z, u) (1.24)

Thus, when we take first time derivative of xn, we get our original differen-
tial equation, h(z, u) = h(x1, u)! Thus, by choosing these variables, we have
preserved the dynamics of the system and converted an nth order differential
equation into a system of n first order differential equations.

ẋ1
ẋ2
...
ẋn

 =

x2
x3
...

h(x1, u)

 (1.25)

9

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We have now successfully converted our original nth order differential equation
into a system of n first order differential equations in state space form:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1.26)

The choice of variables {x1, x2, ..., xn} = {z, ż, ..., z(n−1)} that we used to ac-
complish this transformation are known as phase variables.
Let’s gain some practice converting higher order systems into state space using
phase variables. Recall the dynamics of the mass-spring system we discussed
above:

mẍ = −kx− Fa (1.27)

We notice that this system is second order. Thus, we need two phase variables,
since we will convert this second order equation to a system of two first order
equations. Using the phase variable convention, we choose:

x1 = x, x2 = ẋ (1.28)

Since Fa is an applied force that we can control, we define an input vector
u = Fa. Now, we rewrite the system in terms of these variables:[

ẋ1
ẋ2

]
=

[
x2

−k
m x1 − 1

mu

]
(1.29)

Thus, we have successfully rewritten our second order system in the form:

ẋ = f(x, u), x = [x1, x2] = [x, ẋ], u = Fa (1.30)

Note that because x is a variable that is commonly used in the description of
physical systems, the variable q is often used in the place of x as the state vector
of the system to avoid confusion.
As a general rule of thumb for checking your choice of phase variables, the
highest derivative value in your choice of phase variables should be one lower
than the order of your original differential equation. For instance, in the exam-
ple above, our original differential equation was second order, and the highest
derivative phase variable, ẋ, was first order. This comes from the fact that in
state space, we always take the first time derivative of our entire state vector.

Control Affine Systems

Now that we have a general form for describing nonlinear systems, we can ask
the question: are there certain subclasses of nonlinear systems that are easier
to work with?
As we’ll soon discover in our study of feedback control, designing a general
feedback controller to control the state vector of an arbitrary nonlinear system:

ẋ = f(x, u) (1.31)

10

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Is quite complex! Because of the ambiguous nature of the function f - that f
can be almost any function in the general nonlinear case - it’s difficult to design
controllers for the most general class of nonlinear systems!
Certain subsets of the class of nonlinear systems, however, have the advantage
of being particularly common in practice and much simpler to design feedback
controllers for! One such class is the set of control affine nonlinear systems.
These are nonlinear systems whose state equation may be written in the form:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm (1.32)

Now, instead of having the input and state dynamics combined into a single
function, ẋ = f(x, u), the input dynamics may be separated from those purely
related to the state vector! Let’s break down the different elements of a control-
affine system.
The function f(x) is known as the drift dynamics of the system. These are the
dynamics that have nothing to do with the inputs to the system, and are purely
a function of the state vector. f(x) : Rn → Rn is a vector-valued function:

f(x) =

f1(x)
f2(x)

...
fn(x)

 ∈ Rn, fi(x) : Rn → R, 1 ≤ i ≤ n (1.33)

Where each fi within the vector f(x) is a scalar-valued function. If the input u
to the system were zero, the state vector would drift according to the value of
the function f(x).
In the input term, g(x) : Rn → Rn×m is a matrix-valued function of x that
determines the effect of the input on the evolution of the state vector. Each
element of g(x) is a scalar function:

g(x) =

g11(x) . . . g1m(x)
...

. . .
...

gn1(x) . . . gnm(x)

 ∈ Rn×m (1.34)

Because of they separate the control input from the rest of the system dynamics,
control affine systems prove to be much easier to work with when designing
feedback controllers. Although not every nonlinear system is control affine, a
sizeable number of complex robotic systems are, making these systems of key
importance to us.
What does the term affine actually mean? In general, a function h(x) : Rn → Rn

is said to be affine in x if it can be expressed:

h(x) = Ax+ b (1.35)

Where A is a matrix and b is a vector. Since a control affine system is of the
form:

ẋ = f(x) + g(x)u (1.36)

11

ME/EECS/BioE C106B Robotic Manipulation & Interaction

It is considered to be affine in the control input, u. This property gives the
class of control affine systems its name!

Linear Systems

Control affine systems provide a significant reduction in challenges with respect
to full nonlinear systems, ẋ = f(x, u). Are there any subclasses of dynamical
systems that can further simplify our analyses?
The class of linear systems is perhaps the most simple yet one of the most
useful class of dynamical systems. Linear systems are conventionally written in
the form:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (1.37)

y = Cx+Du, y ∈ Rp (1.38)

If A,B,C,D are constant matrices that don’t change as time passes, the system
is said to be linear time invariant (LTI). If these matrices do change in time,
they are written as A(t), B(t), C(t), D(t), and the system is said to be linear
time variant (LTV).
Inspecting the structure of the equations, we have the familiar setup of a state
equation and output equation expressing the dynamics of the system. However,
in this case, both the state vector, x, and input vector, u, are simply scaled by
matrices instead of being manipulated by various nonlinear functions.
Since such a representation allows us to use the elegant language of linear alge-
bra to perform system analysis, the class of linear differential equations proves
to be exceptionally convenient in robotics and control.
As we’ll see shortly, we can make remarkably deep conclusions about many sys-
tems by inspecting linear algebraic objects such as eigenvalues and eigenvectors.
Mathematically, what does it mean for a system to be linear?
If, u1, u2 are arbitrary inputs, α, β are scalar constants, and y(t, x0, u) is the
output of a system at time t starting at initial condition x0 with an input u,
the following three properties must be satisfied for a system to be considered
input-output linear:

1. y(t, αx1 + βx2, 0) = αy(t, x1, 0) + βy(t, x2, 0)

2. y(t, αx1, βu) = αy(t, x1) + βy(t, 0, u)

3. y(t, 0, αu1 + βu2) = αy(t, 0, u1) + βy(t, 0, u2)

These three conditions express the linearity of the output with respect to the
initial conditions and inputs to the system. For the linear system, ẋ = Ax +
Bu, y = Cx + Du, we can verify these facts using the properties of matrix
algebra.

1.1.2 Solving Differential Equations

Now that we have established conventions for representing three classes of dif-
ferential equations: nonlinear, control affine, and linear, what conclusions can

12

ME/EECS/BioE C106B Robotic Manipulation & Interaction

we come to regarding their solutions? Is it always possible to solve a differential
equation? If a solution is guaranteed, is it unique?
In this section, we’ll explore some properties of initial value problems, which
seek to find a solution x(t) that solves a differential equation:

ẋ = f(x, u, t), x(t0) = x0 (1.39)

Subject to the initial condition x(t0) = x0.
To simplify our analysis, we’ll primarily discuss the questions of existence and
uniqueness for differential equations with no input (u = 0). Note that these
results can be extended to systems with inputs without too much further effort.

Existence and Uniqueness of Solutions

Let’s begin by thinking about the question of existence. How do we know a
solution to a differential equation will exist? Although this might seem like a
strange question at first, let’s take a moment to think about why it might be
relevant. Consider the time variant nonlinear system:

ẋ = f(x, t) (1.40)

If f(x, t) can be any nonlinear function of x, t, the possibilities for f are end-
less! f could be a sine function, a square wave function, a step function - the
possibilities are virtually endless!

Above: We can choose anything for f in the general case.

For all of these choices of f , is it realistic to expect there to be a function x(t)
for which ẋ = f(x, t) and x(0) = x0? As it turns out, not quite! To understand
the conditions required of f , we’ll undertake a short discussion of continuity.
In mathematics, there are several formal definitions of what it means for a
function to be continuous, with some definitions having stricter demands than
others. Let’s begin by discussing a strong type of continuity known as Lipschitz
continuity.

13

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 1 Lipschitz Continuity
A function f(x) : Rn → Rn is said to be globally Lipschitz continuous if there
exists a finite scalar constant L ∈ R such that for all x, y ∈ Rn:

||f(x)− f(y)|| ≤ L||x− y|| (1.41)

Let’s think for a moment about what this definition of continuity states. Rear-
ranging the definition of Lipschitz continuity, we require that for all x, y ∈ Rn,
there exists a constant L such that:

||f(x)− f(y)|| ≤ L||x− y|| (1.42)

||f(x)− f(y)||
||x− y||

≤ L (1.43)

For a simple interpretation of this inequality, we can think of the single variable
case, where n = 1. This inequality then becomes:

|f(x)− f(y)|
|x− y|

≤ L (1.44)

If we take the limit of both sides of this expression as y → x, we observe that
the Lipschitz condition bounds the derivative of the function by the Lipschitz
constant!

lim
y→x

|f(x)− f(y)|
|x− y|

≤ lim
y→x

L (1.45)

df

dx
≤ L (1.46)

This means that a function such as a square wave, which has sudden jumps in
its value across its domain, is not Lipschitz continuous.
Before we relate this material back to the study of differential equations, let’s
discuss a much less restrictive form of continuity, piecewise continuity. Al-
though we won’t state a formal mathematical definition, you can think of a
piecewise continuous function as a bounded function with at most a finite num-
ber of breaks. For example, consider the function:

14

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A piecewise continuous function

Since this function has a finite number of breaks on the interval [0, t] and remains
bounded (doesn’t “blow up” to infinity), it is said to be piecewise continuous
on the domain [0, t].
With these definitions in mind, we are now ready to understand the conditions
for existence and uniqueness of solutions to differential equations.

Theorem 1 Global Existence and Uniqueness Theorem
An initial value problem ẋ = f(x, t), x(t0) = x0 has a unique solution if f(x, t)
is piecewise continuous with respect to t and for all T ∈ [t0,∞), there exist finite
constants L1, L2 ∈ R such that for all t ∈ [0, T]:

||f(x, t)− f(y, t)|| ≤ L1||x− y||, for all x, y ∈ Rn (1.47)

||f(x0, t)|| ≤ L2 (1.48)

Let’s break down the different parts of this theorem. First, we need f to be
piecewise continuous with respect to t - as we vary t, there should only be a
finite number of jumps in the value of f . Secondly, we require f to be globally
Lipschitz continuous across all possible time intervals from 0 to ∞. Thirdly, we
require the value of f(x0, t) to be bounded for all time. If these conditions are
satisfied, the initial value problem is guaranteed to have a unique solution!
Let’s try applying this theorem to show that a linear time invariant system will
have a unique solution. Consider the linear system with constant A with all
finite entries and a finite initial condition:

ẋ = Ax, x ∈ Rn, x(t0) = x0 (1.49)

Let’s start out by identifying the function f ! In this case, the function f : Rn →
Rn is as follows:

f(x) = Ax (1.50)

15

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Since f(x) = Ax is a constant function with respect to time, this means that
it must be piecewise continuous with respect to time. This checks off the first
required condition!
Next, let’s show that f is globally Lipschitz continuous. Looking at the definition
of Lipschitz continuity, we start by analyzing ||Ax − Ay||, where x, y ∈ Rn are
arbitrary vectors. We know:

||Ax−Ay|| = ||A(x− y)|| (1.51)

Where do we go from here? We’d like to find some way of bringing A out of the
norm, ||·||, and forming an inequality. If we can do this, we’ll have demonstrated
that ||Ax−Ay|| ≤ L||x− y|| for some finite L!
How can we extract A? One way of doing this is to use something known as a
matrix norm. Just like we can assign a norm to a vector to measure its size, we
can do the same thing for a matrix! There are many ways of doing this. The
matrix 2-norm is defined as follows:

||A||2 = sup
x ̸=0∈Rn

||Ax||
||x||

= σmax (1.52)

Where supx ̸=0∈Rn refers to the supremum of ||Ax||/||x||, the smallest possible
upper bound of ||Ax||/||x|| as we change the value of x. Miraculously, it can be
shown that this norm is equal to the maximum singular value of of A, σmax!
By definition of the supremum, σmax is an upper bound for ||Ax||/||x||. This
means that for all x ∈ Rn, we can form the inequality:

||Ax||
||x||

≤ σmax (1.53)

||Ax|| ≤ σmax||x|| (1.54)

Let’s apply this back to our discussion of Lipschitz continuity! Recall:

||Ax−Ay|| = ||A(x− y)|| (1.55)

Applying our result from the 2-norm of A, we reach the inequality:

||Ax−Ay|| ≤ σmax||x− y|| (1.56)

Thus, as long as the entries of A are all finite, f(x) = Ax is a Lipschitz contin-
uous function! This checks off the second requirement for global existence and
uniqueness.
Finally, we must check the third result: that there exists an L2 such that
||f(x0, t)|| ≤ L2 for all t. Since f(x) = Ax is not a function of t, this sim-
plifies the requirement to:

||f(x0)|| = ||Ax0|| ≤ L2 (1.57)

For some L2. Since ||Ax0|| is a constant, as long as A and x0 have all finite
entries, this expression is bounded. Thus, the third condition is checked off.

16

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Since ẋ = Ax, x(t0) = x0 satisfy all of the required conditions, we conclude
that linear time invariant systems must have a unique solution x(t) for all finite
initial conditions x0.
Note that we can also extend this result with minimal further conditions to the
case where the system has a nonzero input, u, and the matrix A is time-varying.

Solving Linear Differential Equations

Now that we’ve shown that a unique solution to a linear differential equation
must exist for all well-behaved initial conditions, let’s try finding what the so-
lution actually is!
We’ll start by dealing with the case where the system has no input. Consider
the linear, time invariant system:

ẋ = Ax, x ∈ Rn, x(t0) = x0 (1.58)

How would we go about finding a solution to this differential equation? Let’s be-
gin by reviewing the scalar case, where n = 1. The scalar case of this differential
equation would be:

ẋ =
dx

dt
= ax, x(t0) = x0 (1.59)

To solve this equation, we can use a technique known as separation of variables,
where we bring all of the quantities involving x to one side of the equation and
all quantities involving t to the other side. Let’s begin this process by expanding
the derivative dx

dt :

dx

dt
= ax (1.60)

dx

x
= adt (1.61)

Now, we may integrate both sides. On the left hand side, we will integrate from
x0 to x, and on the right hand side, from t0 to t. Note that when integrating,
we use “dummy variables” χ and τ in the place of x and t for the sake of proper
mathematical convention. ∫ x

x0

1

χ
dχ =

∫ t

t0

adτ (1.62)

[ln|χ|]xx0
= [aτ]tt0 (1.63)

ln
|x|
|x0|

= a(t− t0) (1.64)

Where we applied a logarithm rule to turn ln(a)− ln(b) into ln(a/b). Assuming
that x(t) and x0 have the same sign, we drop the absolute values and solve for
x by exponentiating both sides.

x

x0
= ea(t−t0) (1.65)

x(t) = ea(t−t0)x0 (1.66)

17

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Thus, we have found the solution to our differential equation! Let’s turn back to
the case where x ∈ Rn, and use the scalar case to guide us to a vector solution.
We’d now like to solve the initial value problem:

ẋ = Ax, x ∈ Rn, x(t0) = x0 (1.67)

Since we found that the solution to the scalar case was ea(t−t0)x0, we hypothesize
that the solution to the vector case will be:

x(t) = eA(t−t0)x0 (1.68)

Where eA(t−t0) is the matrix exponential of A(t − t0), defined according to
the Taylor series of ex.

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ ... =

∞∑
k=1

(At)k

k!
∈ Rn×n (1.69)

We can prove that for all finite A, this series will actually converge to an n× n
matrix! Using this definition, let’s show that our hypothesized solution satisfies
the differential equation ẋ = Ax and the initial condition x(t0) = x0.
Let’s first check that this solution satisfies the differential equation. We can
start by taking the time derivative of x(t):

ẋ(t) =
d

dt

(
eA(t−t0)

)
x0 (1.70)

We may use the series definition of the matrix exponential to find the derivative
of eA(t−t0).

d

dt

(
eA(t−t0)

)
=

d

dt

[
I +A(t− t0) +

(A(t− t0))
2

2!
+

(A(t− t0))
3

3!
+ ...

]
(1.71)

= 0 +A+A2(t− t0) +
A3(t− t0)

2

2!
+ ... (1.72)

= A
[
I +A(t− t0) +

(A(t− t0))
2

2!
+ ...

]
(1.73)

= AeA(t−t0) (1.74)

Let’s substitute this into our expression for the time derivative of x and see
what we get!

ẋ =
d

dt

(
eA(t−t0)

)
x0 (1.75)

ẋ = AeA(t−t0)x0 (1.76)

Now, we notice that eA(t−t0)x0 equal to our proposed solution, x(t)! Thus:

ẋ = Ax (1.77)

18

ME/EECS/BioE C106B Robotic Manipulation & Interaction

This solution therefore satisfies our differential equation. Using the definition of
the matrix exponential, we can also check that this solution satisfies the initial
condition. Thus, the matrix exponential provides us with the unique solution
to a linear, time invariant differential equation with no input for an arbitrary
initial condition.
Is there a similarly general solution to the case where we do apply an input to
the system? Although we won’t prove it here, we can show that the solution to
the initial value problem:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, x(t0) = x0 (1.78)

Is given by the following expression:

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (1.79)

Notice that if u(t) = 0 for all time, this solution simplifies to the zero-input case
discussed above!

Evaluating the Matrix Exponential

So far, we’ve shown that the solution to a variety of linear systems relies on the
use of the matrix exponential. How can we actually compute what the value of
the matrix exponential is?
Before we discuss techniques for computing the exponential, it’s important to
remember - the matrix exponential is not simply the exponential of each entry
in the matrix! That is, if we have a matrix:

A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 ∈ Rn×n (1.80)

Its matrix exponential is not generally computed by taking the exponential of
each aij .

eAt ̸=

e
a11t . . . ea1nt

...
. . .

...
ean1t . . . eannt

 (For general A ∈ Rn×n) (1.81)

How, then, can we compute its value? The matrix exponential is simplest to
compute for a diagonal matrix. Suppose we have a diagonal matrix A, defined:

A =

λ1 . . . 0
...

. . .
...

0 . . . λn

 ∈ Rn×n (1.82)

19

ME/EECS/BioE C106B Robotic Manipulation & Interaction

From linear algebra, we know that we can compute the pth power of a diagonal
matrix by raising each diagonal entry to the pth power:

Ap =

λ
p
1 . . . 0
...

. . .
...

0 . . . λpn

 ∈ Rn×n (1.83)

Let’s use this fact to compute the matrix exponential of a diagonal A. Recall:

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ ... (1.84)

=

1 . . . 0
...

. . .
...

0 . . . 1

+

λ1t . . . 0
...

. . .
...

0 . . . λnt

+

λ2
1t

2

2! . . . 0
...

. . .
...

0 . . .
λ2
nt

2

2!

+ ... (1.85)

=

1 + λ1t+

λ2
1t

2

2! + . . . 0
...

. . .
...

0 . . . 1 + λnt+
λ2
nt

2

2! + ...

 (1.86)

Now, we recognize each diagonal entry as the scalar Taylor series of eλit. Thus,
for diagonal A, we conclude:

eAt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλnt

 ∈ Rn×n (1.87)

Using this simple diagonal structure, we may devise a method to compute the
matrix exponential of any diagonalizable matrix!
Suppose we have a diagonalizable matrix A ∈ Rn×n. Since A is diagonalizable,
we know there exists a transformation matrix T ∈ Rn×n such that:

D = TAT−1 (1.88)

A = T−1DT (1.89)

Where D is a diagonal matrix with all of the eigenvalues of A along its diagonal!

D =

λ1 . . . 0
...

. . .
...

0 . . . λn

 ∈ Rn×n (1.90)

Let’s see if we can compute the matrix exponential of A using what we now
know about diagonal matrices.
Using the transformation defined above, let’s take the matrix exponential of

20

ME/EECS/BioE C106B Robotic Manipulation & Interaction

At = T−1DTt and see if we can extract eDt, which we know how to compute.

eAt = eT
−1DTt (1.91)

eAt = I + T−1DTt+
(T−1DTt)2

2!
+

(T−1DTt)3

3!
+ ... (1.92)

eAt = I + T−1DTt+
T−1DTT−1DTt2

2!
+

(T−1DTt)2T−1DTt

3!
+ ... (1.93)

eAt = I + T−1(Dt)T +
T−1(Dt)2T

2!
+
T−1(Dt)3T

3!
+ ... (1.94)

eAt = T−1
[
I +Dt+

(Dt)2

2!
+

(Dt)3

3!
+ ...

]
T (1.95)

eAt = T−1eDtT (1.96)

Therefore, to calculate eAt for any diagonalizable A, all we need to do is calculate
the matrix exponential of the associated diagonal matrix, eDt, and transform it
back to eAt using T−1eDtT . This enables us to compute the closed form of the
matrix exponential for a wide variety of matrices.
Note that if A is not a diagonalizable matrix, it may be transformed into an-
other form called the Jordan canonical form (JCF) for easy computation
of the matrix exponential. Interested readers are encouraged to consult Linear
Algebra by Friedberg, Insel, and Spence for an in-depth treatment of the Jordan
canonical form.

1.1.3 Equilibrium Points

We now have a significant body of language which we may use to understand
and interpret dynamical systems. Let’s begin the process of analyzing these
systems, and examine their key points in closer detail.
The first concept we’ll study is that of an equilibrium point.

Definition 2 Equilibrium Point
An equilibrium point of a system ẋ = f(x, u) is a pair (xe, ue) such that:

0 = f(xe, ue) (1.97)

Let’s break this definition down and interpret the name “equilibrium point”
physically. If we are at an equilibrium point (xe, ue), this means that the deriva-
tive of the state vector of the system is zero:

ẋ = 0 = f(xe, ue) (1.98)

This means that at this point, the evolution of the system is entirely frozen -
none of the state variables are changing with respect to time!

21

ME/EECS/BioE C106B Robotic Manipulation & Interaction

What might an equilibrium point look like in a physical system? Let’s consider
the example of a simple pendulum to gain some intuition. We’ll then proceed
to verify our results mathematically.

Above: Three different positions and velocities of a simple pendulum

Let’s consider the first position-velocity pair, where the pendulum sits in a ver-
tically downward position with zero angular velocity. In this configuration, will
the state vector be changing with respect to time?
Intuitively, we know that if we apply no forces to a pendulum in its downwards
position, it will stay there - neither the position nor velocity of the pendulum
should change! Thus, we hypothesize that this first configuration is an equilib-
rium point of the system.
What about the second configuration? This configuration captures the pen-
dulum mid-swing - will this be an equilibrium point? Since the pendulum is
actively swinging in this configuration, we know that the system will not remain
in that configuration as time goes on. The pendulum will continue to swing up
and down. This second configuration is therefore not an equilibrium point.
What about the third configuration? In this configuration, the pendulum is
perfectly balanced at 180 degrees from the downwards position. Assuming that
there are no small disturbances, the pendulum should remain perfectly balanced
in this configuration. Thus, we hypothesize that the third configuration is also
an equilibrium point.
Notice how although the first and third configurations are both equilibrium
points, the behavior of the pendulum at and around those points is quite dif-
ferent! If we tried to balance the pendulum by hand in its lower position, we
would find it to be quite easy.
If we were to try and balance the pendulum in its upper configuration, however,
it would be significantly more challenging, as it would have a tendency to fall

22

ME/EECS/BioE C106B Robotic Manipulation & Interaction

right down! We’ll soon learn how to formalize these qualitative differences as
we shift our discussion to the topic of stability.
Let’s mathematically verify our hypotheses about which configurations are equi-
librium points and which are not.The dynamics of a simple frictionless pendulum
with length l, mass m, and no external forces are expressed:

ml2θ̈ = −mgl sin θ (1.99)

Let’s convert this equation into phase variable form and solve for its equilibrium
points. Choosing θ, θ̇ as state variables, we may rewrite this system as:

q̇ =

[
θ̇

θ̈

]
=

[
θ̇

− g
l sin θ

]
= f(q) (1.100)

To solve for the equilibrium points, we set f(q) = 0.[
0
0

]
=

[
θ̇

− g
l sin θ

]
(1.101)

0 = θ̇ (1.102)

0 = sin θ (1.103)

Thus, all points of the form (nπ, 0) = (θ, θ̇), where n ∈ Z is an integer, must be
equilibrium points of the system!
Does this match up with our earlier hypotheses? Since even values of n corre-
spond to the downwards position of the pendulum and odd values of n corre-
spond to the upwards position of the pendulum, we conclude that our earlier
analyses were correct - both the upwards and downwards configurations are
equilibrium points.

1.1.4 Linearization

Thus far in our treatment of dynamical systems, we’ve considered linear and
nonlinear systems largely as separate groups of systems. As we’ve seen thus far,
linear systems have simple and interpretable solutions compared to nonlinear
systems, and allow us to apply the often-elegant tools of linear algebra in our
analyses.
Is there some way we can meaningfully relate a nonlinear system to a linear
system? If we can achieve this, we can apply the tools of linear analysis to
study nonlinear systems. To answer this question, let’s take a moment to turn
our attention away from the study of dynamical systems and towards the study
of calculus.
One of the most fundamental concepts in calculus is that of the derivative. We
know that using the derivative of a function, we can find the line tangent to a
function at any point where its derivative is defined. For instance, consider the
function y = x2, which has been sketched below.

23

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: The function y = x2. How do we find the equation of its tangent line?

Suppose we wanted to find the equation for the line tangent to the curve at
x = 1. Firstly, we could find the slope of the tangent line by evaluating the
derivative of the function at x = 1.

dy

dx

∣∣∣
x=1

= 2 (1.104)

Note that the notation dy/dx|x=1 means evaluate the value of dy/dx at x = 1.
After we have the slope, to find the equation of the tangent line, all we need
are the coordinates of a point on the line. In this case, we can pick (1, 1), the
point of intersection of the tangent line with the function. The equation of the
tangent line is then:

y = 2(x− 1) + 1 (1.105)

We can generalize this equation to find the tangent line at any point where a
function is differentiable. The line tangent to a function f(x) at a point xt is
given by:

y =
(df
dx

∣∣∣
x=xt

)
(x− xt) + f(xt) (1.106)

Let’s take a moment to think critically about the applications of this equation.
When we found the tangent line of the nonlinear function y = x2 at the point
x = 1, we found a linear function that, in a small region around x = 1, looked
similar to the original, nonlinear function. This is something we can observe if
we zoom in close to the point x = 1:

Above: In a small region around x = 1, the tangent line and the nonlinear
function appear to be similar.

24

ME/EECS/BioE C106B Robotic Manipulation & Interaction

With this similarity in mind, could we use the tangent line as a local linear
approximation of the nonlinear function?
Let’s perform an informal mathematical study of this question, and see how the
difference between the nonlinear function and tangent line change as we move
further away from x = 1. Let’s defined the error between the nonlinear function
and tangent line to be:

e(x) = ynonlinear − ytangent (1.107)

e(x) = x2 − 2(x− 1)− 1 (1.108)

e(x) = x2 − 2x+ 1 (1.109)

e(x) = (x− 1)2 (1.110)

Thus, as long as we don’t move too far away from the tangent point, x = 1,
the error between the actual function and approximation will remain small! If
we move away from the tangent point, our error will grow at an unbounded,
quadratic rate. Thus, we can use a tangent line for a good local approximation
of the nonlinear function!
Let’s discuss how we can apply this concept to locally approximate nonlinear
systems as linear ones! We’d like to approximate a nonlinear system of the form:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1.111)

As a linear system:

ż = Az +Bv, z ∈ Rn, v ∈ Rm (1.112)

For some choice of A,B, z, v. How can we accomplish this? Since our functions
are now multivariable, instead of finding a tangent line to approximate a curve,
we now look for a tangent plane that approximates a surface!

Above: We wish to find the equation of the plane tangent to a surface.

Let’s begin by finding the equation of the plane tangent to f(x, u) at the point
(x′, u′). To find the equation of the tangent plane, we follow the same procedure

25

ME/EECS/BioE C106B Robotic Manipulation & Interaction

as for finding a tangent line! The tangent plane is defined:

∂f

∂x

∣∣∣
(x,u)=(x′,u′)

(x− x′) +
∂f

∂u

∣∣∣
(x,u)=(x′,u′)

(u− u′) + f(x′, u′) (1.113)

Where ∂f
∂x and ∂f

∂u , known as the Jacobians of f with respect to x and u, are
defined:

∂f

∂x
=

∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn
∂x1

... ∂fn
∂xn

 ∈ Rn×n (1.114)

∂f

∂u
=

∂f1
∂u1

... ∂f1
∂um

...
. . .

...
∂fn
∂u1

... ∂fn
∂um

 ∈ Rn×m (1.115)

Notice that the definition of the tangent plane follows the same format as that
of a tangent line! We first take the derivative of the nonlinear function with
respect to x, evaluate it at the tangent point, and multiply it by the difference
between x and the point of approximation. Since this is a multivariable func-
tion, we repeat this procedure for u. Following this, we add on the value of the
function at the point (x′, u′).
Now that we have the equation of the tangent plane at our point of approxi-
mation, we notice a few problems! This equation looks nothing like our desired
format for a linear system:

ż = Az +Bv (1.116)

The first step we’ll take towards transforming our tangent plane equation to the
correct, linear system form is defining a change of variables. We want a change
of variables such that we have one matrix multiplied by a vector z and another
matrix multiplied by a vector v.
Looking at our formula for the tangent plane, we notice that we have one Ja-
cobian matrix multiplied by x− x′ and another Jacobian matrix multiplied by
u− u′. Based on this observation, we define z and v as follows:

z = x− x′ (1.117)

v = u− u′ (1.118)

Rewriting our tangent plane equation in terms of z and v, we have:

∂f

∂x

∣∣∣
(x,u)=(x′,u′)

z +
∂f

∂u

∣∣∣
(x,u)=(x′,u′)

v + f(x′, u′) (1.119)

This is much closer to the format we’re looking for! We have one remaining
term we’d like to get rid of: f(x′, u′). If we can somehow ensure f(x′, u′) = 0,
we’ll have found our linear approximation of the nonlinear system!

26

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We know that f(x′, u′) = 0 if (x′, u′) is an equilibrium point of the system
ẋ = f(x, u). Thus, to ensure our linear approximation is valid, we require that
the point at which we take our linear approximation is an equilibrium point,
(x′, u′) = (xe, ue), of the nonlinear system. Applying the assumption that the
point of approximation is an equilibrium point, we finally arrive at the following
equation for the tangent plane:

∂f

∂x

∣∣∣
(x,u)=(x′,u′)

z +
∂f

∂u

∣∣∣
(x,u)=(x′,u′)

v (1.120)

Therefore, if we define A,B, z, v as follows:

A =
∂f

∂x

∣∣∣
(x,u)=(x′,u′)

(1.121)

B =
∂f

∂u

∣∣∣
(x,u)=(x′,u′)

(1.122)

z = x− x′ = x− xe (1.123)

v = u− u′ = u− ue (1.124)

We may approximate the nonlinear system ẋ = f(x, u) by its tangent plane at
its equilibrium points as:

ż = Az +Bv (1.125)

This linear system is known as the Jacobian linearization of the nonlinear
system, due to its use of the Jacobians of f(x, u) in defining A and B.
Let’s summarize the process of taking a Jacobian linearization of a nonlinear
system with a step by step procedure.

Definition 3 Jacobian Linearization
To find the Jacobian linearization of a nonlinear system, ẋ = f(x, u), follow the
procedure:

1. Ensure that the point at which you are taking your linearization is an
equilibrium point (xe, ue), where f(xe, ue) = 0.

2. Find the Jacobians of f with respect to x and u, and evaluate them at the
point x = xe, u = ue. Define these to be the A and B matrices of your
approximated system.

A =
∂f

∂x

∣∣∣
(x,u)=(xe,ue)

=

∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn
∂x1

... ∂fn
∂xn

 ∈ Rn×n (1.126)

B =
∂f

∂u

∣∣∣
(x,u)=(xe,ue)

=

∂f1
∂u1

... ∂f1
∂um

...
. . .

...
∂fn
∂u1

... ∂fn
∂um

 ∈ Rn×m (1.127)

27

ME/EECS/BioE C106B Robotic Manipulation & Interaction

3. Define a change of variables:

z = x− xe (1.128)

u = u− ue (1.129)

4. Write the approximate linear system in terms of A,B, z, v:

ż = Az +Bv (1.130)

Generally, this approximation is only valid within a small region surrounding
the equilibrium point (xe, ue).

As we move forward into our study of stability, we’ll find the Jacobian lineariza-
tion to be a powerful tool that enables us to make nontrivial conclusions about
the behavior of the nonlinear system using linear algebra.

1.1.5 Discrete Time Systems

Thus far, our discussion of dynamical systems has focused strictly on the study
of continuous time systems. Continuous time systems are systems whose states
evolve smoothly as time passes. These are the types of systems we deal with in
the real world.
As an apple falls from a tree or a drone flies across a field, its state will change
continuously as every second, microsecond, or any other increment of time passes
by. These continuous time systems are all governed by some form of differential
equation. Are there any other types of systems out there?
Discrete time systems are another important class of dynamical system. Instead
of caring about the state of the system at every instant in time, a discrete time
system jumps from one state to the next at fixed time intervals.
Our digital computers are one example of a discrete time system - they perform
computations and interact with the physical world in small discrete intervals.
The fact that the physical systems we try to control are continuous, but the
computers we might use to control them are discrete brings up an important
point in the study of dynamical systems. Since our computers operate in discrete
time, and perceive the physical world through sampling from sensors at set time
intervals, it’s important to have an understanding of how we can model discrete
time systems.
What characterizes a discrete time signal? Consider the following graph, where a
discrete time sine wave, plotted in red, and a continuous time sine wave, plotted
in green, have been overlaid. Note that a discrete time signal is typically drawn
with a circle at the value of the signal and a line extending to the time axis.

28

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A digital signal (in red) and a continuous signal (in green).

The first, and perhaps most important quality of a discrete time signal is that
it’s only defined at discrete time intervals - we only care about the value of a
discrete signal at certain instants in time. The sampling time, ∆t, is the time
between these intervals.
What consequences does this characteristic have for our description of discrete
time systems? If we only care about the value of a signal at increments of ∆t,
we can track the total time that has passed by taking integer multiples of ∆t:

t = k∆t, k = 0, 1, 2, ... ∈ Z+
0 (1.131)

Where Z+
0 is the set of positive integers including zero. Thus, if the sampling

time ∆t is fixed, all we need to describe t in a discrete time system is a single
integer, k, the number of ∆t intervals that have passed.
Because all we need to describe time is k, discrete time signals are typically
written as functions of the form:

x(k), k = 0, 1, 2, ... ∈ Z+
0 (1.132)

Let’s consider some examples of discrete time signals described in this manner.
A discrete time sine wave with amplitude a, frequency ω, and sampling period
∆t could be written:

x(k) = a sin(ωk∆t) (1.133)

Using functions such as these, we can construct discrete time systems that are
every bit as rich and interesting as continuous time systems.
Now that we’ve come up with a method of describing discrete time signals, let’s
discuss how we can formulate discrete time dynamical systems. Recall that for
continuous time systems, we use models of the form:

ẋ = f(x, u) (1.134)

Does this description still make sense for a discrete time system? For this model
to be applicable to a discrete time system, the time derivative of the state vector
must be well-defined! This means that the limit:

dx

dt
= lim

δt→0

x(t+ δt)− x(t)

δt
(1.135)

29

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Must exist. Does this limit make sense for a discrete time signal x(k)? Consider
the following discrete time signal:

Above: does it make sense to take the derivative of this discrete signal?

Since this signal is only defined at individual instants, it is not differentiable
with respect to time at any t! Thus, we have no way of taking the limit as
δt→ 0. This means that we cannot use the description ẋ = f(x, u) to describe
a discrete time dynamical system.
How, then, can we describe the evolution of such a system? Instead of using
the derivative of the state vector to describe the evolution of a system, discrete
time systems use a function f that maps from the state and input vectors at
time step k to the state vector at time step k + 1.
Mathematically, the conventional representation of a discrete time system with
a state x and an input u is written:

x(k + 1) = f(x(k), u(k)), x ∈ Rn, u ∈ Rm, k ∈ Z+
0 (1.136)

As you can see in the equation above, instead of taking in an input and state
and returning a state derivative, the function f takes in an input and a state at
step k and returns the state at step k + 1.

Above: f(x(k), u(k)) maps to the next state vector, x(k + 1).

Just like with continuous time systems, there are several important subclasses
of discrete time systems, all with the same definitions as their continuous time

30

ME/EECS/BioE C106B Robotic Manipulation & Interaction

counterparts. There are control affine discrete time systems, which have the
form:

x(k + 1) = f(x(k)) + g(x(k))u(k) (1.137)

And linear discrete time systems, which have the form:

x(k + 1) = Ax(k) +Bu(k) (1.138)

Where A ∈ Rn×n and B ∈ Rn×m are matrices. Note that in the most general
case, the mapping from state and input to next state may also be an explicit
function of the time step, k.

Discretization

Since we often use digital computers to design our controllers, in many control
design problems, it proves useful to approximate a continuous time system by a
discrete time system! This is particularly common in model predictive control,
which formulates a control and path planning problem as a large optimization
problem. We’ll discuss this strategy in detail in the coming sections!
The process of approximating a continuous time system by a discrete time sys-
tem is known as discretization. How can we perform discretization in a mean-
ingful way that preserves some behavior of our original system?
Let’s begin our analysis of this problem with the general nonlinear system:

ẋ = f(x, u) (1.139)

Where we assume f is a smooth mapping. Let’s see if we can extract a discrete
time model from this continuous system. To begin, recall the limit definition of
a derivative:

ẋ = lim
∆t→0

x(t+∆t)− x(t)

∆t
(1.140)

Instead of taking the limit of this expression as ∆t→ 0, let’s try approximating
the value of the derivative by fixing ∆t to be some small constant. Then, for
small ∆t:

ẋ ≈ x(t+∆t)− x(t)

∆t
(1.141)

Since ẋ = f(x, u), this tells us:

x(t+∆t)− x(t)

∆t
≈ f(x, u) (1.142)

x(t+∆t)− x(t) ≈ f(x, u)∆t (1.143)

x(t+∆t) ≈ f(x, u)∆t+ x(t) (1.144)

This format, where we have x(t + ∆t) on the left hand side, and x(t) on the
right hand side, looks similar to the format of a discrete time system! Let’s

31

ME/EECS/BioE C106B Robotic Manipulation & Interaction

define the sampling time of our discrete time system to be ∆t, the small value
that we chose when approximating the derivative of the state vector.
Using this ∆t, we can express the total time passed at each sampling interval
as t = k∆t, where k is an integer. Let’s plug this into the expression above and
see what we get!

x(k∆t+∆t) ≈ f(x(k∆t), u(k∆t))∆t+ x(k∆t) (1.145)

x((k + 1)∆t) ≈ f(x(k∆t), u(k∆t))∆t+ x(k∆t) (1.146)

Thus, we can now entirely identify the dynamics of the system with a single
integer k! To convert into the correct notation, we define a discrete time estimate
of the state vector, x̂(k) = x(k∆t) and an input vector û(k) = u(k∆t). Notice
that we only use the values of the state and input vector exactly at t = k∆t.
We lose any information about how x(t), u(t) vary during each sampling period.
This enables us to rewrite our approximation as:

x̂(k + 1) = f(x̂(k), û(k))∆t+ x̂(k) (1.147)

We have successfully approximated our continuous time system with a discrete
time system! This type of approximation is known as Euler discretization,
and can yield fairly good results over short time periods for small ∆t.
If we were to apply this approximation for long periods of time, however, note
that the error between x(t) and x̂(k) might accumulate at an unbounded rate.
To slow the accumulation of error, other methods of discretization that use
higher derivatives of the state vector, such as Runge-Kutta discretization,
may be used.

32

ME/EECS/BioE C106B Robotic Manipulation & Interaction

1.2 Mathematical Preliminaries

Before we progress further with our analysis of dynamical systems, let’s take
a moment to develop some important concepts from real analysis, the field of
mathematics concerned with rigorously proving results in calculus. These con-
cepts will be particularly helpful in describing the stability of dynamical systems.
Note that we’ll develop this material primarily for the purpose of being precise in
stating our theorems and definitions later down the line! Don’t feel any pressure
to be fully proficient in wielding these as mathematical tools in proofs. Inter-
ested readers are encouraged to refer to texts such as Understanding Analysis by
Abbott and Principles of Mathematical Analysis by Rudin for a comprehensive
treatment of the concepts we discuss here.

1.2.1 Quantifiers

When discussing advanced concepts, the formal language of mathematics can
often get quite convoluted and cluttered! We often find ourselves writing proofs
regarding existence and uniqueness and making conclusions about whether cer-
tain results hold for all values of a certain variable or only for certain values.
When writing proofs, this means that we oftentimes have to write an enormous
amount just to be precise in what we mean.
To ease this proof-writing clutter, mathematicians conventionally use a set of
symbols known as quantifiers to assist in writing cleaner proofs and definitions.
These symbols are also frequently used in papers in robotics! We’ll occasionally
make use of them in our discussion of stability to ensure our definitions remain
concise.
The first quantifier we’ll discuss is for all, which has the symbol ∀. Let’s get
some practice using this symbol in context. The line:

∀t ≥ t0 (1.148)

Reads “for all t greater than or equal to t0.” Another common use of this symbol
is in describing sets of vectors. For example:

∀x ∈ Rn (1.149)

Reads “for all x in Rn.” This is a useful quantifier when expressing results that
hold globally for all possible values of a variable.
The second quantifier we’ll make use of is there exists, which has the symbol
∃. If we write:

∃ x ∈ Rn : f(x) = 0 (1.150)

We are communicating that “there exists an x in Rn such that f(x) = 0.”
Now that we have a symbol for existence, we can turn our attention to unique-
ness. Recall that mathematically, something is said to be unique if it is the only
object that possesses a certain property. If we have a variable that exists and is

33

ME/EECS/BioE C106B Robotic Manipulation & Interaction

unique, we use the quantifier ∃!, which is simply ∃ with an exclamation mark.
In context:

∃! x ∈ Rn : f(x) = 0 (1.151)

Reads “there exists a unique x in Rn such that f(x) = 0.” This means that this
x is the only one in Rn for which f(x) = 0.
Notice how using these symbols can save us a considerable amount of writing
when describing properties of mathematical objects!

1.2.2 Neighborhoods

Now that we have a little bit more notation at our disposal, we can progress
to a discussion of some fundamental concepts in real analysis. In the next
section, when coming up with a definition of stability, we will rely on having
some mathematical idea of closeness to an equilibrium point.
In analysis, we often formalize the concept of two mathematical objects being
close using a neighborhood. Let’s discuss neighborhoods in Rn.
A neighborhood of a point p in Rn is a region of space that is within a certain
radius of the point p. We can use neighborhoods to formally reason about the
closeness of different points in space. For example, if a point q is contained in a
neighborhood of a small radius of a point p, we can conclude that p and q are
close together! Let’s formally define this concept.

Definition 4 Neighborhood (Open Ball)
A neighborhood of radius ε about a point p ∈ Rn, denoted Bε(p), is defined:

Bε(p) = {x ∈ Rn : ||x− p|| < ε} (1.152)

As we can see from the definition above, a neighborhood of a point is simply the
set of all points within a sphere with its center at p and a radius of ε. In one,
two, and three dimensions, we can therefore visualize neighborhoods as follows:

Above: An neighborhood in 1, 2, and 3 dimensions.

34

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Because of their sphere-like shape, neighborhoods are also often referred to as
an open balls. Note that the word open comes from the fact that we use a
strict inequality, ||x − p|| < ε, instead of ||x − p|| ≤ ε in our definition. This
simply means that we don’t include the surface of the sphere in our set, which
makes the shape “open.”

1.2.3 Bounds

Oftentimes, when we have a set of different values, for example:

A = {x2 | 0 ≤ x ≤ 1} (1.153)

It’s important to know if the set is bounded or not! This can help us reach
important conclusions about the behavior of objects in the set. How can we
formally define the boundedness of sets?
There are two types of bounds we’ll consider: upper bounds, which constrain
the maximum size of elements of the set, and lower bounds, which constrain the
minimum size of elements of the set.

Definition 5 Bounded Above
A set A ⊆ R is said to be bounded above if there exists a scalar M ∈ R such
that for all x ∈ A, it is true that:

x ≤M (1.154)

In this case, M is known as an upper bound for the set.

We may similarly define what it means for a set to be bounded below.

Definition 6 Bounded Below
A set A ⊆ R is said to be bounded below if there exists a scalar U ∈ R such that
for all x ∈ A, it is true that:

U ≤ x (1.155)

In this case, U is known as a lower bound for the set.

Note that it’s entirely possible for both the upper and lower bounds of a set to
be negative numbers! If a set is both bounded above and bounded below, it is
said to be bounded.
Although these definitions are useful, in many cases we want to choose the

35

ME/EECS/BioE C106B Robotic Manipulation & Interaction

tightest possible bounds for our set. Why is this? Let’s consider a simple
numerical example. If we have the set of numbers:

A = {1, 2, 3, 4, 5} ⊆ R (1.156)

The numbers 5 and 1000 are both equally valid upper bounds for the set! How-
ever, since 5 is much closer to the actual values of the set, and is a tighter bound,
it is a much more informative number than 1000.

Above: −1 and −5 are both lower bounds for the set A ⊆ R, but −1 is a much
tighter bound.

As the tightest possible upper and lower bounds of a set are often the most
informative, mathematicians defined two important quantities, known as the
supremum and infimum.

Definition 7 Supremum
If a set A ⊆ R is bounded above, the supremum of A, denoted:

supA (1.157)

Is defined to be the smallest upper bound of A. If M is any other upper bound
of A, this means that:

supA ≤M (1.158)

Since supA is less than or equal to any other upper bound of the set, it must
be the tightest possible upper bound on the values of the set. Note that for the
supremum of a set to be well-defined, the set must be bounded above! If we
can’t find an upper bound for the set, we won’t be able to define its supremum.
Just like we defined the tightest possible upper bound, we may define the tightest
possible lower bound of a set.

Definition 8 Infimum
If a set A ⊆ R is bounded below, the infimum of A, denoted:

inf A (1.159)

Is defined to be the greatest lower bound of A. If U is any other lower bound of
A, this means that:

U ≤ inf A (1.160)

36

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Just like we required that a set be bounded above for a supremum to exist, we
require that a set be bounded below for an infimum to exist! If we can’t find a
lower bound for the set, there’s no way we can find the greatest possible lower
bound.
It’s important to note that the suprema and infima1 of sets might not actually
be elements of the set! For example, consider the set:

A = (−1, 1) ⊆ R (1.161)

This is the interval from -1 to 1, not including the endpoints, on the real number
line. We can see that −1 is the infimum of A and 1 is the supremum of A, yet
neither are actually elements of the set! This is an important fact to keep in
mind as we proceed.

1.2.4 Closed & Compact Sets

Now that we’ve discussed some important results regarding sets and their bounds,
we can talk about two important classes of sets known as closed sets and
compact sets. Here, we’ll keep our discussion on the surface level and avoid
formally defining a compact set in the most general sense. Interested readers
are encouraged to explore their full properties in the aforementioned texts on
real analysis!
The definitions of these two sets are closely tied to something called a limit
point. Let’s start our discussion there! In Rn, a limit point of a set A ⊆ Rn is
a point that is the limit of some non-constant sequence that’s entirely contained
within the set. For example:

Above: 0 is a limit point of the set (0,∞)

In the set A = (0,∞) ⊆ R, 0 is a limit point of the set! This is because the
sequence {an} = 1

n , which is entirely contained in A, converges to 0 in the limit
as n→ ∞!
This example brings up an interesting idea regarding limit points. Even though
0 is a limit point of the set A = (0,∞), by definition 0 is not included in the
set! This means that sets do not necessarily contain all of their limit points.
What types of sets do contain all of their limit points?

Definition 9 Closed Set
A set A ⊆ Rn is closed if it contains all of its limit points.

1The plural of supremum is suprema and the plural of infimum is infima.

37

ME/EECS/BioE C106B Robotic Manipulation & Interaction

If the limits of all possible sequences contained within the set are elements of the
set, the set is said to be closed. What does this definition look like in practice?
One consequence of this definition is that, if bounded, a closed set will include
all of its endpoints. This means that sets such as:

A = [−1, 5] (1.162)

B = [−15,−10] ∪ [15, 20] (1.163)

Will be closed sets, but other sets, such as:

C = (0,∞) (1.164)

D = [−4, 4) (1.165)

Are not closed sets!2 Notice how in the second example, even though D includes
one of its endpoints, −4, since it doesn’t include its second endpoint, 4, it is not
considered a closed set.
Are there any stronger conditions we can impose on sets other than closedness?
If we look closer at the definition of a closed set, we notice that closed sets are
not necessarily bounded! This leads us to the definition of a compact set in Rn.

Definition 10 Compact Set
A set A ⊆ Rn is compact if and only if it is closed and bounded.

Compact sets may be thought of as a stronger version of closed sets, and enable
many powerful results in analysis.
By this definition, as long as a set in Rn is closed, and has an upper and lower
bound, it is considered compact! It’s important to note that although this
definition of compactness is valid in Rn, it is not the general definition that’s
used in more arbitrary spaces.3 For our purposes, however, where we largely
contain our results to Rn, it will be sufficient.
As this definition is somewhat abstract, let’s think about a few examples of
compact sets to gain a little bit of intuition for their form. On the real line, a
classic example of a compact set is a closed interval, which has the form [a, b],
where a ≤ b and a, b are finite. This set is closed (it includes all of its limit
points including its endpoints) and is bounded, since a and b are both finite!

Above: A closed interval A = [a, b] ⊆ R.
2(0,∞) is referred to as an open set ! Open and closed sets are not actually opposites,

despite what the naming convention would suggest! A set can be neither open nor closed.
3Notably, this definition of compactness is invalid on the space of L2 functions. More

generally, a set is compact if every open covering of the set has a finite subcover.

38

ME/EECS/BioE C106B Robotic Manipulation & Interaction

What about compact sets in Rn? If a segment of the real line is a compact set
in R, it might be reasonable to expect that a box which includes all of the points
on its faces might be compact in Rn!

Above: A box with finite dimensions that includes its sides is compact in R3.

As we can see, this set is bounded, since it has sides of finite length. Additionally,
since it contains all of the points on its faces, we can prove that this set is closed.4

Another typical example of a compact set in n dimensions is a closed ball. This
set is a ball in n dimensions that includes its surface, as opposed to the open
balls we discussed earlier.

Above: A ball of finite radius whose surface is included is a compact set.

These are just a few examples of compact sets. Note that this list is by no
means exhaustive, and the total number of compact sets is infinite!

4This type of set is known as a k-cell mathematical literature.

39

ME/EECS/BioE C106B Robotic Manipulation & Interaction

1.3 Stability

Let’s take a moment to discuss our progress thus far in the study of dynamical
systems, and think about what areas we wish to explore next. So far, we’ve
talked about various representations of continuous and discrete time dynamical
systems, and have performed a brief analysis of properties such as equilibria and
existence and uniqueness of solutions.
Now that we’ve established conventions for the description of these systems, we
can begin to explore the theory associate with them at a deeper level, and ask
new questions regarding the evolution of these systems with the passage of time.
A question fundamental to the study of dynamical systems that has far reaching
consequences in control theory is that of stability. How can we tell if a particular
state in a system is stable? How can we formally define this stability? Are there
any analytical tools we can use to determine stability?
In this section, we’ll answer these questions through an exploration of funda-
mental topics in both linear and nonlinear stability. Along the way, we’ll build
important foundations that we’ll continue to use in our study of control theory.

Above: The path we’ll take in this section.

Stability is a challenging topic, so it’ll prove helpful to get a sense of where we
are in the development process as we move along. Let’s take a moment to discuss
our roadmap for this section. We’ll begin by developing an intuition for what it
means for something to be stable, in our discussion of naive stability. Following
this, we’ll make these intuitions mathematically sound with the definition of
Lyapunov stability. Then, we’ll learn how to apply these definitions with energy-
based methods, and finish up by enjoying the power of the Lyapunov stability
theorems.

Proofs in this section

Note that this section has a more mathematical character than others we’ll cover
in this course. In some of the results we’ll prove in this section, we’ll use some
more advanced techniques from real analysis. As such, the proofs in this section

40

ME/EECS/BioE C106B Robotic Manipulation & Interaction

are optional, but you’re highly encouraged to try them to gain the best possible
appreciation for the material!

1.3.1 Naive Stability

Before we begin a formal mathematical treatment of stability, it’s important
that we have an intuitive idea for what it means for a point in a system to be
stable. As such, before introducing any formal mathematics, we’ll think about
a physical example. Consider the simple pendulum below, which swings with
some friction under the force of gravity.

From our knowledge of equilibrium points, we know that a pendulum has two
equilibrium points, where it’s positioned vertically up and vertically down with
zero angular velocity.

Above: The two equilibrium points of a pendulum.

Let’s think about the differences in the behavior of the pendulum at the two
equilibrium points.
Physically, we know that if we pick up the pendulum, move it slightly away
from its lower equilibrium point, and let go, the pendulum will remain close

41

ME/EECS/BioE C106B Robotic Manipulation & Interaction

to the lower equilibrium point! It will swing in some region around the lower
equilibrium point and eventually settle back down to the point due to friction.
What about the upper equilibrium point? If we pick up the pendulum, move it
close to its upper equilibrium point, and let go, the pendulum will immediately
swing down and move far away from the upper equilibrium point!
This concept of remaining close to and straying far from equilibrium points is
central to the definition of stability. If we start near an equilibrium point and
stay near it afterwards for all time, that equilibrium point is said to be stable.
If we start near an equilibrium point and continually move away from it as time
goes on, that equilibrium point is said to be unstable.
Using the pendulum example, we can define the lower equilibrium point to be
stable, as starting near to the lower equilibrium point meant that we stayed near
for all time. On the other hand, the upper equilibrium point would be classified
as unstable, as starting near to the upper equilibrium point did not mean that
we would stay near for all time. Rather, the pendulum immediately swings far
away from the upper equilibrium point.
Let’s introduce a little bit of mathematical terminology to firm up this concept.
Note that later in this section, we’ll return to the definition of stability and treat
it with full mathematical formality.
For the purposes of our introductory analysis, let’s consider a general nonlinear
dynamical system of the form:

ẋ = f(x, t), x ∈ Rn, x(t0) = x0 (1.166)

Where x ∈ Rn is the state vector of the system, t ∈ R is time, and x0 is the
initial condition. Note that in this case, the system dynamics, f(x, t), have the
potential to be directly dependent on time, t.
Suppose that xe is an equilibrium point of this system. Recall that for xe to be
an equilibrium point of this nonlinear system, we require that:

0 = f(xe, t) For all time t ≥ t0 (1.167)

If xe is stable equilibrium point, based on our conceptual definition above, if
we start with an initial condition x0 that is close to xe, we will stay close to xe
for all time after t0. If xe is an unstable equilibrium point, if we start with an
initial condition x0 close to xe, we will move away from xe as time goes on.

1.3.2 Lyapunov Stability

With the suitable mathematical and conceptual ideas now at our disposal, we’re
ready to tackle the problem of describing stability! Let’s see if we can formalize
the idea of “start close, stay close” stability using more precise mathematical
language.
As in the previous section, we’ll consider the stability of a general time variant
nonlinear system of the form:

ẋ = f(x, t), x ∈ Rn, t ∈ R+ (1.168)

42

ME/EECS/BioE C106B Robotic Manipulation & Interaction

To keep our definitions concise, we will assume the system has an equilibrium
point xe = 0, such that f(xe, t) = 0 for all time t. As it happens, this is a
reasonable assumption to make.
If we wish to study the stability of a nonzero equilibrium point, xe, we can
transform that equilibrium point to be at zero by performing a simple change
of coordinates in our system! If x represents our original coordinates for the
system, we can define a new set of coordinates, x′, as follows:

x′ = x− xe (1.169)

Using this definition, we’ve transformed our equilibrium point xe from a nonzero
vector in x coordinates to the zero vector in x′ coordinates. Since xe is a
constant equilibrium point, this change of coordinates has a minimal effect on
the dynamics of the system! Since ẋe = 0:

ẋ′ = ẋ− ẋe = ẋ = f(x, t) (1.170)

Thus, the dynamics of our system are entirely preserved in x′ coordinates.
In our analysis of stability in this section, where we only consider systems of
the form ẋ = f(x, t), we will not consider systems with an arbitrary input, u.
This assumption turns out to be much less restrictive than one might expect!
In most robotic systems, the input to the system is not arbitrary, but is rather
determined by a something called a feedback controller, which computes inputs
as a function of the state vector, x! Thus, it’s a reasonable assumption that we
can describe the input dynamics of the system just using the state vector, x.
If, however, you’re interested in studying the stability of a system for an arbi-
trary input vector u, you’re encouraged to read about a form of stability known
as bounded input bounded output (BIBO) stability in a text such as Feedback
Systems by Murray and Astrom.
Now that we’ve established our system and equilibrium point of interest, let’s
see how we can formally define stability.

Definition 11 Stability in the Sense of Lyapunov (SISL)
The equilibrium point xe = 0 of the nonlinear system:

ẋ = f(x, t), x ∈ Rn, t ∈ R+ (1.171)

Is said to be stable in the sense of Lyapunov (SISL) at t = t0 if for all ε > 0,
there exists a δ(t0, ε) > 0 such that ||x(t0)|| < δ implies:

||x(t)|| < ε ∀t ≥ t0 (1.172)

Note that the term “stable in the sense of Lyapunov” is used interchangeably
with the term “Lyapunov stable.”

43

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s try to understand what this definition is saying, and see how it relates to
our original idea of “start close, stay close” stability!
Let’s imagine that we want our trajectory to stay within a distance ε of the
equilibrium point xe at all times. In other words, the trajectory must be within
a ball of radius ε around the equilibrium point for all t.
In the two dimensional case, we can visualize this condition as:

Above: We’d like the trajectory to remain within a ball of radius ε about xe.

If for any value of ε, we can find some δ(t0, ε) such that if x(t) starts somewhere
in a ball of radius δ around xe, it will stay in a ball of radius ε for all t ≥ t0,
then the equilibrium point is Lyapunov stable at t = t0.

Above: If xe is SISL, we can find a δ for every ε such that if we start within
Bδ(xe), we’ll stay within Bε(xe).

Why is δ(t0, ε) a function of t0 and ε? Since we’re considering the stability of
a time variant system, ẋ = f(x, t), the conditions for stability may change as
time passes, since the governing equations of the system depend on time. This
is why δ is a function of t0, and is also the reason we only conclude stability at
time t = t0.
What about ε? In general, if we shrink the radius ε that we want our trajectory
to remain within, we’ll also have to start within a smaller radius δ from the
equilibrium point! In other words, if we require that our trajectory stays within
a smaller region for all time, we’ll likely need to start our system closer to the
equilibrium point. This gives the dependence of δ on ε.

44

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s reason about this with a numerical example. Suppose that to remain
within a distance of ε = 1000 m from our equilibrium point, we have to start
within a distance of δ = 100 m from the equilibrium point. However, if we
shrink ε to 100 m, we might need to start within a smaller radius, for example
10 m, to remain within a radius ε of our equilibrium point for all time.
We can reason about the relationship between ε and δ through the lens of a
challenge and response. ε sets a challenge - a radius that our trajectory must
remain within, while δ provides a response - an range of initial conditions that
allow our trajectory to remain within the challenge radius ε.
Let’s think more carefully about the conditions the definition of Lyapunov sta-
bility imposes on a system, and turn to the two-dimensional case to gain some
visual perspective.

Above: If we start within a radius δ, we’ll remain within a radius ε for all time.

We know from the definition of Lyapunov stability that if xe is stable in the
sense of Lyapunov that there exists some δ(t0, ε) such that picking an initial
condition x0 within a ball of radius δ around the equilibrium point guarantees
the trajectory of the system, x(t), will remain within the larger ball of radius ε.
Does this condition, however, actually guarantee that the trajectories x(t) that
start in this region will converge to the equilibrium point?
As we can see in the image above, even though it satisfies the conditions for
Lyapunov stability, the trajectory x(t) never actually converges to the equilib-
rium point, xe - it simply swims around in the ball of radius ε.
Thus, although the basic definition of Lyapunov stability tells us if a trajectory
will stay near to an equilibrium point, it tells nothing about whether a trajec-
tory will actually converge to an equilibrium point.
For a guarantee of stability and convergence, we turn to the definition of asymp-
totic stability.

Definition 12 Asymptotic Stability
The equilibrium point xe = 0 of the system ẋ = f(x, t), x ∈ Rn is said to be

45

ME/EECS/BioE C106B Robotic Manipulation & Interaction

asymptotically stable at t = t0 if the following two conditions are satisfied:

1. xe is stable in the sense of Lyapunov

2. There exists a scalar δ(t0) > 0 such that if ||x(t0)|| < δ:

lim
t→∞

x(t) = xe = 0 (1.173)

Thus, the only extra condition that we require for asymptotic stability is that
for some region around the equilibrium point, all of the trajectories starting
within the region will converge to the equilibrium point.

Above: There exists a region around the equilibrium point such that trajectories
converge to the equilibrium point.

Note that although asymptotic stability ensures convergence, it doesn’t impose
any requirements on the rate of convergence! As long as limt→∞ x(t) = xe, the
convergence condition for asymptotic stability is satisfied.
Are there any forms of stability which do specify the rate of convergence? If
we want to ask the question of whether a trajectory will converge quickly to an
equilibrium point, we may use the definition of exponential stability.

Definition 13 Exponential Stability
The equilibrium point xe = 0 of the system ẋ = f(x, u), x ∈ Rn is said to be
exponentially stable if there exist constants m,α > 0, ε > 0 such that for all
x(t0) : ||x(t0)|| ≤ ε, is is true that:

||x(t)|| ≤ me−α(t−t0)||x(t0)||, ∀t ≥ t0 (1.174)

The largest value of α for which this is true is called the rate of convergence.

46

ME/EECS/BioE C106B Robotic Manipulation & Interaction

What does an exponentially stable equilibrium point look like? Once again, let’s
turn to the two-dimensional case, where x(t) ∈ R2, to visualize this definition.
Consider the following visualization:

Above: xe is exponentially stable if there is some region of initial conditions
for which we can bound the trajectory by an exponentially stable function.

As we can see in the image above, if xe is exponentially stable, we can find
some ε > 0 such that if our initial condition is within a ball of radius ε around
the equilibrium point, its distance from the equilibrium point will be bounded
above by some exponential function for all time!
Note that not all asymptotically stable systems are exponentially stable! How-
ever, we can prove without too much trouble that all exponentially stable sys-
tems are asymptotically stable. Let’s write out this proof to get a sense of what
it means to use these definitions in practice.

Proposition 1 Exponential Stability Implies Asymptotic Stability
If xe = 0 is an exponentially stable equilibrium point of the system ẋ = f(x, t)
within a region {x ∈ Rn : ||x|| ≤ ε}, it is also an asymptotically stable equilib-
rium point of the system within that region.

Proof: Where can we begin our proof of this proposition? Let’s restate the
definition of exponential stability, so we know what we’re working with. Recall
that if xe = 0 is an exponentially stable equilibrium point, there exist constants
m,α > 0, ε > 0 such that for all ||x(t0)|| ≤ ε, we have that:

||x(t)|| ≤ me−α(t−t0)||x(t0)||, ∀t ≥ t0 (1.175)

To show that xe = 0 is an asymptotically stable equilibrium point, we must
prove that it is stable in the sense of Lyapunov and that limt→∞ x(t) = 0.
Let’s start by tackling the first part of the definition, that our exponentially
stable equilibrium point is stable in the sense of Lyapunov. If a point is stable
in the sense of Lyapunov, for all ε′ > 0, there exists a δ(t0, ε

′) > 0 such that:

||x(t0)|| < δ =⇒ ||x(t)|| < ε′ ∀t ≥ t0 (1.176)

47

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s try a constructive existence proof for δ, and show such a δ exists by finding
an explicit formula. Let’s see if we can find some sort of relationship between δ
and ε, and see where that takes us!
Let’s only consider δ to be less than ε, the radius of the region where the
system is exponentially stable. If ||x(t0)|| < δ and xe is exponentially stable,
what bounds on the value of ||x(t)|| can we make? We can form the following
set of inequalities:

||x(t)|| ≤ me−α(t−t0)||x(t0)||, ∀t ≥ t0 (1.177)

< me−α(t−t0)δ, ∀t ≥ t0 (1.178)

Now, for all t ≥ t0, we know that the exponential term, exp(−α(t− t0)) ≤ 1 by
properties of the exponential function! Thus, we may form another inequality:

||x(t)|| < me−α(t−t0)δ, ∀t ≥ t0 (1.179)

≤ mδ, ∀t ≥ t0 (1.180)

Now, we remember that our original goal was to find a δ(t0, ε
′) such that ||x(t)||

can be bounded above by ε′ for all t ≥ t0. Looking at the inequality above, let’s
define:

δ = min
{ ε′
m
,
ε

m

}
(1.181)

This choice will ensure that at our initial condition, the exponential bound will
always hold. Then, using the inequalities we formed above, for all ||x(t0)|| < δ,
we have for all values of ε′:

||x(t0)|| < δ =⇒ ||x(t)|| < mδ ≤ m
ε′

m
= ε′, ∀t ≥ t0 (1.182)

Thus, we have shown that every exponentially stable equilibrium point is stable
in the sense of Lyapunov within the region where exponential stability holds!
To complete our proof that exponential stability implies asymptotic stability,
we must now show that our exponentially stable equilibrium point satisfies the
second condition of asymptotic stability, that for some set of initial conditions,
limt→∞ x(t) = 0.
We know that within radius ε of the equilibrium point:

0 ≤ ||x(t)|| ≤ me−α(t−t0)||x(t0)||, ∀t ≥ t0 (1.183)

Taking the limits as t→ ∞ of each piece of the inequality:5

lim
t→∞

0 ≤ lim
t→∞

x(t) ≤ lim
t→∞

me−α(t−t0)||x(t0)|| (1.184)

0 ≤ lim
t→∞

x(t) ≤ 0 (1.185)

5More formally, this is an application of the squeeze theorem from calculus.

48

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Thus, we conclude that limt→∞ x(t) = 0 as long as ||x(t)|| ≤ ε. Therefore,
our exponentially stable equilibrium point satisfies the second requirement for
asymptotic stability. This completes the proof! □

Let’s take a moment to review how these three types of stability relate to each
other. We now know that exponential stability is the strictest form, followed by
asymptotic, and then stable in the sense of Lyapunov.

Above: The hierarchy of three different types of stability.

Global Stability

How else can we strengthen these conditions of stability? If we look closely at
our definitions of Lyapunov, asymptotic, and exponential stability, we find that
all three definitions are only local results - that is, they only hold for certain
regions around the origin!
In the definition of asymptotic stability, for example, we only require that the
limt→∞ ||x(t)|| is xe within a certain radius δ of the equilibrium point. Outside
of this region, we have no guarantees on the limit of the trajectory! This same
remark can be made for exponential stability, where we only require ||x(t)|| be
bounded above by an exponential function in some region of radius ε around
the origin.
What consequences do these statements have? The fact that we only required
our definitions above to hold within some radius δ or ε of the equilibrium point
means that our definitions of stability thus far only describe the stability of the
system close to the equilibrium point!
An equilibrium point is said to be globally stable if it is stable for all initial
conditions of the system! Using more mathematical notation, if xe is globally
stable, it is stable for all initial conditions x0 ∈ Rn. Since global stability guar-
antees stability for all initial conditions, it is a much more powerful condition
than local stability.

Uniform Stability

Let’s think about another way we can make our definitions of stability stronger!
When we look at the basic definition of Lyapunov stability, we notice that
the range of initial conditions, δ(t0, ε) is dependent on the starting time of the

49

ME/EECS/BioE C106B Robotic Manipulation & Interaction

system! This is because the system we wish to analyze:

ẋ = f(x, t) (1.186)

Is explicitly dependent on time! If the dynamics of the system change as time
passes, there is the potential that an equilibrium point stable at the time t0
might not be stable at another starting time t′0!
With this in mind, let’s develop a more restrictive definition of stability that
guarantees stability of an equilibrium point for all time.

Definition 14 Uniform Stability
The equilibrium point xe of the system ẋ = f(x, t) is said to be uniformly stable
if for all ε > 0, there exists a δ(ε), not dependent on time such that for all initial
conditions and all starting times t0, if ||x(t0)|| < δ, it is true that:

||x(t)|| < ε ∀t ≥ t0 (1.187)

Uniform stability only makes a small modification of our original definition of
stability in the sense of Lyapunov. Here, we insist that δ is only a function of
ε, and not a function of time. This means that the passing of time does not
impact our ability to find a δ for the system, and therefore does not impact the
stability of the equilibrium point.
Similarly, we can define a uniform version of asymptotic stability.

Definition 15 Uniform Asymptotic Stability
The equilibrium point xe of the system ẋ = f(x, t) is said to be uniformly asymp-
totically stable if the following two conditions are satisfied:

1. The equilibrium point xe is uniformly stable.

2. There exists a δ > 0, not dependent on t0, such that for all initial condi-
tions x(t0) satisfying ||x(t0)|| < δ, it is true that:

lim
t→∞

x(t) = xe = 0 (1.188)

Note that we also require the convergence of limit in the second condition to be
“uniform,” a special type of convergence that we won’t discuss here!

Let’s summarize how all of these definitions of stability relate to one another. We
made an initial set of definitions for the local stability of systems, with certain
definitions requiring convergence to the equilibrium point. We then found we

50

ME/EECS/BioE C106B Robotic Manipulation & Interaction

could make these results stronger by requiring them to hold globally. Finally, we
defined a set of stability conditions that ensure the stability of a point doesn’t
change with time.

1.3.3 An Energetic Approach

Let’s think about some challenges that might come up when working with these
definitions! Suppose we want to use the formal definition of Lyapunov stability,
which requires finding a δ(t0, ε) that restricts our initial conditions and allows
x(t) to remain sufficiently close to the equilibrium point xe = 0.
What knowledge about the system does it seem like we’ll need to apply this
definition? To use this definition of stability, it seems like we’ll need an explicit
solution to the differential equation:

ẋ = f(x, t), x(t0) = x0 (1.189)

Only then will we be able to tell if x(t) will remain close to our equilibrium
point of interest for all time! But, general nonlinear differential equations are
incredibly hard to solve, and often have no closed form solution!
To solve this problem, we want to find some way of analyzing stability without
having to explicitly solve for x(t). Let’s reason about a method of doing this
with a physical system. Consider the simple mass-spring-damper system:

Above: A mass oscillates on a spring with a damping force.

Note that the damper, sketched above in red, applies a force to the mass opposite
and proportional to its velocity, ẋ. You can think of the damper as something
that resists quick motion in the system. Assuming that x = 0 when the spring
is unstretched, this system is described by the differential equation:

mẍ = −kx− βẋ (1.190)

Where m, k, β are positive scalar constants. We can quickly check that the state
[x, ẋ] = [0, 0] is the only equilibrium point of the system.
Without explicitly solving for the equations of motion, can we come to any
conclusion about the stability of this equilibrium point? One potential lead on
the answer to this question lies in the total energy of the system.
We know that for the mass-spring-damper system, energy is always greater than

51

ME/EECS/BioE C106B Robotic Manipulation & Interaction

zero. Thus, if we could show that the energy of the system is always decreasing,
we could conclude that the energy approaches zero. When the energy of the
system is zero, the mass can’t be moving, and the system must be frozen! This
means that when the system has zero energy, it must be at an equilibrium point.
Let’s apply this thought process to the mass-spring-damper system, and see how
energy changes over time. We can express the total energy of the system as:

E =
1

2
mẋ2 +

1

2
kx2 (1.191)

Let’s take the first time derivative of energy to determine the rate of change of
energy in the system:

Ė = mẋẍ+ kxẋ (1.192)

= (mẍ+ kx)ẋ (1.193)

Substituting in the dynamics of the system for mẍ, we get:

Ė = (−kx− βẋ+ kx)ẋ (1.194)

Ė = −βẋ2 (1.195)

Since ẋ2 ≥ 0, we conclude that the rate of change of energy, Ė, is less than or
equal to zero, and is only zero when velocity is zero! Thus, the energy of the
system decreases as time passes and will approach zero as t → ∞, making the
system settle at its equilibrium point.
The idea of using the rate of change of energy to analyze the stability of a system
is a very powerful one! Without solving the equations of motion for x(t), we
were able to make a conclusion about stability just using the rate of change
of energy in the system. Can we extend the idea of using energy to study the
stability to general nonlinear systems ẋ = f(x, t)?
In the next section, we’ll introduce a general class of functions that act just like
energy functions, but for arbitrary nonlinear systems! We’ll then apply these
special functions to describe the stability of general nonlinear systems.

1.3.4 Energy-Like Functions

In this section, we’ll build up a class of functions that act just like energy func-
tions for arbitrary systems! We’ll think about the core properties required of
these functions in a mathematically precise manner. Note that in this section,
we’ll use some terminology we previously developed in the section on mathe-
matical preliminaries.
Let’s begin by discussing an important mathematical operator known as the
Cartesian product, which we’ll make frequent use of in our definitions in this
section!

52

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 16 Cartesian Product Let A = {a1, a2, ..., }, B = {b1, b2, ...} be
two sets. The Cartesian product of A and B, denoted A × B, is the set of all
combinations of elements of A and B.

A×B = {(a1, b1), (a1, b2), (a1, b3), ...} (1.196)

Note that although the Cartesian product shares the symbol × with the vector
cross product, it refers to a different fundamental concept. Whenever × is
applied to two (or more) sets, think of the Cartesian product, and when × is
applied to two vectors, think of the vector cross product. Keep an eye out for
the Cartesian product in describing the domains of different functions as we
proceed!
Let’s now turn out attention to describing different classes of functions, and
begin by introducing a simple yet fundamental class.

Definition 17 Strictly Increasing Function
A function f(x) : R → R is said to be strictly increasing if for all x, y ∈ R, if
x < y, it is true that:

f(x) < f(y) (1.197)

If a function is strictly increasing, the further we get away from the origin, the
higher the value of the function will be! Note that despite how the definition
may initially sound, it is not necessarily true that a strictly increasing function
will grow to infinity!

Above: Three strictly increasing functions.

For instance, if a function is asymptotic to a certain value, such as the light
blue function in the image above, it can be strictly increasing yet not tend to

53

ME/EECS/BioE C106B Robotic Manipulation & Interaction

infinity! We can use these strictly increasing functions to define our first type
of energy-like function for an arbitrary system!

Definition 18 Locally Positive Definite Function (LPDF)
A continuous function V (x, t) : Rn × R+ → R is said to be a locally positive
definite function (LPDF) if for some ε > 0, there exists a strictly increasing
function α : R+ → R such that α(0) = 0 and:

1. V (0, t) = 0 for all t ∈ R+

2. V (x, t) ≥ α(||x||) for all x ∈ Bε(0) and all t ≥ 0

Let’s think about the different parts of this definition. Firstly, we defined a
function V (x, t) : Rn × R+ → R - what does this mean? This means that the
function takes in a combination of a vector x ∈ Rn and a positive scalar t ∈ R+,
and returns a scalar. Recall from our discussion of the Cartesian product that
the notation Rn × R+ refers to the set of all combinations of n dimensional
vectors and positive scalars.
Next, let’s discuss the two conditions of the definition, which only need to be
true locally. It’s in these conditions that we can see the similarities between
the class of locally positive definite functions and energy functions for physical
systems! Firstly, V (0, t) = 0 for all t - no matter what the value of t is, as long
as x is at the origin, the value of the function is zero. If we think back to our
mass-spring-damper system, we recall that the energy of the system was zero
at the origin, [x, ẋ] = [0, 0].
The second condition is somewhat more subtle - let’s see if we can visualize this
constraint! Let’s begin by considering the case where V isn’t a function of t,
and is simply a function of a scalar x ∈ R. Sketching out a few possibilities:

Above: f1 and f2 are locally bounded above by a strictly increasing function.

In this simple case, as long as a function is greater than a strictly increasing
function for some region around the origin, the second condition is satisfied!

54

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Notice that the functions themselves don’t need to be strictly increasing or have
particularly regular behavior for this to be true - they just need to be bounded
below by some strictly increasing function.
Let’s try and visualize this condition in higher dimensions! As it happens, the
conditions enforce more or less the same behavior as the one dimensional case.
Let’s consider the case where x ∈ R2 as an example.

Above: We can visually interpret this condition in higher dimensions by taking
slices of our function.

Visually, we can reason about the condition:

V (x, t) ≥ α(||x||) (1.198)

In higher dimensions by slicing the surface of our higher dimensional function
with a plane, as in the image above. By looking at the behavior of the function
in each slice, we can reduce the higher dimensional problem back into the one
dimensional problem we initially looked at!
If for every possible slice of our function, the slice appears to be bounded below
by a strictly increasing function within a certain region of the origin, the con-
dition V (x, t) ≥ α(||x||) is satisfied.
What effect does changing t have? Visually, we can imagine something being
true for all t if we freeze the value of the function V (x, t), for each t, and make
sure the function satisfies the required conditions.

Above: we can imagine the ∀t condition as freezing the appearance of V (x, t)
at each t and checking that it is well-behaved.

55

ME/EECS/BioE C106B Robotic Manipulation & Interaction

How does the second condition, that V (x, t) ≥ α(||x||), relate to the idea of en-
ergy? Let’s think about this condition in the context of the mass-spring-damper
once again.
If we move the vector [x, ẋ] far away from the origin, we know two things will
happen. Firstly, if we increase x, we’ll gain a high amount of potential energy
from stretching the spring away from its equilibrium point. Secondly, if we in-
crease ẋ, we’ll gain kinetic energy, from increasing the speed of the mass. Thus,
as we increase ||[x, ẋ]||, the energy of the system will be bounded below by a
strictly increasing function of ||[x, ẋ]||.
Using our visualizations as inspiration, is can we simplify the definition of a
locally positive definite function? As it happens, there is an alternate charac-
terization of these functions that will often be easier to work with.

Proposition 2 Alternate Characterization of LPDFs
A continuous function V (x, t) : Rn × R+ → R is locally positive definite if:

1. V (0, t) = 0 for all t ∈ R+.

2. There exists an ε > 0 such that V (x, t) > 0 for all nonzero x : ||x|| ≤ ε
and all t ∈ R+.

Let’s extend the definition of a locally positive definite function to be global. In-
stead of just acting like an energy function locally, the following type of function
will act like an energy function everywhere in Rn!

Definition 19 Positive Definite Function (PDF)
A function V (x, t) : Rn × R+ → R is a positive definite function if there exists
a strictly increasing function α : R+ → R such that α(0) = 0 and:

1. V (0, t) = 0 for all t ∈ R+

2. V (x, t) ≥ α(||x||) for all x ∈ Rn and all t ≥ 0

3. limp→∞ α(p) = ∞

Let’s review the differences between a positive definite function and a locally
positive definite function. For a positive definite function, instead of the first
two conditions being required to be true in some region around the origin, they
are required to be true globally (for all values of x).
Secondly, we have the additional requirement that our increasing function α(p)
must grow to∞ as p→ ∞. This requirement ensures that our strictly increasing
function will not asymptotically approach a constant value as we increase the

56

ME/EECS/BioE C106B Robotic Manipulation & Interaction

value of ||x|| to infinity.
The reason we didn’t include this condition in the local definition is that in a
local region, we can’t extend anything to infinity - this is only a concern for a
global result.
Now that we’ve performed an extensive discussion of functions that are bounded
below by another function, let’s think about a type of function that is bounded
above!

Definition 20 Decrescent Function
A continuous function V (x, t) : Rn × R+ → R is said to be decrescent if for
some ε > 0, there exists a strictly increasing function β : R+ → R such that
β(0) = 0 and:

V (x, t) ≤ β(||x||) ∀x ∈ Bε(0), ∀t ≥ 0 (1.199)

As we can see from the definition above, instead of being bounded below by
a strictly increasing function that is zero at the origin, a decrescent function
is bounded above. Notice that this does not imply a decrescent function is
decreasing! For instance, consider the function:

Above: A decrescent function, in red, is bounded above by a strictly increasing
function, in green.

The fact that a decrescent function is bounded above simply ensures that it
will decrease uniformly as we decrease ||x|| to zero. This is where the name
“decrescent” comes from.
Before we apply these definitions to the study of stability, we have one more type
of function to consider! You may have noticed that in many of these definitions,
we relied on some sort of strictly increasing scalar function that is zero at the
origin. Since this is such a common class of function in the study of stability,
we make the following definition:

57

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 21 Class K Function
A class K function is a continuous function f(x) : R+ → R that is strictly
increasing and equal to zero at the origin.

This makes the functions α and β used in the definitions above class K functions.
In addition to being used in the study of stability, these functions also notably
pop up in the field of safety critical control, which we’ll explore briefly later on
in the course.

1.3.5 Lyapunov Stability Theorems

After developing our definitions of Lyapunov stability and classifying various
energy-like functions, we’re finally ready to tackle the problem of proving sta-
bility for nonlinear systems.

The Direct Method of Lyapunov

Recall that when studying the mass-spring-damper system, we concluded that,
since the time derivative of energy was less than or equal to zero for all states,
the system would eventually settle around its equilibrium point.
For a general nonlinear system, ẋ = f(x, t), we may define a measure of system
energy using a scalar, energy-like function known as a Lyapunov function. In
general, Lyapunov functions are denoted:

V (x, t) : Rn × R+ → R (1.200)

V (x, t) takes in a combination of the current state vector of the system, x ∈ Rn,
and the current time in the system, t ∈ R+, and returns a single scalar value
V (x, t) ∈ R that represents the energy of the system at state x and time t.
Earlier, when dealing with the energy of the mass-spring-damper system, we
found it productive to take the time derivative of the energy of the system. We
found that when we substituted the system dynamics into the expression for the
derivative of energy, we were able to show that energy was decreasing. In other
words, when we took the time derivative of energy and applied the constraint
of the system dynamics, we found that energy was decreasing!
For a general nonlinear system, how can we take the first time derivative of a
Lyapunov function V (x, t) subject to the dynamics ẋ = f(x, t)?

Definition 22 Derivative Along a Trajectory
The first time derivative of the function V (x, t) : Rn × R → R along the trajec-

58

ME/EECS/BioE C106B Robotic Manipulation & Interaction

tories of the system ẋ = f(x, t) is defined:

V̇ =
∂V

∂t
+
∂V

∂x
f(x, t) (1.201)

Where does this definition come from? By the chain rule, we may evaluate the
time derivative of V (x, t) as:

dV (x, t)

dt
=
∂V

∂t
+
∂V

∂x

dx

dt
(1.202)

Now, if we want to add the constraint that we’re evaluating the time derivative
of V subject to the constraint of the system dynamics, ẋ = f(x, t), all we need
to do is replace the derivative ẋ = dx

dt with the system dynamics! This leaves us
with our definition:

dV

dt
=
∂V

∂t
+
∂V

∂x
f(x, t) (1.203)

Which must be the value of V̇ subject to the dynamics of our system.
Now that we have a method of taking the derivative of a function subject to the
constraint of the system dynamics ẋ = f(x, t), we may state the basic theorem
of Lyapunov, also known as direct method of Lyapunov.

Theorem 2 Basic Theorem of Lyapunov (Direct Method)
Suppose ẋ = f(x, t) is a system with an equilibrium point xe = 0. Let V (x, t) :
Rn × R+ → R be a Lyapunov function, with derivative V̇ along the trajectories
of the system ẋ = f(x, t). Using V, V̇ , we may establish the following forms of
stability and their conditions:

1. Locally SISL: If V (x, t) is locally positive definite and there exists some
ε > 0 such that V̇ (x, t) ≤ 0 for all x ∈ Bε(0) and for all t, then xe = 0 is
a locally stable equilibrium point in the sense of Lyapunov.

Above: V must be LPDF and V̇ ≤ 0 locally.

59

ME/EECS/BioE C106B Robotic Manipulation & Interaction

2. Locally Uniformly SISL: If V (x, t) is locally positive definite and de-
crescent, and there exists some ε > 0 such that V̇ (x, t) ≤ 0 for all
x ∈ Bε(0) and for all t, then xe = 0 is a locally uniformly stable equi-
librium point in the sense of Lyapunov.

Above: V must be LPDF and decrescent and V̇ ≤ 0 locally.

3. Locally Uniformly Asymptotically Stable: If V (x, t) is locally positive
definite and decrescent, and −V̇ (x, t) is locally positive definite, then xe =
0 is a locally uniformly asymptotically stable equilibrium point.

Above: V must be LPDF and decrescent and −V̇ LPDF.

4. Globally Uniformly Asymptotically Stable: If V (x, t) is positive def-
inite and decrescent, and −V̇ (x, t) is positive definite, then xe = 0 is a
globally uniformly asymptotically stable equilibrium point.

60

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: V must be PDF and decrescent and −V̇ PDF.

As a brief point of interest regarding this theorem, notice how the constraint of
positive definite and decrescent forces a Lyapunov function to converge smoothly
to zero as ||x|| approaches zero. This is what affords us the extra condition of
uniform stability.
Using this powerful theorem, we observe that by using a Lyapunov function,
we’re able to describe the stability of equilibrium points of arbitrary nonlinear
systems without explicitly having to solve for the solution x(t) to a differential
equation! This highlights the power of using an energy-based approach to de-
scribe general nonlinear systems.
Before we practice applying this result, let’s discuss one more important stability
theorem. In the theorem above, although we characterized four important types
of stability, we didn’t discuss the conditions for exponential stability ! Can we
reason about the exponential stability of an equilibrium point using a Lyapunov
function?

Theorem 3 Exponential Stability Theorem
Suppose ẋ = f(x, t) is a system with an equilibrium point xe = 0. xe = 0 is
a locally exponentially stable equilibrium point if and only if, for some ε > 0,
there exists a Lyapunov function V (x, t) such that for all t:

α1||x||2 ≤ V (x, t) ≤ α2||x||2 (1.204)

V̇ ≤ −α3||x||2 (1.205)∣∣∣∣∣∣∂V
∂x

(x, t)
∣∣∣∣∣∣ ≤ α4||x|| (1.206)

For some positive constants αi and for all x such that ||x|| ≤ ε. If these condi-
tions hold for all x ∈ Rn, xe = 0 is a globally exponentially stable equilibrium
point.

61

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Notice how when we move from the less restrictive stability definitions to the
more restrictive, the number and strictness of conditions on the Lyapunov func-
tion also increase! Recall that in general, exponential stability is the strongest
form of stability an equilibrium point can have. Consequently, it’s also the most
challenging to achieve!
Let’s get some practice using the direct method of Lyapunov on a simple system.
Consider the pendulum of mass m and length l, whose angle to the vertical is
described by θ. Let’s see what we conclude about the stability of the equilibrium
point (θ, θ̇) = (0, 0).

Above: A pendulum swings with a frictional torque under the force of gravity.

Suppose the pendulum swings under the force of gravity, and is affected by a
frictional torque proportional to its velocity, −βθ̇ (β > 0), which is applied at
its point of rotation.
Using the methods of Newtonian or Lagrangian dynamics, we may show that
the motion of the pendulum is governed by the differential equation:

ml2θ̈ = −mgl sin θ − βθ̇ (1.207)

To analyze the stability of this system, we first need to put it in standard state
space form. We define a state vector x using the phase variable convention:

x =

[
x1
x2

]
=

[
θ

θ̇

]
(1.208)

Using x, we rewrite the system dynamics in state space form as:[
ẋ1
ẋ2

]
=

[
x2

− g
l sinx1 − βx2

]
(1.209)

(1.210)

Note that in this case, the dynamics of the pendulum do not change with time,
so our system is simply ẋ = f(x) instead of ẋ = f(x, t). Now, let’s try to find
some locally positive definite Lyapunov function V (x) that is a function of our
state vector!

62

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s try using the energy of the system! We may calculate the total energy of
the pendulum by adding the kinetic and potential energies:

E =
1

2
ml2θ̇2 +mgl(1− cos θ) (1.211)

=
1

2
ml2x22 +mgl(1− cosx1) (1.212)

Let’s make a few simplifications to this function to make our lives a little easier.
We know that if we scale any locally positive definite function by a positive
scalar, it should still be locally positive definite!
Currently, there are a lot of constants floating around in the expression for
energy - to simplify our analysis, we’ll divide our expression for energy by ml2,
which we know is a positive constant. Defining a new constant a = g/l for
convenience, this gives us the following function, which will be our candidate
Lyapunov function for the system:

V (x) =
1

2
x22 + a(1− cosx1) (1.213)

Let’s first verify that V (x) is a valid Lyapunov function, and show that it is at
least locally positive definite. Let’s use our simpler, alternate characterization
of locally positive definite functions. By the alternate characterization, we recall
that a V (x) is a locally positive definite function if V (0) = 0 and V (x) > 0 for
some region of nonzero x around the origin.
Does these properties hold for our candidate Lyapunov function? First, we
check the condition that V (0) = 0. Plugging x1 = x2 = 0 into V (x), we get:

V (0) =
1

2
02 + a(1− cos 0) = 0 (1.214)

Thus, the first condition is satisfied. Does our function satisfy the second con-
dition? We want to show for some values of x that:

V (x) =
1

2
x22 + a(1− cosx1) > 0 (1.215)

Firstly, we know that the quadratic term, 1
2x

2
2, is always greater than zero for

all nonzero values of x2. What about the second term?
Using our knowledge of trigonometry, we know that for all values of x1, the
term a(1− cosx1) is bounded below by 0 and bounded above by 2a.

0 ≤ a(1− cosx1) ≤ 2a (1.216)

Since neither component of V (x) is negative and our overall function is nonzero
for some region of x around the origin, we conclude that our candidate Lyapunov
function, V (x), is a locally positive definite function.
Next, let’s analyze the derivative of the Lyapunov function! Let’s start by taking

63

ME/EECS/BioE C106B Robotic Manipulation & Interaction

the derivative of V , and follow up by substituting in the constraint of the system
dynamics. Using the chain rule for taking derivatives:

V̇ (x) = x2ẋ2 + aẋ1 sinx1 (1.217)

= x2ẋ2 + ax2 sinx1 (1.218)

Now, we substitute in the constraint of the system dynamics: ẋ2 = −a sinx1 −
βx2 (recall that we defined a = g/l).

V̇ (x) = x2(−a sinx1 − βx2) + ax2 sinx1 (1.219)

= −βx22 (1.220)

Since β > 0, this tells us that V̇ ≤ 0 for all values of x! Thus, by the direct
method of Lyapunov, we conclude that the equilibrium point xe = [0, 0] of the
pendulum is locally stable in the sense of Lyapunov.
Note that because the derivative of our Lyapunov function, V̇ = −βx22, only
depends on x2, we cannot make any conclusions about whether −V̇ is locally
positive definite! For example, if we set x1 ̸= 0 and x2 = 0, we will have a
nonzero x where V̇ = 0.
Since stronger forms of Lyapunov stability require −V̇ to be positive definite
or locally positive definite, we see that using this particular Lyapunov function,
we cannot show that xe = [0, 0] is asymptotically stable.
As it happens, with a different choice of Lyapunov function, we could actually
prove that the equilibrium point xe = 0 of the pendulum is asymptotically
stable! For this system, the Lyapunov function:

V (x) =
1

2
xTPx+ a(1− cosx1) (1.221)

Where P ∈ R2×2 is a positive definite matrix, could be used to show x1 is
actually locally asymptotically stable! The existence of this second Lyapunov
function with stronger stability conditions highlights several extremely impor-
tant points about working with Lyapunov functions!

1. A Lyapunov function V (x) is not unique! For a system ẋ = f(x, t), there
can be any number of valid Lyapunov functions.

2. Certain Lyapunov functions allow you to conclude stronger types of sta-
bility than others! Even if one Lyapunov function tells you a point is
just SISL, there might be another Lyapunov function that tells you it’s
asymptotically stable as well!

3. The stability of an equilibrium point is described by the strongest form
of stability we are able to prove. If one Lyapunov function says a point
is SISL and another says the point is asymptotically stable, we use the
stronger condition - that point must be asymptotically stable.

When working with Lyapunov functions, always remember - just because we
can’t find a Lyapunov function that satisfies the conditions we’re looking for
doesn’t mean that one doesn’t exist! For many systems, finding the right Lya-
punov function is a challenging process.

64

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Stability of Linear Systems

So far, we’ve dealt strictly with studying the stability of general nonlinear sys-
tems of the form:

ẋ = f(x, t), x ∈ Rn, t ∈ R (1.222)

In this section, we’ll turn our attention to the stability of linear, time invariant
systems of the form:

ẋ = Ax, x ∈ Rn, A ∈ Rn×n (1.223)

As we saw in the previous section, it can be challenging to determine the stability
of general nonlinear systems! For this simpler linear system, what conclusions
can we make? As we’ll soon discover, linear algebra offers us an exceptionally
convenient and elegant array of tools we can use to describe the stability of
ẋ = Ax.
Additionally, as we’ll soon learn in our study of the indirect method of Lya-
punov, the techniques we develop in linear stability may actually be used to
inform our knowledge of nonlinear stability.
Let’s get started by solving for a set of conditions that guarantee global expo-
nential stability of the equilibrium point xe = 0 for the linear system ẋ = Ax.
We’ll start our search for these conditions by reviewing the general solution
to linear, time invariant differential equations. Recall that for all matrices
A ∈ Rn×n and all initial conditions x0 ∈ Rn, the solution to the initial value
problem:

ẋ = Ax, x(0) = x0 (1.224)

Is given by the following expression:

x(t) = eAtx0 (1.225)

Where eAt is the matrix exponential of A, defined according to the Taylor series
of the scalar exponential function. Thus, unlike the general nonlinear case, we
actually know how to solve every linear, time invariant differential equation!
Thus, we can attempt to study the stability of a linear system by using x(t) and
directly applying the definitions of Lyapunov stability.
Before we get to work on applying this general solution to study stability, we
have one more piece of the puzzle to solve! Recall that earlier, when searching
for a method to write the matrix exponential in a closed form, we found that if
we have a diagonal matrix with n potentially repeated eigenvalues λ1, λ2, ..., λn:

A =

λ1 . . . 0
...

. . .
...

0 . . . λn

 ∈ Rn×n (1.226)

65

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We may compute the matrix exponential, exp(At), through the following con-
venient closed form expression:

eAt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλnt

 ∈ Rn×n (1.227)

This result, while immensely useful in the study of differential equations, is
not something we can apply to every matrix A ∈ Rn×n! From our knowledge
of linear algebra, we know that we cannot place every matrix A ∈ Rn×n in a
diagonal form!
Thus, if we wish to study the stability of a general linear system by using
x(t) = eAtx0, this is not a result we can make use of! We must find another
way to compute a closed form of exp(At) even when A is not diagonalizable.
How can we achieve this?
Let’s see if we can transform any matrix into a form that’s close to a diagonal
matrix! The Jordan canonical form (JCF), or “Jordan form,” of a matrix
is arguably the next best thing to diagonalization, and may be applied to any
square matrix, diagonalizable or not. The key to the applicability of the Jordan
canonical form is that it provides us with a reliable way to deal with repeated
eigenvalues.
How can we compute the Jordan form of a matrix? Suppose we have a matrix
A ∈ Rn×n with m unique (not repeated) eigenvalues, λ1, λ2, ..., λm. We know
that the characteristic polynomial of the matrix can be written:

∆(λ) = (λ− λ1)
m1(λ− λ2)

m2 ...(λ− λm)mm (1.228)

Where mi, called the algebraic multiplicity of the eigenvalue λi, is the number
of times λi is repeated. The Jordan form of a matrix with this characteristic
polynomial is computed:

J =

J1 0 . . . 0

0 J2
...

...
. . . 0

0 . . . 0 Jm

 ∈ Rn×n, Ji =

λi 1 . . . 0

0 λi
. . .

...
...

. . . 1
0 . . . 0 λi

 ∈ Rmi×mi ,

(1.229)

The Jordan form of a matrix is a block diagonalmatrix, where a set of matrices
known as Jordan blocks are found along the diagonal of J and zeros are found
everywhere else. Each Jordan block, Ji, is an upper triangular matrix with the
eigenvalue λi on the diagonal, a strip of 1s just above the diagonal, and zeros
everywhere else. The size of each Jordan block is determined by the algebraic
multiplicity of the eigenvalue λi.
Suppose, for instance, that the eigenvalue λi has an algebraic multiplicity of 3.

66

ME/EECS/BioE C106B Robotic Manipulation & Interaction

The Jordan block associated with that eigenvalue would be:

Ji =

λi 1 0
0 λi 1
0 0 λi

 ∈ R3×3 (1.230)

By finding the Jordan block associated with each eigenvalue and placing each
block along the diagonal of the matrix J , we can piece together a matrix’s Jor-
dan canonical form.
Since we can find a Jordan form for any matrix A, we conclude from our knowl-
edge of linear algebra that for all A ∈ Rn×n, diagonalizable or not, there exists
a transformation matrix T ∈ Rn×n such that:

A = T−1JT (1.231)

Where J is the Jordan form of A. Note that here, we’ll just use the Jordan
form as a tool in our mathematical analysis, and won’t focus on the details of
finding the transformation T .6

Let’s bring our discussion of the Jordan form back around to solving for the
matrix exponential of an arbitrary matrix. One of the main advantages of the
Jordan form is that the matrix exponential of an arbitrary Jordan form J has
a simple closed form expression!
Suppose we have a Jordan form matrix J ∈ Rn×n with m Jordan blocks:

J =

J1 . . . 0
...

. . .
...

0 . . . Jm

 ∈ Rn×n (1.232)

Just like we can compute the matrix exponential of a diagonal matrix by taking
the exponential of each diagonal entry, we can compute the matrix exponential
of a block diagonal matrix by taking the exponential of each block diagonal
entry:

eJt =

e
J1t . . . 0
...

. . .
...

0 . . . eJmt

 ∈ Rn×n (1.233)

How can we compute the matrix exponential of each Jordan block? We can
show that the matrix exponential of a p× p Jordan block Ji with an eigenvalue
λi is computed:

eJit =

eλit teλit t2

2! e
λit . . . tp−1

(p−1)!e
λit

0 eλit teλit . . . tp−2

(p−2)!e
λit

0 0
. . .

. . .
...

...
...

. . .
...

0 0 eλit

∈ Rp×p (1.234)

6You can consult Linear Algebra by Friedberg, Insel, and Spence for a comprehensive
treatment of finding such transformations.

67

ME/EECS/BioE C106B Robotic Manipulation & Interaction

For instance, the matrix exponential of a 4× 4 Jordan block Ji with eigenvalue
λ is computed:

eJit =

eλt teλt t2

2! e
λt t3

3! e
λt

0 eλt teλt t2

2! e
λt

0 0 eλt teλt

0 0 0 eλt

 ∈ R4×4 (1.235)

Although not as clean as the matrix exponential of a purely diagonal matrix,
the Jordan form offers us a close second and allows us to develop many results
in the study of linear differential equations in full generality.
We may apply the Jordan form to prove one of the most fundamental theorems
in the study of dynamical systems, regarding the stability of linear systems.
Before we study this theorem in full generality, we’ll need one more result,
which we’ll now prove. This result will help us form a tight upper bound on the
magnitudes of solutions given by the Jordan form!

Lemma 1 Polynomials are Bounded by Exponentials
If p(t) is an arbitrary real-valued polynomial of degree n, written:

p(t) = ant
n + an−1t

n−1 + ...+ a1t+ a0, ai ∈ R (1.236)

For all ε > 0 there exists a constant m such that for all t ∈ R:

p(t) ≤ meεt (1.237)

Proof: We can prove this theorem by strong induction on n, the degree of the
polynomial. Recall that a proof by strong induction involves proving a base
case, where n = 0, and then an inductive case, where we assume the result is
true for all integers up to and including n and show that it is true for n+ 1.
Base Case: (n = 0) First, we can prove that this result is true for n = 0. In
this case, the polynomial will be degree zero, and of the form:

p(t) = a0, a0 ∈ R (1.238)

For every ε > 0, we can clearly bound this function above by the following:

p(t) ≤ |a0|eεt (1.239)

Since p(t) is a constant function and eεt = 1 when t = 0. Taking |a0| to be m,
this completes the proof of the base case! You can also verify the n = 1 case
using a little bit of calculus.
Inductive Case: Now, we assume for strong induction that the result is true
for all integers between and including 0 and n. Can we show that it’s true for
n+ 1? If this is true for all integers between 0 and n, then for a degree n p(t):

p(t) = ant
n + an−1t

n−1 + ...+ a1t+ a0, ai ∈ R (1.240)

68

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We can find an m ∈ R such that for all ε > 0 and for all t:

p(t) ≤ meεt (1.241)

Now, we wish to show that we can find an m ∈ R for n + 1. Let f(t) be an
n+1 degree polynomial, and p(t) be the n degree polynomial above. Using the
inductive hypothesis, we can find an m3 ∈ R such that:

f(t) = an+1t
n+1 + p(t) ≤ an+1t

n+1 +m3e
εt (1.242)

For all ε > 0. Now, if we split up an+1t
n+1 = an+1t

nt, we realize that an+1t
n+1

is the product of a degree n polynomial and a degree 1 polynomial! Thus, for
all ε > 0, there exist m1,m2,m3 such that:

f(t) ≤ an+1t
n+1 +m3e

εt (1.243)

= an+1(t
n)(t) +m3e

εt (1.244)

≤ an+1(m1e
ε
2 t)(m2e

ε
2 t) +m3e

εt (1.245)

= an+1m1m2e
εt +m3e

εt (1.246)

= (an+1m1m2 +m3)e
εt (1.247)

Note that in the above, we bounded an+1t
n and t above by exponents with rates

ε/2 instead of just ε! We were able to do this since the exponential bounding
condition holds for all values of ε, so it didn’t matter if we used ε or ε/2. This
choice allowed us to factor out an exp(εt) later down the line!
Defining m = an+1m1m2 +m3, we have shown that for an n + 1 degree poly-
nomial, f(t), there exists an m such that:

f(t) ≤ meεt (1.248)

For all ε > 0. This completes the proof of the inductive case! Thus, by induc-
tion, this result holds for arbitrary polynomials. This completes the proof. □

With this lemma in our toolkit, we’re now ready to solve for the conditions
of general stability of linear time invariant systems! The following proposition
is one we’ll take with us across our study of feedback control.
As with our lemma about exponential functions, to prove results about the sta-
bility of LTI systems in the most general case, we will need to use some results
from real analysis. The proof of the following theorem is quite challenging, but
can be good practice for building intuition on forming bounds and applying the
definitions of stability. You’re encouraged to give it a try!

Proposition 3 Exponential Stability of LTI Systems
The equilibrium point xe = 0 of the linear, time invariant system:

ẋ = Ax, x ∈ Rn, A ∈ Rn×n (1.249)

69

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Is globally exponentially stable if and only if Re(λi) < 0, 1 ≤ i ≤ n, where λi
are the eigenvalues of A.

This theorem states that the real components of the eigenvalues of A completely
characterize the exponential stability of the system! Thus, without needing to
calculate a Lyapunov function, we’re able to conclude the strongest form of sta-
bility for a linear system just by solving for the eigenvalues of A!

Proof: First, we’ll proceed by showing that if all of the eigenvalues of A have
negative real components, xe = 0 is a globally stable equilibrium point. Recall
that formally, xe = 0 is a globally exponentially stable equilibrium point of a
system if there exists an α > 0 and an m such that for all x(0) = x0 ∈ Rn:

||x(t)|| ≤ me−αt||x0|| (1.250)

We know that the solution x(t) to the system is given by:

x(t) = eAtx0 (1.251)

Let’s use the Jordan form to compute the matrix exponential of A! Since every
matrix has a Jordan form, we know there exists a transformation T such that
A = T−1JT . Defining a change of variables z = Tx, we may rewrite the solution
in our new coordinates:

z(t) = eJtz0 (1.252)

We know that eJt is computed:

eJt =

e
J1t . . . 0
...

. . .
...

0 . . . eJmt

 , eJit =

e
λit . . . tp−1

(p−1)!e
λit

...
. . .

...
0 . . . eλit

 ∈ Rp×p (1.253)

Where p is the algebraic multiplicity of the eigenvalue λi. Here’s our general
strategy for this proof. If we can show that the section of the vector z(t)
associated with each Jordan block is exponentially bounded, we can show that
the magnitude of the entire vector is exponentially bounded!
Let’s name the portion of z(t) associated with the Jordan block Ji z

′
i(t). What

can we conclude about ||z′i(t)||? Since J is block diagonal, we know:

z′i(t) = eJitz′0i (1.254)

Where z′0i is the portion of the initial condition associated with the ith Jordan

70

ME/EECS/BioE C106B Robotic Manipulation & Interaction

block. Multiplying out exp(Jit) and z
′
0i and taking the norm, we get:

||eJitz′0|| = ||

e
λitz′0i1 + ...+ tp−1

(p−1)!e
λitz′0ip

...
eλitz′0ip

 || (1.255)

= ||eλit

z
′
0i1 + ...+ tp−1

(p−1)!z
′
0ip

...
z′0ip

 || (1.256)

Now, we’d like to start forming some inequalities to bound this norm! Let’s
define zmax as the maximum magnitude of the initial condition entries:

zmax = max{|z′0i1|, |z′0i2|, ..., |z′0ip|} (1.257)

Using zmax, we can form the following inequality:

||eJitz′0i|| ≤ ||eλit

zmax + ...+ tp−1

(p−1)!zmax

...
zmax

 || (1.258)

= ||eλitzmax

1 + ...+ tp−1

(p−1)!

...
1

 || (1.259)

Now, in each entry of the vector, we have a polynomial with positive coefficients!
Applying the lemma we discussed above, we know that if p(t) is an arbitrary
polynomial, there exists a constant m such that for all ε > 0 and all t ∈ R+:

p(t) ≤ meεt (1.260)

Thus, building off of our previous step, where we factored out zmax, we may
make another inequality by bounding each polynomial by an exponential:

||eJitz′0i|| ≤ ||eλitzmax

me
εt

...
meεt

 || (1.261)

= ||eλitzmaxme
εt

1...
1

 || = |eλit|zmaxme
εt||

1...
1

 || (1.262)

Note that we take the absolute value of exp(λit) when removing it from the
norm because λi has the potential to be complex! Let’s simplify the expression
above, and name the norm of the vector of ones l. If we define m′ = zmaxml,
this tells us that for all values of ε > 0:

||z′i(t)|| = ||eJitz′0i|| ≤ m′|eλit|eεt (1.263)

71

ME/EECS/BioE C106B Robotic Manipulation & Interaction

With this inequality, we’ve almost reached the result that we want for each
Jordan block! Our next step is to find a way to drop the absolute value of the
exponential in the middle of this expression. How can we do this?
If λi is complex, then for real a, b ∈ R, we can express λi as:

λi = a+ bi ∈ C (1.264)

Let’s express the exponential eλit in terms of a and b!

eλit = e(a+bi)t = eat+bit = eatebit (1.265)

How can we compute the exponential of bit? We may apply Euler’s formula,
which says:

ebit = cos bt+ i sin bt (1.266)

What conclusions can we make about the magnitude of the term exp(bit)? Using
the definition of the magnitude of a complex number, we get:

|ebit| =
√
cos2 bt+ sin2 bt = 1 (1.267)

Let’s use this knowledge to find an expression for |exp(λit)|!

|eλit| = |eat||ebit| = eat (1.268)

Thus, the value of |eλit| is entirely determined by the real component of λi!
Going back to our bound for z′i(t), we therefore conclude that:

||z′i(t)|| ≤ m′|eλit|eεt = m′eateεt = m′e(a+ε)t (1.269)

This completes the our study of the Jordan block Ji! Let’s bring this result
back to the full system! We know that the general solution to the differential
equation ż = Jz is given by:

z(t) = eJtz0 =

e
J1t . . . 0
...

. . .
...

0 . . . eJmt

 z

′
01
...

z′0m

 =

 eJ1tz′01
...

eJmtz′0m

 (1.270)

Where z′0i is once again the portion of the initial condition vector corresponding
to the ith Jordan block. Let’s split up z(t) into a set of m vectors corresponding
to each Jordan block!

z(t) =

 eJ1tz′01
...

eJmtz′0m

 =

eJ1tz′01

0
...
0

+

0

eJ2tz′02
...
0

+ ...+

0
...
0

eJmtz′0m

 (1.271)

72

ME/EECS/BioE C106B Robotic Manipulation & Interaction

From the triangle inequality, we know that for any two vectors u, v, it is true
that ||u+ v|| ≤ ||u||+ ||v||! Applying this fact to the m vectors above, we have:

||z(t)|| ≤ ||

eJ1tz′01

0
...
0

 ||+ ||

0

eJ2tz′02
...
0

 ||+ ...+ ||

0
...
0

eJmtz′0m

 || (1.272)

= ||eJ1tz′01||+ ||eJ2tz′02||+ ...+ ||eJmtz′0m|| (1.273)

Now, we can apply the bound that we derived above for each Jordan block!
We know that for all Jordan blocks, ||eJitz′0i|| ≤ miexp((ai + ε)t) for all ε > 0,
where ai is the real component of the ith eigenvalue, λi.
Since each of the vectors above is simply eJitz′0i along with a set of zeros, we may
apply the individual Jordan block bounds to arrive at the following inequality:

||z(t)|| ≤ ||eJ1tz′01||+ ||eJ2tz′02||+ ...+ ||eJmtz′0m|| (1.274)

≤ m1e
(a1+ε)t +m2e

(a2+ε)t + ...+mme
(am+ε)t (1.275)

Which holds for all ε > 0! We’re almost there! We’d now like to condense this in-
equality into a single exponential! To do this, we pickm′ = max{m1,m2, ...,mm}.
Using this m′, we conclude:

||z(t)|| ≤ m1e
(a1+ε)t +m2e

(a2+ε)t + ...+mme
(am+ε)t (1.276)

≤ m′(e(a1+ε)t + e(a2+ε)t + ...+ e(am+ε)t) (1.277)

This brings us one step closer to where we need to be! If we look at the ex-
pression above, we have exponentials with m potentially different real parts
of eigenvalues! How can we condense all of these exponentials into a single
exponential? Let’s pick:

a = max{a1, a2, ..., am} (1.278)

Using this a, we form another inequality:

||z(t)|| ≤ m′(e(a1+ε)t + e(a2+ε)t + ...+ e(am+ε)t) (1.279)

≤ m′(e(a+ε)t + e(a+ε)t + ...+ e(a+ε)t) (1.280)

= m′me(a+ε)t (1.281)

This inequality hold for all values of ε > 0. Now comes one of the most important
steps of the proof! If the real parts of all of the eigenvalues of J are less than
zero, the maximum of these values, a, will also be less than zero! Since ε can
be any positive value, we can pick ε such that:

a+ ε < 0 (1.282)

73

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s define a new constant α = −(a + ε) > 0. Rewriting the inequality above
using this α:

||z(t)|| ≤ m′me−αt (1.283)

Thus, z(t) is bounded above by a decaying exponential! At this stage, we’re
almost finished with the proof - all that remains is to transform z(t) back into
our original coordinates, x(t). We know from our original transformation that:

||x(t)|| = ||T−1z(t)|| (1.284)

How can we bound the value of ||T−1z(t)|| in terms of the value of ||z(t)||? We
can use the matrix 2-norm of T−1, which is equivalent to the maximum singular
value of T−1. By definition of the matrix norm, for all z:

||T−1z|| ≤ σmax||z|| (1.285)

Where σmax is the maximum singular value of T−1. Applying this to the above,
we have:

||x(t)|| = ||T−1z(t)|| ≤ σmax||z(t)|| ≤ σmaxm
′me−αt (1.286)

All that remains is to define a constant that allows us to match this inequality
perfectly with the definition of exponential stability. Assuming nonzero ||x0||
(the zero case is automatically bounded above by an exponential with any scale
factor), we pick:

L =
σmaxm

′m

||x0||
(1.287)

Using this L, we have that:

||x(t)|| ≤ σmaxm
′m

||x0||
e−αt||x0|| (1.288)

||x(t)|| ≤ Le−αt||x0|| (1.289)

Where α > 0 as long as all eigenvalues of A have negative real components.
This bound perfectly matches the definition of exponential stability, and holds
for all initial conditions x0. Thus, we conclude that if the eigenvalues of A have
all negative real components, the system:

ẋ = Ax, x(0) = x0 (1.290)

Is globally exponentially stable. The only if portion of this theorem can be
shown to be satisfied by the uniqueness of the solution to the linear differential
equation. This completes the proof! Phew, that was a lot of inequalities!7 □

7This theorem may also be proven by looking at different matrix norms of eAt - we used
a slightly different approach to avoid introducing too many new concepts.

74

ME/EECS/BioE C106B Robotic Manipulation & Interaction

The Indirect Method of Lyapunov

What other methods are there for analyzing the stability of nonlinear systems?
As we saw in the previous sections, finding the right Lyapunov function to
analyze the dynamics of a system can be a challenging process! Are there any
cases where we can avoid the need for a Lyapunov function?
Recall that in our earlier study of dynamical systems, we used the method of
Jacobian linearization to locally approximate nonlinear systems as linear ones!
Now that we have a set of tools for analyzing the stability of linear systems,
could we perhaps use our local, linear approximation to make conclusions about
the stability of the original nonlinear system? This question leads us to the
indirect method of Lyapunov.

Theorem 4 Stability by Linearization (Indirect Method of Lyapunov)
Suppose the system ẋ = f(x, t) has an equilibrium point xe = 0, and a Jacobian
linearization about xe = 0 of ẋ ≈ A(t)x. If A(t) is a bounded matrix, and the
difference between the linearization and the original dynamics satisfy:

lim
||x||→0

sup
t≥0

||f(x, t)−A(t)x||
||x||

= 0 (1.291)

We may conclude the stability of xe = 0 as follows. If xe = 0 is a uniformly
asymptotically stable equilibrium point of ẋ = A(t)x, then xe = 0 is a locally
uniformly asymptotically stable equilibrium point of ẋ = f(x, t).

What does the condition lim||x||→0 supt≥0(...) = 0 mean? This means that as we
bring x closer to the equilibrium point, the largest possible difference between
f(x, t) and the approximation A(t)x as we vary time across all of its possible
values should approach zero faster than ||x|| → 0.
Thus, for this theorem to hold, we require that the Jacobian linearization will
closely approximate f(x, t) near the equilibrium point for all time. This type of
convergence between f(x, t) and A(t)x is a special form of convergence known
as uniform convergence.
Let’s summarize what this theorem is saying. This theorem states the if the
Jacobian linearization of a system about xe = 0 exists and is well-behaved, we
can conclude local stability of the original nonlinear system just by looking at
the stability of its Jacobian linearization! Thus, by finding the eigenvalues of
the Jacobian linearization and ensuring their real components are all less than
zero, we can conclude local asymptotic stability of ẋ = f(x, u)!
Why does this result only hold locally? Recall that the Jacobian linearization is
only a good local approximation of a nonlinear system - once we stray far away
from the equilibrium point, the error between the linear approximation and the
system may grow at an unbounded rate.
Because of this, we can only use the linearization to study local stability. To

75

ME/EECS/BioE C106B Robotic Manipulation & Interaction

study global stability, we generally still must use the direct method of Lyapunov,
and find a valid Lyapunov function. Interested readers are encouraged to consult
A Mathematical Introduction to Robot Manipulation by Murray, Li, and Sastry,
or Feedback Systems by Murray for a brief description of LaSalle invariance,
another technique used in nonlinear stability analysis.

76

Chapter 2

Feedback Control
Fundamentals

Thus far, we’ve developed a significant amount of theory in the study of non-
linear systems. We’ve gone from developing a set of conventions for describing
nonlinear differential equations to describing the solutions to linear systems
through to an extensive study of stability.
In this chapter, we’ll put these fundamental concepts to work, and study some
key ideas in feedback control! We’ll discuss important aspects of control theory
from linear to nonlinear control design, and will build a strong foundation for
more advanced techniques.

2.1 Motivating Feedback

Let’s begin our development of control theory by defining and motivating the
value of feedback in the control of robotic systems. Once we’ve sufficiently
investigated the what and why concepts of control, we’ll move on to the how,
and learn about some foundational techniques in control.
Firstly, what is control theory? The field of control theory is largely concerned
with finding the best possible input to a dynamical system to get the system
to behave how we want. For instance, in robotics, we might want to drive a
turtlebot from some starting position, x0, to some desired position, xd.

77

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: How can we drive a turtlebot from x0 to follow xd(t)?

How can we find the optimal input to the system that allows us to move from
position x0 to xd quickly and precisely? Can we prove rigorously that the
system will converge to our desired state, and if so, can we find how quickly it
will converge? These are some of the fundamental questions we’ll ask in this
chapter!
Let’s perform some expository analysis of these questions, and set up a small
example problem. Along the way, we’ll identify some common pitfalls in control
design, and gain some perspective for the task ahead of us!
Imagine that we want to control our turtlebot, which has dynamics described
by a nonlinear differential equation:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (2.1)

We recall that we can control x, the state vector, by choosing u, the input vector
to the system. Remember that the input vector, u, is something that’s entirely
under our control!
Let’s see if we can find an expression for an input u that allows our turtlebot
to track a desired trajectory that changes with time, xd(t). One approach to
solving this problem is to use the system dynamics, which tell us the relationship
between the input u and the state vector, x! Starting with the differential
equation ẋ = f(x, u), we have:

dx

dt
= f(x, u) (2.2)

dx = f(x, u)dt (2.3)

We may now integrate the left side from time 0 to time t, and the right side
from an initial state x(0) = x0 to the desired state at time t, xd(t). Using a
dummy variable τ in the place of t to maintain proper mathematical notation:∫ xd(t)

x0

dx =

∫ t

0

f(x(τ), u(τ))dτ (2.4)

xd(t)− x0 =

∫ t

0

f(x(τ), u(τ))dτ (2.5)

xd(t) = x0 +

∫ t

0

f(x(τ), u(τ))dτ (2.6)

If we could somehow evaluate the integral on the right hand side and solve for
u(t) in terms of xd and the other system variables, we would be able to find
an input u(t) that allows our turtlebot to track the desired trajectory xd(t).
Although this might seem to be successful choice of input at an initial glance,
this strategy actually breaks down in several places!
This strategy of solving for u(t) is known as an open loop control law. Open
loop controllers don’t use any information about the actual state of the vehicle,
and simply rely on a knowledge of system dynamics and desired trajectory to

78

ME/EECS/BioE C106B Robotic Manipulation & Interaction

decide the input to a system.
In our example above, for instance, we only used the turtlebot dynamics, ẋ =
f(x, u), and the desired trajectory xd(t), to compute a control input! We didn’t
rely on any information from sensors onboard the turtlebot, which would tell
us the actual state of the vehicle.

Above: An open loop controller reads the desired state and sends an input to
the system, which moves the system to a state x.

Why might this be undesirable? If we were to use this choice of input on actual
hardware, we would encounter several problems. Firstly, the model of the sys-
tem dynamics, one of the main things we rely on in our open loop input, never
translates perfectly to the real world!
In a real physical environment, there will always be effects we haven’t modeled.
To name a few for the turtlebot, forces such as friction, rolling resistance, and
motor temperature could all impact how the turtlebot really moves. Further-
more, there is the potential for unknown, unexpected disturbances to throw off
the model! For example, if someone were to bump into the turtlebot while it
moves, our original dynamics equation, ẋ = f(x, u), would have no way of ac-
counting for this!
This means that if we were to run this open loop controller on a real robot, even
though our control input might work perfectly in an ideal environment, the real
robot will quickly move away from the desired trajectory!
If the robot doesn’t use any information about its actual state from sensors, and
assumes its theoretical dynamics model ẋ = f(x, u) is perfect, it has no way to
correct for any unexpected environmental disturbances that may occur.

Above: An open loop controller will quickly diverge from the desired path in the
presence of unknown disturbances.

How can we stop this kind of divergence from the desired trajectory from hap-
pening and make our controller robust to unexpected environmental distur-
bances? Instead of solely relying on our dynamics model, we can incorporate
feedback from sensors that tell us where our robot actually is at all times!

79

ME/EECS/BioE C106B Robotic Manipulation & Interaction

In the case of the turtlebot, for instance, by using sensors that tell us the real-
world position and speed of the vehicle, we’ll be able to better find an input that
allows us to correct for things like environmental disturbances! If an unexpected
force pushes the turtlebot off of its path, the sensors will recognize this, and
adjust the input to the system to put it back on the right track.
Closed loop feedback controllers are the class of controllers that determine the
input to a system by incorporating real-world information from sensors. We can
visualize a simple closed loop feedback controller using the following diagram:

Above: A simple feedback control system.

Let’s break down the different components of this diagram. First, a desired
state, xd, is passed into the system. Next, the desired state is compared to
the actual measured state of the system, which is determined by sensors. The
difference between the desired and measured states is passed into a feedback
controller, which uses the difference to determine an input, u. This input is
then passed into the system and the resulting state is measured by the sensors.
The process then continues!
Notice how in the diagram above, the measured state is fed back to the start
of the diagram, where it is compared to the desired state. This is what gives
feedback control its name.
In the study of control, we want to develop feedback controllers that give us cer-
tain guarantees on performance, stability, and safety. In the following sections,
we’ll learn the fundamentals of controller design and analysis, and see how an
appropriate choice of u can be determined!

2.2 Linear Control

We’ll begin our discussion of feedback control by focusing on the class of linear,
time invariant systems. Recall that these systems have the form:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m, x ∈ Rn, u ∈ Rm (2.7)

y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m, y ∈ Rp (2.8)

Generally, we can split control design problems into two classes: stabilization
(sometimes called regulation) and tracking. In a stabilization problem, we wish
to find an input that stabilizes the system around one of its equilibrium points.
In a tracking problem, on the other hand, we want to find a control input that

80

ME/EECS/BioE C106B Robotic Manipulation & Interaction

allows the system to follow some desired trajectory, xd(t).
Let’s start by tackling the simpler problem, stabilization! How can we design
a controller to stably bring the system to an equilibrium point from any initial
condition, potentially in the presence of disturbances?
Let’s try and reason about this question by examining a simple system: a mass
that oscillates on a spring with a force input, u. Recall that the only equilibrium
point of this system is the point [x, ẋ] = [0, 0], where the spring is unstretched
and the mass has zero velocity.

Above: How can we stabilize the mass to its equilibrium point?

Let’s consider a couple of different states of the system, and see if we can use
our intuition to come up with an input that will drive the system back to its
equilibrium in each case! First, consider the case where the mass is too far to
the right of the equilibrium point, but has zero velocity.

Above: How can we drive the system back to x = 0?

In this case, we want to drive the system back to the left, towards the point
xe = [0, 0]. To achieve this, we can apply an input to the system in the negative
x direction.
How strong should this input be? Intuitively, the further away we are from the
equilibrium point x = 0, the stronger our input should be, and the closer we
are to the equilibrium point, the smaller our input should be. Thus, when we’re
at this state, we can use an input that points in the negative x direction and is
proportional to the distance to the equilibrium point.

u = −k1x, k1 > 0 (2.9)

Let’s consider a second case! Now, suppose the string is unstretched (x = 0)
but the mass is travelling to the right with a high velocity (ẋ > 0). How can we
slow the system down and ensure it returns to [x, ẋ] = [0, 0]?

81

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: How can we slow the mass down and return it to its equilibrium point?

To slow the system down, we could apply our force input opposite to the velocity!
As with position, we can scale the magnitude of our input to be proportional
to the mass’s velocity. The higher the velocity is, the stronger our input should
be. With this in mind, we choose the input:

u = −k2ẋ, k2 > 0 (2.10)

How could we stabilize the system in the combined case, where both x and ẋ
are nonzero? A natural choice of input would be the sum of the two inputs we
determined above!

u = −k1x− k2ẋ, k1, k2 > 0 (2.11)

As we’ll soon see, we can actually prove mathematically that this intuitive
choice of input can return the system to its equilibrium point exponentially
quickly from any initial condition.
Let’s generalize our discussion from the simple mass-spring system to the more
general linear, time invariant system:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn, x ∈ Rn, u ∈ R (2.12)

For now, we’ll only analyze systems with a single scalar input, u, to simplify
our discussion. Suppose that we want to find an input u to stabilize this system
about its equilibrium point for any initial condition x0. How can we do this?
Inspired by our mass-spring discussion from above, let’s try the input:

u = −k1x1 − k2x2 − ...− knxn, ki ∈ R (2.13)

Where each xi ∈ R is an element of the state vector, x. Placing each ki in a row
vector, K, we can rewrite this input as the product of K and the state vector:

u = −
[
k1 k2 . . . kn

]

x1
x2
...
xn

 (2.14)

u = −Kx (2.15)

In the field of control, K is commonly referred to as a gain matrix, and the
elements inside K are referred to as gains. This choice of input, where we

82

ME/EECS/BioE C106B Robotic Manipulation & Interaction

choose u to be a linear combination of the elements of the state vector, is called
state feedback. State feedback controllers are extremely popular in linear
control, and may be used in many stabilization tasks!
For many linear systems, by correctly choosing the gain matrix, K, we can
drive the system to its equilibrium point exponentially quickly from any initial
condition.
Note that state feedback is an idea that can be generalized to a multi-input
linear system. In the multi-input case, instead of being a row vector, K will be
an m× n matrix.

K =

k11 . . . k1n
...

. . .
...

km1 . . . kmn

 ∈ Rm×n, for u ∈ Rm, x ∈ Rn (2.16)

2.2.1 Controllability

Although state feedback will work for a wide variety of A and B matrices,
it won’t always allow us to stabilize our system! Our ability to stabilize a
linear system from any initial condition is closely tied to an idea known as
controllability. Let’s perform a brief study of this idea, and then return to
our discussion of state feedback control.

Definition 23 Linear Controllability
A linear system ẋ = Ax+Bu is said to be controllable if for all initial conditions
x0 ∈ Rn and all x1 ∈ Rn, there exists a finite time t1 and an input u(t) such
that if the system starts at x0 and has the input u(t) applied:

x(t1) = x1 (2.17)

Let’s break down what this definition is saying. If a linear system is controllable,
we can always find an input u(t) to transport us from any starting state, x0, to
any ending state, x1, in a finite amount of time!

Above: A linear system is controllable if we can find an input to transport us
between any two states in finite time.

83

ME/EECS/BioE C106B Robotic Manipulation & Interaction

If a system is not controllable, it’s possible that we won’t be able to move it
to the state we desire! In the case of our stabilization problem from above, for
example, if the system ẋ = Ax+Bu is not controllable, it’s possible that there
is no control input that will allow us to stabilize our system!
How can we check if a linear system is controllable? The following classic result
from control theory gives us a method of verifying the controllability of arbitrary
linear, time invariant systems of the form ẋ = Ax+Bu.

Proposition 4 Linear Controllability Matrix
The linear, time invariant system ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m is
controllable if and only if the matrix:

P =
[
B AB A2B . . . An−1B

]
(2.18)

Is of rank n. P is known as the controllability matrix of the system.

This result, which may be proven with a famous result in linear algebra known
as the Cayley Hamilton theorem,1 will be immensely useful in our study of linear
control systems.
Based on the definition of controllability, we hypothesize that if a linear system
is controllable, and may be driven between any two states in finite time, we can
stabilize the system from any initial condition using state feedback, u = −Kx.
Let’s see if we can verify this hypothesis mathematically!

2.2.2 Stabilization

Now that we’re equipped with the concept of controllability, let’s see if we can
prove that controllable linear systems can be stabilized by state feedback! To
simplify our analysis, we’ll once again consider single input linear systems of
the form:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn, x ∈ Rn, u ∈ R (2.19)

We’ll find it convenient to transform our linear system into controllable canon-
ical form, a form more convenient for feedback control analysis. Let’s briefly
discuss the details of this transformation!

Lemma 2 Transformation into Controllable Canonical Form
If the single input linear system ẋ = Ax + Bu, x ∈ Rn, u ∈ R is controllable,

1If you’re interested in a proof of this theorem, you’re encouraged to consult a text in linear
systems theory such as Linear Systems by Antsaklis.

84

ME/EECS/BioE C106B Robotic Manipulation & Interaction

there exists a transformation matrix Q that transforms the system into control-
lable canonical form:

ẋc = Acxc +Bcu (2.20)

Where x = Qxc and Ac = Q−1AQ, Bc = Q−1Bu are of the form:

Ac =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 , Bc =

0
0
...
0
1

 (2.21)

The controllable canonical form representation of a linear system will provide us
with a much simpler system representation to perform our analysis with. Let’s
briefly review an important result from linear algebra that will allow us to make
use of the controllable canonical form!

Lemma 3 Similarity Transformations Preserve Eigenvalues
Let A,B ∈ Rn×n. If:

B = Q−1AQ (2.22)

For some invertible transformation matrix Q ∈ Rn×n, then A and B are said
to be similar matrices, and Q−1AQ is said to be a similarity transformation of
A. If A and B are similar, they have the same eigenvalues.

Proof: Let’s begin by examining the eigenvalues of A. Suppose λ is an eigen-
value of A with an associated eigenvector v ∈ Rn. By the definition of an
eigenvector:

Av = λv (2.23)

Multiplying both sides by Q−1 and bringing λ to the front:

Q−1Av = λQ−1v (2.24)

Let’s define a new vector z = Q−1v. Using z:

Q−1AQz = λQ−1Qz (2.25)

Q−1AQz = λz (2.26)

85

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Now, we conclude that if λ is an eigenvalue of A, λ will be an eigenvalue of
Q−1AQ as well, with an eigenvector z = Q−1v. Thus, A and all of its similar
matrices, Q−1AQ, have the same eigenvalues. This completes the proof! □

We can now state our theorem regarding the applicability of state feedback!

Theorem 5 Stabilization by State Feedback
If the single input system ẋ = Ax + Bu is controllable, then by state feedback
u = −Kx, the eigenvalues of the closed loop matrix A−BK:

ẋ = Ax−BKx = (A−BK)x (2.27)

May be placed arbitrarily by selecting K, which enables us to stabilize the system.

This theorem tells us that as long as ẋ = Ax + Bu is a controllable system,
when we plug in the input u = −Kx, which gives the closed loop system:

ẋ = Ax+Bu = (A−BK)x (2.28)

We can entirely control the eigenvalues of A − BK by changing the values of
K! This means that we can move all of the eigenvalues of the matrix A− BK
to have negative real components, which will guarantee the equilibrium point
xe = 0 is globally exponentially stable.
Note that A−BK is called the closed loop matrix, as it gives us the dynamics
of the system after we plug our closed loop feedback controller expression in for
the input, u.

Proof: We have a controllable linear, time invariant system with a single input:

ẋ = Ax+Bu, x ∈ Rn, u ∈ R (2.29)

Using the lemma from above, since this system is controllable, we may transform
it into controllable canonical form to make our analysis much simpler. Defining
a coordinate transformation into controllable canonical form x = Qxc, Ac =
Q−1AQ, Bc = Q−1Bu, we get the system:

ẋc = Acxc +Bcu (2.30)

Now, we define a state feedback control law in these xc coordinates:

u = −Kcxc = −
[
kc1 kc2 . . . kcn

]
xc (2.31)

Substituting this input into our system dynamics, we get:

ẋc = Acxc −BcKcxc (2.32)

ẋc = (Ac −BcKc)xc (2.33)

86

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Now, referring to the forms of Ac and Bc in controllable canonical form, we can
show that Ac −BcKc is calculated:

Ac −BcKc =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 − k1 −a1 − k2 −a2 − k3 . . . −an−1 − kn

 (2.34)

If we can show that by adjusting the values of ki, we can entirely control the
eigenvalues of Ac −BcKc, we’ll have shown that we can make the system ẋc =
(Ac −BcKc)xc stable! Calculating the characteristic polynomial of Ac −BcKc

in terms of ki, we get:

λn + (an−1 + kn)λ
n−1 + ...+ (a1 + k2)λ+ (a0 + k1) = 0 (2.35)

Thus, every coefficient of the characteristic polynomial can be changed arbi-
trarily by modifying the value of ki! Thus, we can completely decide what the
eigenvalues of the closed loop system ẋc = (Ac − BcKc)xc will be using state
feedback. This enables us to choose the eigenvalues to have negative real com-
ponents, which will stabilize the system.
Now, let’s transform this result back to our original coordinates! Recall that we
defined Ac = Q−1AQ, Bc = Q−1Bu, and x = Qxc. Starting with our closed
loop system dynamics in controllable canonical form:

ẋc = (Ac −BcKc)xc (2.36)

We multiply both sides by Q and substitute xc = Q−1x to get:

ẋ = Q(Ac −BcKc)xc (2.37)

ẋ = Q(Ac −BcKc)Q
−1x (2.38)

This expression is now in our original x coordinates. Recall from our lemma
above that for any invertible coordinate transformation Q and matrix C, the
eigenvalues of Ac − BcKc and Q(Ac − BcKc)Q

−1 are the same, as they are
similar matrices.
Since we can use K to control the eigenvalues of the system arbitrarily in con-
trollable canonical form, we can also use K to change the eigenvalues of the
system arbitrarily in our original coordinates!
Let’s try to reduce this expression above to a simpler form to ensure that state
feedback in controllable canonical form still corresponds to state feedback in our
original coordinates. Multiplying out by Q and Q−1:

ẋ = QAcQ
−1 −QBcKcQ

−1x (2.39)

ẋ = A−QQ−1BKcQ
−1x (2.40)

ẋ = A−BKcQ
−1x (2.41)

87

ME/EECS/BioE C106B Robotic Manipulation & Interaction

If we defineK = KcQ
−1, we see that our state feedback u = −Kcxc is equivalent

to u = −Kx in our original coordinates, which is the formula for state feedback!

ẋ = Ax−BKx = (A−BK)x (2.42)

Since A−BK = Q(Ac −BcKc)Q
−1, whose eigenvalues we can arbitrarily con-

trol, we conclude that using the state feedback u = −Kx, we can stabilize the
system about its equilibrium point by choosing (A − BK) to have eigenvalues
with negative real components.
Thus, state feedback can make xe = 0 a globally exponentially stable equilib-
rium point as long as the system is controllable. This completes the proof! □

Note that although we analyzed the single input case in the theorem above,
the results we developed extend to the multi-input case! In general, as long as
ẋ = Ax+Bu is a controllable system, we may stabilize it with state feedback.

88

ME/EECS/BioE C106B Robotic Manipulation & Interaction

2.3 Feedback Linearization

So far, we’ve talked about a way of controlling the stability of a linear system
using a technique known as state feedback. We proved that as long as a system
is controllable (can be driven between any two states x0 and x1 in finite time),
we can make the equilibrium point xe = 0 globally exponentially stable using
state feedback:

u = −Kx (2.43)

The simplicity and global exponential guarantees of state feedback make it a
highly appealing choice of controller for linear systems!
In robotics, however, most systems that we seek to control are highly nonlinear.
For instance quadrotors, autonomous vehicles, and robot arms are all described
by coupled systems of nonlinear differential equations! This means that we can’t
use plain state feedback, u = −Kx to control these systems in an effective man-
ner!
What can we do to get around this and design controllers with strong perfor-
mance guarantees for nonlinear systems? For many nonlinear systems, we may
perform a process known as feedback linearization, where we use feedback
control to make a nonlinear system behave like a linear system!

Above: Can we find an input u that makes a nonlinear system act linear?

This is an extremely powerful concept in nonlinear control that we’ll now work
on constructing.
Note that our development in this section will mainly focus on the procedure
of developing a feedback linearizing controller, rather than the theoretical con-
ditions for feedback linearizability. For an in-depth analysis of the conditions
required for a system to be feedback linearizable, you’re encouraged to read
chapter 9 of Nonlinear Systems: Analysis, Stability, and Control by Sastry.

2.3.1 SISO Feedback Linearization

Let’s begin our development of feedback linearizing controllers! In this section,
we’ll restrict our analysis to the set of control affine single input, single output
systems. Note that single input, single output systems are commonly referred
to as SISO systems.
These control affine SISO systems will have the form:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R (2.44)

y = h(x), y ∈ R (2.45)

89

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Recall from our earlier discussion of dynamical systems that the state equation,
ẋ = f(x)+g(x)u, governs the dynamics of the system, while the output equation,
y = h(x), describes a term of interest that we wish to control. Note that in our
development, we’ll always assume that g(x) is nonzero, so there will always be
an input in the state equation.
Let’s outline the problem of feedback linearization for this system. We want to
somehow turn this nonlinear system into a linear system just by using feedback
control! How can we accomplish this?
A good first step in answering this question might be to focus purely on the
output, y. Since y is the quantity we actually wish to control in the system,
perhaps it’ll be easier to gain a linear relationship by just focusing on the output
instead of the entire state vector.
As we’ll soon find out, by focusing on the evolution of the system output, we
can actually use feedback control to get a linear relationship between input and
output!
Let’s try and find an expression that encapsulates how the output, y, changes
along the trajectories of the system. We can do this by turning the output
equation, y, into a differential equation that makes use of the system dynamics,
ẋ = f(x) + g(x)u. Let’s try taking the first time derivative of y, and see where
that takes us!
Using the chain rule to calculate the first time derivative of y = h(x):

ẏ = ḣ(x) =
∂h(x)

∂x
ẋ (2.46)

Next, let’s substitute in ẋ = f(x)+ g(x)u for ẋ to find out how y changes along
the trajectories of the system. This gives us:

ẏ =
∂h(x)

∂x
(f(x) + g(x)u) (2.47)

ẏ =
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u (2.48)

Interestingly, when we take the derivative of the output, since our original dy-
namics were affine in u, our output dynamics are affine in u as well! This means
that the effect of u on the output can be easily separated from the rest of the
output dynamics - u is only related to ẏ through simple multiplication and ad-
dition.
Let’s use this simple separation to our advantage, and see if we can find some
way to cancel out terms in the output dynamics through a clever choice of u.
Assuming that ∂h

∂xg(x) is nonzero, let’s pick the following input, and see what
effect it has on the system:

u =
1

∂h(x)
∂x g(x)

(
− ∂h(x)

∂x
f(x) + v

)
(2.49)

90

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Where v ∈ R is an arbitrary constant we have total control over. Let’s plug this
choice of input into the output differential equation and see what results!

ẏ =
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u (2.50)

ẏ =
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)

[1
∂h(x)
∂x g(x)

(
− ∂h(x)

∂x
f(x) + v

)]
(2.51)

ẏ =
∂h(x)

∂x
f(x)− ∂h(x)

∂x
f(x) + v (2.52)

ẏ = v (2.53)

Miraculously, when we use this input, we get a system with a directly linear
relationship between the derivative of the output, ẏ, and an arbitrary variable
that we can control, v!
This input has therefore transformed our nonlinear system into a system with
a linear relationship between an input, v, and the output, y! Thus, we say that
u has input-output linearized the system.
Now that we have a linear system, ẏ = v, we can apply any methods of linear
control, for example state feedback, to stabilize or drive the output of the system
to a desired value, yd.
Now that we’ve found a feedback linearizing input in a simple case, let’s take a
moment to reflect on what we did and see if there are any holes in our reasoning
or improvements we can make. First, let’s try to think a little more carefully
about the terms:

∂h(x)

∂x
f(x),

∂h(x)

∂x
g(x) (2.54)

That we use in our input expression. Can we assign a precise mathematical
meaning for these terms, and come up with some more convenient notation?
After we address these concerns, we can turn our attention to the case where:

∂h(x)

∂x
g(x) = 0 (2.55)

For our current choice of feedback linearizing input, where we use the inverse

of ∂h(x)
∂x g(x), we have no way of dealing with the case where this term is zero.

Let’s discuss some concepts that allow us to deal with these two tasks!

Lie Derivatives

Let’s first focus our attention on making the process of feedback linearization
a little more mathematically precise. We’ll introduce some convenient notation
and provide some interpretation of the operations we carry out. When we take
the time derivative of the output, we get:

ẏ =
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)u (2.56)

91

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s discuss the different terms involved in this expression. Let’s start with
∂h
∂x , the spatial gradient of h(x) : Rn → R. We define the gradient of h(x) with
respect to x ∈ Rn as:

∂h

∂x
=

[
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xn

]
∈ Rn (2.57)

In our expression for the time derivative of y along the trajectories of the system,
∂h
∂x is multiplied by f(x) and g(x).
What do we know about f(x) and g(x)? We know that both f(x) and g(x) take
in a vector x ∈ Rn and return another vector in Rn! This makes f(x) and g(x)
vector fields whose value depends on x.
By thinking of ∂h

∂x as a row vector and f(x) and g(x) as vector fields, we can
gain an intuition for the meaning of the products:

∂h(x)

∂x
f(x),

∂h(x)

∂x
g(x) (2.58)

Recall that if we have two vectors, a, b ∈ Rn, and we compute:

aT b =
[
a1 a2 . . . an

]

b1
b2
...
bn

 = a1b1 + b2b2 + ...+ anbn (2.59)

Generally speaking, aT b helps us describe if and how much a points along the
direction of b. For instance, if a and b are orthogonal to one another, aT b will
be zero. On the other hand, in the special case where b is a unit vector, aT b
gives us the length and direction of the projection of a onto b.

Above: If b is a unit vector, aT b is the length of the projection of a onto b.

Let’s apply this concept to the gradient and vector field products we discussed
above, and revisit ∂h

∂xf(x) through the lens of projection:

∂h(x)

∂x
f(x) =

[
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xn

]

f1(x)
f2(x)

...
fn(x)

 (2.60)

92

ME/EECS/BioE C106B Robotic Manipulation & Interaction

From the expression above, we see that computing ∂h
∂xf(x) is just like taking the

inner product of the gradient of h with respect to x and the vector field f(x)!
Thus, the product ∂h

∂xf(x) term tells us about the rate of change of y = h(x)
along the vector field f(x)! Similarly, the product:

∂h(x)

∂x
g(x) (2.61)

Tells us about the rate of change of h(x) along the vector field g(x).
In mathematics, these products are referred to as Lie derivatives.2

Definition 24 Lie Derivative
Given a function h(x) and a vector field f(x), the Lie derivative of h(x) along
the vector field f(x) is defined:

Lfh(x) =
∂h(x)

∂x
f(x) (2.62)

Lfh(x) expresses the rate of change of h(x) along the vector field f(x), as it is
the inner product between the gradient of h(x) and the vector field f(x).

Using Lie derivative notation, we may rewrite our expression for the first deriva-
tive of y:

ẏ =
∂h

∂x
f(x) +

∂h

∂x
g(x)u (2.63)

ẏ = Lfh(x) + Lgh(x)u (2.64)

Note how Lie derivative notation is much more compact than the expression of
partial derivatives! For convenience, we also introduce the following notation
for computing higher order Lie derivatives:

L2
fh(x) = Lf [Lfh(x)] =

∂(Lfh(x))

∂x
f(x) (2.65)

LgLfh(x) = Lg[Lgh(x)] =
∂(Lfh(x))

∂x
g(x) (2.66)

Whenever you see a higher order Lie derivative, remember that it’s simply a
composition of Lie derivatives - we’re taking the Lie derivative of a Lie derivative.
Using this higher order Lie derivative notation, we can recursively define the pth

Lie derivative of h(x) along f(x) as:

Lp
fh(x) = Lf [L

p−1
f h(x)] =

∂(Lp−1
f h(x))

∂x
f(x) (2.67)

2Pronounced “Lee derivatives.”

93

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s rewrite our feedback linearizing input in terms of these Lie derivatives.
For the single input, single output system ẋ = f(x)+g(x)u, y = h(x), assuming
Lgh(x) ̸= 0, we define the feedback linearizing input:

u =
1

Lgh(x)
(−Lfh(x) + v) (2.68)

Where v ∈ R is an arbitrary scalar. Using this notation, it’s much easier to see
how all of the necessary terms will cancel out when we substitute our input into
the output dynamics.

ẏ = Lfh(x) + Lgh(x)u (2.69)

ẏ = Lfh(x) + Lgh(x)
1

Lgh(x)
(−Lfh(x) + v) (2.70)

ẏ = Lfh(x)− Lfh(x) + v (2.71)

ẏ = v (2.72)

Lie derivative notation will be very convenient for us moving forward, especially
as we begin to take higher order derivatives of the output.

High Relative Degree Systems

So far, we’ve avoided dealing with one major problem in our formulation of a
feedback linearizing controller:

u =
1

Lgh(x)
(−Lfh(x) + v) (2.73)

What happens if Lgh(x) = 0 for all values of x? Firstly, our formula for the
input will be undefined! More importantly, based on our expression for the time
derivative of y:

ẏ = Lfh(x) + Lgh(x)u (2.74)

If Lgh(x) = 0 for all values of x, the input term will completely drop out, and
we’ll be left with the output dynamics:

ẏ = Lfh(x) (2.75)

Which has no dependence on the input! Since this expression has no input, we
have no hope of controlling the value of y through this differential equation.
What can we do to reintroduce u into the output dynamics?
Let’s try experimenting with the following numerical example. Suppose we have
the single input, single output control affine system:[

ẋ1
ẋ2

]
=

[
x2

x1 + x2

]
+

[
0
1

]
u (2.76)

y =
[
1 0

] [x1
x2

]
= x1 (2.77)

94

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s take the first time derivative of y and see if we can find an expression that
involves the input! If we can, we’ll be able to find a feedback linearizing control
input. Note that in this case, since the dynamics and output expressions are
simple, it’ll be easier just to take the derivative of y directly instead of using
Lie derivative notation.

ẏ = Lfh(x) + Lgh(x)u (2.78)

ẏ = ẋ1 = x2 (2.79)

Since we end up with just x2 and no input, this means that Lgh(x) is zero for
all values of x! Let’s examine the system dynamics, and see where u appears.
Looking at the dynamics, we notice that the expression for ẋ2 involves the input!
Since ẏ = x2, let’s try taking another derivative of y!

ÿ = ẋ2 = x1 + x2 + u (2.80)

Now, the input term is nonzero for all values of x! We can now define a feedback
linearizing control law:

u = −(x1 + x2) + v (2.81)

Such that when we plug u into the formula we calculated for ÿ, we get:

ÿ = x1 + x2 + u (2.82)

ÿ = x1 + x2 − (x1 + x2) + v (2.83)

ÿ = v (2.84)

This gives us a linear input-output relationship between v and y! What’s more,
using the definition of linear controllability, we can prove that this system is
controllable, and can therefore use v to drive y to an arbitrary value.
Let’s summarize what we learned from this example. We found that even though
the input, u, might not appear when we take the first derivative of y, it might
appear when we take a higher derivative! Once it appears in a higher derivative
term, we can define a feedback linearizing control law that allows us to gain
complete control over y.
In general, for arbitrary single input, single output differential equations in
control affine form, if x ∈ Rn, we might have to take up to n derivatives of y:

y(n) =
dny

dtn
(2.85)

To get the input term to appear. Keeping this fact in mind, let’s generalize our
discussion to arbitrary SISO control affine systems. Consider the system:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R (2.86)

y = h(x), y ∈ R (2.87)

95

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s try to find an expression for the derivative of y when the input, u, appears!
We know that the first time derivative of y is be computed:

ẏ =
∂h

∂x
f(x) +

∂h

∂x
g(x)u = Lfh(x) + Lgh(x)u (2.88)

Suppose that Lgh(x) = 0 for all x. This leaves us with:

ẏ = Lfh(x) (2.89)

Following our example from earlier, let’s try taking the next derivative of y, ÿ,
and see if we can get the input to appear! Applying the chain rule, we begin by
expressing the second derivative using partial derivatives:

ÿ =
∂

∂x
(Lfh(x))ẋ (2.90)

ÿ =
∂

∂x
(Lfh(x))(f(x) + g(x)u) (2.91)

ÿ =
∂

∂x
(Lfh(x))f(x) +

∂

∂x
(Lfh(x))g(x)u) (2.92)

What do we notice about the two terms in this expression? Recall that we
defined Lfh(x), Lgh(x) as:

Lfh(x) =
∂h

∂x
f(x), Lgh(x) =

∂h

∂x
g(x) (2.93)

Looking at the expression for ÿ, we notice a further Lie derivative in each term!
Thus, recalling our notation for taking higher order Lie derivatives, we rewrite
ÿ as:

ÿ = Lf [Lfh(x)] + Lg[Lfh(x)]u (2.94)

ÿ = L2
fh(x) + LgLfh(x)u (2.95)

What happens if LgLfh(x) is also zero for all x? We can continue taking higher
and higher derivatives of y until finally, the input shows up!
Suppose that the input term is zero for all derivatives of y up to the rth deriva-
tive, where r ≤ n. Since the input term is zero at the r− 1 derivative, y(r−1) is
computed:

y(r−1) = Lr−1
f h(x) (2.96)

Since there is no input term, we take the derivative of y once again:

y(r) =
∂

∂x
(Lr−1

f h(x))ẋ (2.97)

y(r) =
∂

∂x
(Lr−1

f h(x))(f(x) + g(x)u) (2.98)

y(r) =
∂

∂x
(Lr−1

f h(x))f(x) +
∂

∂x
(Lr−1

f h(x))g(x)u (2.99)

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u (2.100)

96

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Imagine that finally, after taking the rth derivative of y, the input term:

LgL
r−1
f h(x) ̸= 0 (2.101)

Is nonzero. For the rth derivative, we are therefore able to calculate a feedback
linearizing control law. We pick an input:

u =
1

LgL
r−1
f h(x)

(−Lr
fh(x) + v) (2.102)

Where v ∈ R is an arbitrary scalar that we can control. When substituting this
control law into the expression for y(r), we get:

y(r) = Lr
fh(x) + LgL

r−1
f h(x)

1

LgL
r−1
f h(x)

(−Lr
fh(x) + v) (2.103)

y(r) = Lr
fh(x)− Lr

fh(x) + v (2.104)

y(r) = v (2.105)

Thus, after having taken r derivatives of the output, we have successfully found
a feedback linearizing control law that gives us a linear relationship between the
output, y, and an input, v.
The smallest number of derivatives, r, that we need to take of the output before
the input appears is called the relative degree of the system. We can define
relative degree more formally using Lie derivative notation.

Definition 25 Relative Degree
The SISO system ẋ = f(x) + g(x)u, y = h(x), x ∈ Rn has a relative degree r if:

LgL
p−1
f h(x) = 0, p < r (2.106)

LgL
r−1
f h(x) ̸= 0 (2.107)

This makes r the smallest number of time derivatives of the output y that must
be taken for the input to appear. Note that if x ∈ Rn and g(x) ̸= 0, then r ≤ n.

Let’s summarize what we learned in this section with a general procedure for
dealing with high relative degree systems. In this procedure, we’ll refer to a
SISO control affine system ẋ = f(x) + g(x)u, x ∈ Rn, and will assume that
g(x) ̸= 0.
To find a feedback linearizing control law u, we can:

1. Take the first time derivative of the output, y:

ẏ = Lfh(x) + Lgh(x)u (2.108)

If Lgh(x) ̸= 0, skip to step 3. If Lgh(x) = 0, continue to step 2.

97

ME/EECS/BioE C106B Robotic Manipulation & Interaction

2. Continue taking derivatives of the output, y, until you reach the relative
degree of the system, r, where the input appears in the expression for the
derivative.

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u (2.109)

At the rth derivative, LgL
r−1
f h(x) ̸= 0.

3. Define a feedback linearizing control law:

u =
1

LgL
r−1
f h(x)

(−Lr
fh(x) + v) (2.110)

Where v ∈ R is an arbitrary scalar we may use to control the output.

4. Apply the methods of linear control design to control the resulting system:

y(r) = v (2.111)

Tracking Control

Let’s discuss some control design techniques for a SISO input-output linearized
system:

y(r) = v (2.112)

How can we choose v ∈ R such that y follows a desired trajectory, yd(t)? Let’s
see if we can devise an input by driving the error between y and yd to zero! We
define an error vector, ε:

ε =

e
ė
...

e(r−1)

 =

y − yd
ẏ − ẏd

...

y(r−1) − y
(r−1)
d

 (2.113)

Using this error vector, let’s experiment with the following choice of v:

v = −Kε+ y
(r)
d (2.114)

Where K = [k1, k2, ..., kr] is a gain matrix and y
(r)
d is the rth derivative of the

desired trajectory. Let’s plug this choice of v into the feedback linearized system
and see what we get!

y(r) = −Kε+ y
(r)
d (2.115)

y(r) − y
(r)
d = −Kε (2.116)

e(r) = −Kε (2.117)

98

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We now have an rth order differential equation in tracking error, e, and its
derivatives. Can we choose ki to drive the tracking error to zero? Let’s try and
reduce this problem to a state feedback problem to find out!
First, we’ll rewrite this high order differential equation as a system of r first
order differential equations. Using our definition of e from above:

ė
ë
...
e
...
ė(r)

 =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−k1 −k2 −k3 . . . −kr

e
ė
ë
...

e(r−1)

 (2.118)

We know that if we can choose ki such that the eigenvalues of the matrix in
the equation above have all of their real components less than zero, we can
asymptotically drive the error of the system to zero!
Computing the characteristic polynomial of the system, we have:

λr + krλ
r−1 + ...+ k2λ+ k1 = 0 (2.119)

Thus, we can arbitrarily change the coefficients of the characteristic polynomial
using ki, and can move the coefficients such that the eigenvalues of the matrix
all have negative real components. This means that using this choice of v, we
can make the tracking error of the system decay asymptotically to zero!
Take a moment to notice the similarities between our approach in this section
and our approach when designing state feedback controllers to stabilize systems.
Here, instead of finding an input u to stabilize a state vector to zero, we find an
input v to stabilize an error vector to zero.
It’s extremely important to note that the process of feedback linearization isn’t
perfect! Not all systems will be feedback linearizable in this manner, and certain
systems, known as non-minimum phase systems, can sometimes give these input-
output linearized systems some undesirable qualities.

2.3.2 MIMO Feedback Linearization

So far, we’ve constrained our discussion of feedback linearization to single input,
single output systems. Let’s generalize the concepts we’ve developed thus far
to multi input, multi output (MIMO) systems. In this case, both the input,
u, and the output, y, will be vectors instead of simple scalar numbers!
Within the set of MIMO systems, we’ll focus on the class of square control
affine systems, which are control affine systems with the same number of inputs
as outputs. These systems will be of the form:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm (2.120)

y = h(x), y ∈ Rm (2.121)

Thankfully, the procedure for finding feedback linearizing controllers for multi
input, multi output systems is quite similar to the SISO case!

99

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We can reason about this similarity by thinking about the output vector, y ∈
Rm, as a collection of scalar outputs, yi(t).

y =

y1
y2
...
ym

 =

h1(x)
h2(x)

...
hm(x)

 ∈ Rm (2.122)

In each entry, we have a relationship of the form yi = hi(x), which is of a similar
form to the single output case we discussed in the previous section.
Let’s break up this problem one element at time, and focus on an arbitrary
entry of the output vector, yj . As with the SISO case, we’ll start by taking the
derivatives of yj along the trajectories of the system.
Taking the first time derivative of yj and expanding:

ẏj =
∂hj(x)

∂x
ẋ =

∂hj(x)

∂x
f(x) +

∂hj
∂x

g(x)u (2.123)

Let’s think about the different components of this derivative! The first compo-
nent:

∂hj
∂x

f(x) = Lfhj(x) ∈ R (2.124)

Is the familiar Lie derivative from the single input, single output case! Thus, we
may use our established Lie derivative notation in its calculation. What about
the second component?

∂hj
∂x

g(x) (2.125)

In the multi input, multi output case, the second component works a little
differently to the SISO case. Now, instead of being a vector, g(x) ∈ Rn×m is a
matrix-valued valued function!

g(x) =

 | | |
g1(x) g2(x) . . . gm(x)
| | |

 ∈ Rn×m (2.126)

Let’s see what effect this matrix has on the computation of the second term.
Multiplying each column of g(x) by the gradient, we see that we can express

the product of
∂hj

∂x and g(x) using Lie derivatives.

∂hj
∂x

g(x) =
∂hj
∂x

 | | |
g1(x) g2(x) . . . gm(x)
| | |

 (2.127)

∂hj
∂x

g(x) =
[
∂hj

∂x g1(x)
∂hj

∂x g2(x) . . .
∂hj

∂x gm(x)
]

(2.128)

∂hj
∂x

g(x) =
[
Lg1hj(x) Lg2hj(x) ... Lgmhj(x)

]
(2.129)

100

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Combining the expressions for the first and second components of the derivative,
we find that ẏj may be expressed in Lie derivative notation as:

ẏj =
∂hj(x)

∂x
ẋ =

∂hj(x)

∂x
f(x) +

∂hj
∂x

g(x)u (2.130)

ẏj = Lfhj(x) +
[
Lg1hj(x) Lg2hj(x) ... Lgmhj(x)

] u1...
um

 (2.131)

ẏj = Lfhj(x) + Lg1hj(x)u1 + Lg2hj(x)u2 + ...+ Lgmhj(x)um (2.132)

We can write this final expression more compactly using summation notation:

ẏj = Lfhj(x) +
m∑
i=1

Lgihj(x)ui (2.133)

From this expression, we observe that the time derivative of each individual
output has a similar form to the single input, single output case! Instead of
having just one input term, however, we have to sum up m terms to account
for the effect each of the m inputs has on ẏj .
Just like with SISO systems, MIMO systems have the possibility that an input
might not show up in the expression for the first derivative of the output! That’s
to say, for each ẏj , the term:

m∑
i=1

Lgihj(x)ui (2.134)

Might be zero when we take the first derivative of yj ! As with before, we can
continue taking higher and higher derivatives of each ẏj until at least one input,
ui, appears. Let’s name the smallest derivative of yj for which at least one input
appears rj .
In similar fashion to the SISO case, we may show that the rj derivative of yj is
computed:

y
(rj)
j = L

rj
f hj(x) +

m∑
i=1

LgiL
rj−1
f hj(x)ui (2.135)

Where at least one of the terms in the sum
∑m

i=1 LgiL
rj−1
f hj(x)ui is nonzero.

Now that we’ve examined the behavior of an individual yj , let’s bring together
all of the entries of the output vector to form a system of differential equations
that describe the evolution of y.
As we do this, always keep in mind - what we’re doing here is almost exactly
the same as the SISO case! We’re simply performing the same calculations for
each element of the output vector.
Using our notation from above that rj is the first derivative of yj for which at

101

ME/EECS/BioE C106B Robotic Manipulation & Interaction

least one input appears in y
(rj)
j , we may place each derivative y

(rj)
j in a vector

as follows:
y
(r1)
1

y
(r2)
2
...

y
(rm)
m

 =

Lr1
f h1(x) +

∑m
i=1 LgiL

r1−1
f h1(x)ui

Lr2
f h2(x) +

∑m
i=1 LgiL

r2−1
f h2(x)ui

...

Lrm
f hm(x) +

∑m
i=1 LgiL

rm−1
f hm(x)ui

 (2.136)

Recall that since we are using the rj derivative of each yj , there is at least one
input in each row of the expression above!
Let’s try factoring out the input vector to better examine the different compo-
nents of this relation. We can begin by splitting the expression into two vectors,
one which contains input terms and the other which does not.

y
(r1)
1

y
(r2)
2
...

y
(rm)
m

 =

Lr1
f h1(x)

Lr2
f h2(x)

...
Lrm
f hm(x)

+

∑m

i=1 LgiL
r1−1
f h1(x)ui∑m

i=1 LgiL
r2−1
f h2(x)ui
...∑m

i=1 LgiL
rm−1
f hm(x)ui

 (2.137)

Notice how in each row of the vector containing inputs, the inputs are multiplied
by the Lie derivatives of the system in a similar manner! Let’s take advantage
of this structure to break up the input vector into a matrix-vector product!

y
(r1)
1
...

y
(rm)
m

 =

 Lr1
f h1
...

Lrm
f hm

+

 Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

...
. . .

...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm

u1...
um

 (2.138)

The matrix being multiplied by the input vector, which has the shape m ×m,
is commonly referred to as the decoupling matrix, as it separates the effect
of the input from the other output dynamics.
For convenience, let’s name the decoupling matrix A(x):

A(x) =

 Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

...
. . .

...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm

 ∈ Rm×m (2.139)

Using this matrix, we may extend the concept of relative degree from SISO
systems to MIMO systems! Recall that for a SISO system, the relative degree
of a system is the smallest derivative r such that:

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u (2.140)

Has nonzero LgL
r−1
f h(x) for some values of x. The fact that this term was

nonzero allowed us to take its multiplicative inverse when defining a SISO feed-
back linearizing control law.

102

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Inspired by the idea of being able to invert the input term in the output dy-
namics, we define vector relative degree, a concept that generalizes relative
degree to MIMO systems.

Definition 26 Vector Relative Degree
The vector relative degree at x0 ∈ Rn of a square, control affine MIMO system:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm (2.141)

y = h(x), y ∈ Rm (2.142)

Is the collection of the smallest values (r1, r2, ..., rm) such that when x = x0:

LgiL
ri−1
f hi(x) ̸= 0, 1 ≤ i ≤ m (2.143)

And the decoupling matrix:

A(x) =

 Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

...
. . .

...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm

 (2.144)

Is invertible at x = x0.

Note that the invertibility of the decoupling matrix can depend on the state of
the system! This is why we specify that the vector relative degree of a system
is defined “at a point.”
Now that we’re equipped with an understanding of vector relative degree for
MIMO systems, we may tackle the task of designing a MIMO feedback lineariz-
ing controller. Note that for the remainder of this section, we’ll assume that the
vector relative degree of the system is well-defined, and that we can actually
find r1 through rm that make A(x) invertible.
If the system has a vector relative degree of (r1, ..., rm), we know that we can
express the derivatives of each element of the output as:

y
(r1)
1
...

y
(rm)
m

 =

 Lr1
f h1
...

Lrm
f hm

+

 Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

...
. . .

...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm

u1...
um

 (2.145)

Where the decoupling matrix A(x) is invertible. For convenience, let’s name
the first term b. This allows us to express the above as:

y
(r1)
1
...

y
(rm)
m

 = b+A(x)u (2.146)

103

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s find a feedback linearizing input u that gives a linear relationship between
an arbitrary input vector v and the derivatives of the output. Assuming that
A(x) is invertible in our region of interest, we pick the input:

u = A−1(x)(−b+ v) (2.147)

Where v ∈ Rm is an arbitrary vector we can completely control. Plugging this
input into the system:

y
(r1)
1
...

y
(rm)
m

 = b+A(x)A−1(x)(−b+ v) (2.148)

y
(r1)
1
...

y
(rm)
m

 = v (2.149)

Thus, we have successfully arrived at a linear relationship between an input
vector, v, and the derivatives of the output vector! This choice of u has therefore
input-output linearized the MIMO system!
Notice the similarity of the MIMO input to the SISO input! Just as with the
SISO case, we take the product of the inverse of the input dynamics with the
sum of the opposite of the Lf terms and an arbitrary vector v.

A−1(x)(−b+ v)b ⇐⇒ 1

LgL
r−1
f h(x)

(−Lr
fh(x) + v) (2.150)

MIMO ⇐⇒ SISO (2.151)

Let’s summarize our procedure for MIMO feedback linearization with a step by
step procedure.

1. Take the time derivative of each term in the output vector, yj , until at
least one input variable appears. Name the derivative at which the input
appears rj . Using Lie derivative notation, this derivative is computed:

y(rj) = L
rj
f hj(x) +

m∑
i=1

LgiL
rj−1
f hj(x)ui (2.152)

Once the Lie derivatives have all been computed in this manner, proceed
to step 2.

2. Verify that the matrix:

A(x) =

 Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

...
. . .

...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm

 (2.153)

104

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Is invertible. If the sum of the derivatives r1 + r2 + ... + rm exceeds n,
the size of the state vector, and A(x) is still not invertible, see the next
section on dynamic extension. Otherwise, continue to step 3.

3. Assuming A(x) is invertible in our region of interest, choose a feedback
linearizing control input:

u = A−1(x)(−b+ v) (2.154)

Where b is the vector filled with Lri
f hi terms and v ∈ Rm is an arbitrary

vector we may use for control.

4. Apply the methods of linear control design to choose v for the resulting
linear system:

y
(r1)
1
...

y
(rm)
m

 = v (2.155)

2.3.3 Dynamic Extension

So far, we’ve avoided explicitly dealing with the case when A(x) is not an
invertible matrix and cannot be made invertible by taking higher derivatives of
the output.
This situation can happen if we find the matrix of Lie derivatives A(x) to have
an entire column of zeros, for example:

A(x) =

 Lg1L
r1−1
f h1 . . . Lgm−1L

r1−1
f h1 0

...
. . .

...
...

Lg1L
rm−1
f hm . . . Lgm−1

Lrm−1
f hm 0

 (2.156)

What does this tell us about the system? This means that even as we take higher
derivatives, there is no way for the the input to show up in the dynamics! How
can we resolve this?
If the input doesn’t show up when taking derivatives of the output dynamics,
it’s possible that one set of inputs in the system show up at a much earlier
derivative of the output than other inputs!
For instance, consider the following scenario, where we have a two input, two
output system. Imagine that when we take the first derivative of y, we get the
relationship: [

y1
y2

]
=

[
a
b

]
+

[
1 0
1 0

] [
u1
u2

]
(2.157)

From the process we outlined in the previous section, we have the appearance
of at least one input in each derivative of y, so in theory, we should be done
with differentiating the output. However, A(x) has a column of zeros, and is

105

ME/EECS/BioE C106B Robotic Manipulation & Interaction

therefore not invertible!
It’s possible that although the second input, u2, doesn’t have any relationship
with the first derivative of y, it might have a relationship with a second or higher
derivative! We’re now faced with the following challenge: u1 appears in the first
derivative of y, but u2 might appear in a higher derivative!
If u1 appears in a lower derivative but u2 in a higher derivative, we could end
up with a relationship such as the following, where u2 and a derivative of u1
appear in the second derivative of the outputs:

ÿ1 = u̇1 + 3u2 (2.158)

ÿ2 = u̇1 + 5u2 (2.159)

We need to somehow devise a method to slow down the appearance of u1 so
it appears at the same level of derivative as u2! If we can slow down the
appearance of u1 in this manner, we’ll get both inputs appearing at the same
level of derivative, and will therefore be able to invert A(x).
How can we perform this slowing down operation? We see that in the example
above, we had an appearance of u̇1 in the expression for the higher derivative.
Thus, if we define a new input to the system:

v1 = u̇1 (2.160)

And control v1 instead of u1, we will get the following output dynamics:

ÿ1 = v1 + 3u2 (2.161)

ÿ2 = v1 + 5u2 (2.162)[
ÿ1
ÿ2

]
=

[
1 3
1 5

] [
v1
u2

]
(2.163)

By controlling the derivative of u1, u̇1 = v1. instead of directly controlling u1,
we can therefore find an invertible linear relationship between an input vector:[

v1
u2

]
(2.164)

And the derivatives of the output vector. We can then use this relationship to
design a feedback linearizing controller! This method of controlling a derivative
of the input instead of the input itself is called dynamic extension. We can
use dynamic extension to synchronize the appearance of inputs, and ensure we
have an invertible relationship.
Let’s formalize all of the steps involved in the process of dynamic extension with
a practical example: a planar quadrotor. Using the methods of Lagrangian or
Newtonian mechanics, we can show that the dynamics of a planar quadrotor

106

ME/EECS/BioE C106B Robotic Manipulation & Interaction

may be expressed in state space form as:
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =

x2
0
x4
−g
x6
0

+

0 0

− 1
m sinx5 0

0 0
1
m cosx5 0

0 0
0 1

Ixx

[
u1
u2

]
(2.165)

Where x1, x3 are the x, z coordinates of the quadrotor, x5 is the orientation
angle of the quadrotor, and x2, x4, x6 are the rates of each of these quantities.
Let’s define the outputs of the system to be the x and z coordinates of the
quadrotor:

y =

[
y1
y2

]
=

[
x1
x3

]
(2.166)

Let’s follow our established process of MIMO feedback linearization, and begin
taking the derivatives of the outputs until at least one input appears in each
derivative. Note that in this example, it’ll be easier to take the derivatives of
the output directly instead of using Lie derivative notation.
Taking the first derivatives of y1 and y2:

ẏ1 = ẋ1 = x2 (2.167)

ẏ2 = ẋ3 = x4 (2.168)

No input terms have showed up yet! Let’s take another derivative and see what
happens. Using the dynamics of the quadrotor, we find:

ÿ1 = ẋ2 = −u1
m

sinx5 (2.169)

ÿ2 = ẋ4 =
u1
m

cosx5 (2.170)

Now, we have at least one input term in each output derivative! Following our
established MIMO procedure, we factor out the input in matrix form as:[

ÿ1
ÿ2

]
=

[
− 1

m sinx5 0
1
m cosx5 0

] [
u1
u2

]
(2.171)

As we can see, in our expression ÿ = A(x)u, A(x) has an entire column of zeros!
We observe that the input u1 has shown up in a derivative before u2 has had
the chance to appear! Using the process we discussed above, we now want to
slow down the appearance of u1 so we can have all of the inputs appearing at
the same derivative of y. Let’s define a new input:

v1 = u̇1 (2.172)

Instead of trying to control u1 directly, we’ll try to control its derivative, v1.
However, since u1 is still the actual input to the system, we need some way to

107

ME/EECS/BioE C106B Robotic Manipulation & Interaction

keep track of its actual value as we change its derivative. Only this way will we
know what u1 we can actually send to the system!
To keep track of the value of u1, we define a new extended state vector by adding
u1 to the end of the original state vector:

x̃ =

x1
x2
x3
x4
x5
x6
u1

(2.173)

This will enable us to keep track of the value of u1 as we control its derivative.
By adding u1 to the state vector, we have extended the dynamics of our original
system! This is what gives the process of dynamic extension its name.
Let’s rewrite our original system dynamics in terms of our new, extended state
vector. We can describe ˙̃x by:

˙̃x =

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
u̇1

=

x2
−u1

m sinx5
x4

u1

m cosx5 − g
x6
0
0

+

0 0
0 0
0 0
0 0
0 0
0 1

Ixx

1 0

[
v1
u2

]
(2.174)

Notice that since u1 is part of our new state vector, x̃, this extended system
still follows the form:

˙̃x = f(x̃) + g(x̃)w (2.175)

Where w = [v1, u2]
T is our new, modified input vector to the system. We now

include u1 in f(x̃) rather than in g(x̃)w since we treat u1 like any other element
of the state vector x̃. Now that we’ve slowed the appearance of u1 and have
extended the dynamics of our system, let’s try using this modified system to
find a feedback linearizing control law!
As always, we start by taking the derivatives of the outputs, y1 = x1, y2 = x3.
Note that the outputs don’t change when we change the state vector.
What will change is that when taking the derivative of the outputs, we’ll look for
the appearance of at least one element from our new input vector, w = [v1, u2],
rather than an element from our old input vector, u = [u1, u2]. Using the
dynamics as reference:

ẏ1 = ẋ1 = x2 (2.176)

ẏ2 = ẋ3 = x4 (2.177)

108

ME/EECS/BioE C106B Robotic Manipulation & Interaction

As neither v1 nor u2 appear, we take another derivative:

ÿ1 = ẋ2 = −u1
m

sinx5 (2.178)

ÿ2 = ẋ4 =
u1
m

cosx5 − g (2.179)

In this step, it’s extremely import to remember - u1 is now part of our state
vector, not our input vector - we don’t consider it to be an input! Thus, we
must take another derivative. Using the product and chain rules:

y
(3)
1 = ẍ2 = − u̇1

m
sinx5 −

u1
m
ẋ5 cosx5 (2.180)

y
(3)
2 = ẍ4 =

u̇1
m

cosx5 −
u1
m
ẋ5 sinx5 (2.181)

Now, we can substitute u̇1 = v and ẋ5 = x6 and rewrite this in matrix form as:[
y
(3)
1

y
(3)
2

]
=

[
−u1

m x6 cosx5
−u1

m x6 sinx5

]
+

[
− 1

m sinx5 0
1
m cosx5 0

] [
v1
u2

]
(2.182)

Now, we see that we have the same problem as earlier! We still have a column
of zeros and thus haven’t yet slowed down the appearance of u1 enough! We
therefore repeat the process of dynamic extension, and aim to control the second
derivative of u1 instead of the first to slow its appearance down further. We
define a new input:

v2 = v̇1 = ü1 (2.183)

Now, in addition to keeping track of the value of u1, we must keep track of the
value of v1 = u̇1, as we will now be controlling the value of v̇1 = ü1. Appending
v1 = u̇1 to x̃, we redefine our extended state vector as:

x̃ =

x1
x2
x3
x4
x5
x6
u1
v1

(2.184)

We also redefine our augmented input vector, w = [w1, w2] = [v2, u2]. Using
these new state and input vectors, we once again rewrite our system in the form:

˙̃x = f(x̃) + g(x̃)w (2.185)

109

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Taking the derivative of the newly modified state vector and looking at our
original dynamics, we find:

˙̃x =

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
u̇1
v̇1

=

x2
−u1

m sinx5
x4

u1

m cosx5 − g
x6
0
v1
0

+

0 0
0 0
0 0
0 0
0 0
0 1

Ixx

0 0
1 0

[
v2
u2

]
(2.186)

Note that because v1 is now part of our extended state vector, x̃, this system is
in the correct form, ˙̃x = f(x̃)+ g(x̃)w. Once again, remember that our outputs,
y1 = x1, y2 = x3, are not affected by extending the state vector.
Let’s try performing our steps of feedback linearization one more time with this
further extended state vector. This time, we’ll find that we’ll get an invertible
matrix A(x)! Taking the derivatives of y1, y2 until one of the inputs in w appears:

ẏ1 = ẋ1 = x2 (2.187)

ẏ2 = ẋ3 = x4 (2.188)

ÿ1 = ẋ2 = −u1
m

sinx5 (2.189)

ÿ2 = ẋ4 =
u1
m

cosx5 (2.190)

y
(3)
1 = ẍ2 = −v1

m
sinx5 −

u1
m
x6 cosx5 (2.191)

y
(3)
2 = ẍ4 =

v1
m

cosx5 −
u1
m
x6 sinx5 (2.192)

Finally, when we take the fourth derivative of y1 and y2, we get:

y
(4)
1 =− v̇1

m
sinx5 −

v1
m
ẋ5 cosx5 −

u̇1
m
x6 cosx5 (2.193)

− u1
m
ẋ6 cosx5 +

u1
m
x6ẋ5 sinx5 (2.194)

y
(4)
1 =− v2

m
sinx5 −

v1
m
x6 cosx5 −

v1
m
x6 cosx5 (2.195)

− u1
m

u2
Ixx

cosx5 +
u1
m
x26 sinx5 (2.196)

y
(4)
2 =

v̇1
m

cosx5 +
v1
m
ẋ5 sinx5 −

u̇1
m
x6 sinx5 (2.197)

− u1
m
ẋ6 sinx5 −

u1
m
x6ẋ5 cosx5 (2.198)

y
(4)
2 =

v2
m

cosx5 +
v1
m
x6 sinx5 −

v1
m
x6 sinx5 (2.199)

− u1
m

u2
Ixx

sinx5 −
u1
m
x26 cosx5 (2.200)

110

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Rewriting this in matrix form and factoring out the two inputs, w1 = v2, w2 =
u2, we get:[

y
(4)
1

y
(4)
2

]
=

[
− v1

mx6 cosx5 −
v1
mx6 cosx5 +

u1

m x26 sinx5
v1
mx6 sinx5 −

v1
mx6 sinx5 −

u1

m x26 cosx5

]
(2.201)

+

[
− 1

m sinx5 − u1

mIxx
cosx5

v2
m cosx5 − u1

mIxx
sinx5

] [
v2
u2

]
(2.202)

Thus, as long as we don’t set u1 = 0, this matrix will be invertible for many
values of x. After two rounds of dynamic extension, we have therefore finally
found an A(x) that we can invert! The dynamics above may be rewritten:[

y
(4)
1

y
(4)
2

]
= b+A(x)w (2.203)

If we choose w to be the following:

w = A−1(−b+ v) (2.204)

Where v is an arbitrary vector in Rm, we can feedback linearize the relationship
between the input and the output as follows:[

y
(4)
1

y
(4)
2

]
= b+A(x)A−1(−b+ v) = v (2.205)

This completes the process of Dynamic extension!
In summary, if we can’t make the matrix A(x) invertible by taking derivatives
of the output, we may slow down the appearance of an input by controlling its
derivatives instead. This ensures all inputs appear at the same level of derivative
of the output equation. To keep track of the lower derivatives of ui as we control
its higher derivatives, we append the lower derivatives to the state vector.

111

Chapter 3

Nonholonomic Planning

Thus far, we’ve performed a review of some key concepts in the analysis and
control of robotic systems. In the previous section, in studying some impor-
tant classes of feedback controllers, we learned how to drive robotic systems to
different desired states and to track different desired trajectories in their envi-
ronment.
In this section, we’ll think about some important design choices those desired
trajectories should adhere to. We’ll accomplish this through a thorough dis-
cussion of kinematic constraints, the fundamental constraints that exist on the
motion of robotic systems. Let’s get started!

3.1 Kinematic Constraints

Let’s begin by reviewing what a trajectory actually is in the context of robotics.
In robotics, trajectories are vector functions of time, q(t) ∈ Rn, that contain
positions we’d like our system to track.
If we have an initial state q0 and a final state qd that we’d like our trajectory
to pass through, how can we determine what the function q(t) should be?
In theory, we could set our desired trajectory q(t) for our system to be anything
we want! q(t) could be a simple function that smoothly interpolates between
our starting position, q0, and our final position, qd. It could also be something
even simpler, such as a step function that jumps straight to a value of qd.
We know from practice, however, that simply choosing an arbitrary path be-
tween two points won’t produce optimal behavior in our robot! Remember that
even if we choose a path that’s simple or as short as possible, such as a straight
line interpolation between two points, we still need our system to be able to
track that path! A simple path doesn’t guarantee that our system will be able
to easily track the path. With this in mind, let’s think about some important
design considerations when coming up with a trajectory q(t) we’d like our robot
to follow.
Let’s start by thinking about some simple spatial constraints we should have

112

ME/EECS/BioE C106B Robotic Manipulation & Interaction

on our trajectory, and then work our way up to understanding constraints that
make trajectories easier to follow. We can reason about some constraints we
might want to enforce on our trajectories by thinking about the example of
an autonomous car. Firstly, for a car trajectory, it’s important to ensure our
desired trajectories remain within the boundaries of the road!

Above: The car must stay within the boundaries of the road as it travels.

We can achieve this by setting a hard bounding constraint on the states our
trajectory is able to pass through. If we come up with a trajectory from point
q0 to point qd that goes outside of the boundaries of the road, we know that this
trajectory won’t be one we’d like to consider. What other constraints might be
important to consider?
If our car is driving along a road, it’s important that our desired trajectory q(t)
follows the profile of the road. We don’t, for instance, want our car to have a
desired trajectory that jumps through the air! We know our vehicle must be
constrained to the surface of the road at all times.

Above: The trajectory must consider the geometry of the environment.

This way, we can ensure that our trajectory is one that is actually dynamically
feasible for our system to track - our trajectory is something that actually re-
spects the physical limits of the vehicle’s motion. This brings us neatly to a last
major constraint on our trajectories.
It’s critical that whatever trajectory we generate is one that our car can ac-
tually follow! Even if we determine the quickest possible trajectory between
two points, it’s possible that our car won’t be able to follow it! Consider, for
instance, the problem of parallel parking.

113

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: Although the trajectory in yellow is the most direct, it does not respect
the constraints on the vehicle.

Even though the shortest trajectory to move our car into the parked position is
a straight, sideways line, drawn above in yellow, from our own experience with
vehicles, we know there’s no way our car can slide straight into the parking
spot! Instead, we must plan an alternate trajectory that respects the possible
motions of the vehicle, such as the parallel parking trajectory drawn above in
green.
In this section, we’ll focus in on the last two constraints we discussed above -
that our trajectory must follow the profile of the road and respect the dynamic
constraints of the vehicle. In generalizing our discussion of these constraints
from cars to arbitrary systems, we’ll look at constraints of these types through
the lens of kinematics, the study of the structure of motion within systems.

3.1.1 Pfaffian Constraints

To develop some conventions for describing constraints, we’ll find it useful to
review an important method of describing the dynamics of systems: Lagrangian
dynamics.
When determining a system’s equations of motion using Lagrange’s equations,
recall that we first pick a set of generalized coordinates, which describe the
positions of different components of the system. For example, in the robot arm:

Above: We pick two generalized coordinates to describe the motion of the arm.

114

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We could pick the generalized coordinates θ1, θ2 to describe the positions of
different joints in the system. If we have a set of n generalized coordinates,
which we can package for convenience in the vector q = [q1, q2, ..., qn]

T , we may
apply the Euler-Lagrange equations:

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= Fext,i (3.1)

To each coordinate qi to find the second order differential equations describing
q̈i. Can we use generalized coordinates to describe the constraints that exist on
physical, robotic systems that may be described by Lagrangian dynamics?
To answer this question, we’ll consider a few examples. First, let’s think of a
simple cylinder, which rolls without slipping along the surface of a table:

Above: A ball rolls without slipping across a flat surface.

When examining the effect of constraints on the system, it’s often useful to
begin by removing all of the constraints from the system and considering the
generalized coordinates we would need to describe motion. In this case, we
could remove the table, which gives us the free-floating and spinning cylinder:

Above: An unconstrained cylinder spins and flies through the air.

To describe the motion of this cylinder without any constraints, we could use two
generalized coordinates (x, y) for the center of the cylinder, and one generalized
coordinate, θ, for the rotational angle of the cylinder.
Let’s now add the constraint of the table back in, and see if we can represent
the constraints the table imposes on the cylinder in terms of the generalized
coordinates we just found. Firstly, we know that the cylinder is constrained to
the surface of the flat table. This gives us the constraint:

y = r (3.2)

Since the y coordinate of the cylinder must be at the height given by the radius
of the cylinder at all times. What other constraints do we have on the motion

115

ME/EECS/BioE C106B Robotic Manipulation & Interaction

of the cylinder? If the cylinder rolls without slipping along the table, we know
that the velocity of the x coordinate of the center of mass, ẋ, is related to the
angular velocity of the cylinder, θ̇, by the following equation:

ẋ = rθ̇ (3.3)

As we can see from this example, we may express the constraints on the motion
of physical systems through expressions involving the generalized coordinates of
the unconstrained system and their derivatives!
Let’s do another, slightly more complex example, and see if this pattern holds
up. Let’s analyze the constraints on a rigid pendulum, which swings about a
fixed pivot point in space.

Above: We need three coordinates, x, y, θ, to describe the unconstrained rigid
bar, which translates and spins freely in space.

Once again, let’s begin our analysis of the system by taking away the constraints.
If we had an unconstrained rigid bar, we would need three different coordinates,
x, y, θ, to completely describe the position and orientation of the bar! We could
use x, y to describe the position of the center of mass, and θ to describe the
angle of the bar with respect to the vertical.
As with the rolling cylinder, let’s see if we can express the constraints imposed
by the pendulum in terms of the generalized coordinates for the unconstrained
system. Assuming an x axis that points vertically downwards, and a y axis
that points to the right for convenience, we may use trigonometry to gain the
following constraint equations:

x = l cos θ (3.4)

y = l sin θ (3.5)

Where l is the distance from the pivot point to the center of mass of the rigid
bar. As with the cylinder, we observe that we can express the constraints on the
motion of the constrained system entirely in terms of the generalized coordinates
of the unconstrained system.
Now that we’ve explored two simple, physical examples of possible constraints
on motion, let’s see if we can work the sets of constraints above into a similar
form. What common elements can we extract?

116

ME/EECS/BioE C106B Robotic Manipulation & Interaction

First, we notice that all of the constraints above are in terms of the generalized
coordinates of a system and their derivatives. However, some constraints have
no appearances of derivatives where others do!
To ensure we have a standardized way of representing a constraint that holds in
all cases, we’ll take the time derivative of the constraints that don’t have any
derivatives. This way, all of the constraint expressions will be in terms of the
generalized coordinates and their first derivatives. For instance, for the rolling
cylinder and the pendulum:

ẏ = 0 (3.6)

ẋ = rθ̇ (3.7)

ẋ = −lθ̇ sin θ (3.8)

ẏ = lθ̇ cos θ (3.9)

Now, although of the constraints above are in terms of the generalized coordi-
nates and their derivatives, the actual expressions for each constraint appear
somewhat different! To standardize our method of representing constraints,
we’ll bring everything to the left hand side of the constraint expressions, so that
we’re left with a zero on the right hand side. For the constraints above:

ẏ = 0 (3.10)

ẋ− rθ̇ = 0 (3.11)

ẋ+ lθ̇ sin θ = 0 (3.12)

ẏ − lθ̇ cos θ = 0 (3.13)

Although all of the constraints now look somewhat more similar in form, we can
still do a little bit better! We notice that the derivatives of the generalized coor-
dinates in the expressions above may be factored out as vectors! We may factor
out the vector q̇ from each constraint to equivalently express the constraints as:

[
0 1 0

] ẋẏ
θ̇

 = 0 (3.14)

[
1 0 −r

] ẋẏ
θ̇

 = 0 (3.15)

[
1 0 lsinθ

] ẋẏ
θ̇

 = 0 (3.16)

[
0 1 −l cos θ

] ẋẏ
θ̇

 = 0 (3.17)

Where the first two constraints correspond to the rolling cylinder and the sec-
ond two correspond to the pendulum.

117

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Now, we’ve rewritten every kinematic constraint on the cylinder and pendulum
systems as a product between a row vector that is a function of the general-
ized coordinates, and a column vector that contains the first derivatives of the
generalized coordinates. This observation leads us to the following standard
definition of a kinematic constraint.

Definition 27 Pfaffian Constraint
Suppose we have a system with a vector of n generalized coordinates q =
[q1, q2, ..., qn]

T . A Pfaffian constraint on the generalized coordinates is a con-
straint of the form:

ωi(q)q̇ = 0 (3.18)

Where ωi(q) ∈ Rn is a row vector that depends on the generalized coordinates
and q̇ ∈ Rn is a column vector of derivatives of the generalized coordinates.

As we can see from the definition of a Pfaffian constraint, our rewritten con-
straints for the cylinder and the ball were all Pfaffian constraints, as each had
a row vector that was a function of the generalized coordinates multiplied by a
vector containing the derivatives of the generalized coordinates. Pfaffian con-
straints are a large group that may be used to express the kinematic constraints
on many physical systems.
Let’s think a little bit deeper about the types of relationships Pfaffian constraints
impose on systems through analyzing a simple, three-dimensional example. Note
that going forward, we’ll frequently refer to the first time derivatives of gener-
alized coordinates as the velocities of the generalized coordinates.
Suppose we have a Pfaffian constraint ωi(q)q̇, where q ∈ R3. Then, the Pfaffian
constraint may be expressed:

ωi(q)q̇ =
[
ωi1(q) ωi2(q) ωi3(q)

] q̇1q̇2
q̇3

 = 0 (3.19)

ωi1(q)q̇1 + ωi2(q)q̇2 + ωi3(q)q̇3 = 0 (3.20)

We observe that the jth entry of the ωi(q) row vector, ωij(q), tells us how the
jth generalized coordinate will be affected by the constraint. For instance, if
ωi2(q) = 0, then we know that the velocity of the second generalized coordinate,
q̇2, will not be impacted by the constraint. Overall, from the relationship:

ωi1(q)q̇1 + ωi2(q)q̇2 + ωi3(q)q̇3 = 0 (3.21)

We observe that a Pfaffian constraint explicitly imposes a constraint on the
velocities q̇ of the generalized coordinates at each position q.
At this point in our development of constraints, we have to ask an extremely

118

ME/EECS/BioE C106B Robotic Manipulation & Interaction

important question. In addition to explicitly constraining the velocities of a
system’s generalized coordinates, does a Pfaffian constraint explicitly constrain
the positions of a system’s generalized coordinates? Let’s reason about the
answer to this question through some examples.
Let’s start by turning our attention back to the rigid pendulum. We know that
the Pfaffian constraints on the velocities of the generalized coordinates of the
pendulum:

[
1 0 lsinθ

] ẋẏ
θ̇

 = 0 (3.22)

[
0 1 −l cos θ

] ẋẏ
θ̇

 = 0 (3.23)

Are equivalent to the following explicit constraints on the positions of the gen-
eralized coordinates of the pendulum:

x− l cos θ = 0 (3.24)

y − l sin θ = 0 (3.25)

In this case, then, it appears that the Pfaffian constraints do explicitly constrain
the positions of the generalized coordinates, as they are equivalent to a direct
relationship between x, y, θ.
What about in another case, such as the parallel-parking car? In this case, we
may prove that we can still represent the constraints on the car’s motion in
Pfaffian form, ωi(q)q̇ = 0, where q is a vector of generalized coordinates needed
to describe the car’s motion.
From our experience with cars, however, we know that despite the constraints
on its motion, we can still move a car to any position we like on the road! Thus,
in the case of a car, the Pfaffian constraint does not seem to explicitly constrain
the positions of the generalized coordinates. Rather, the Pfaffian constraint just
constrains the velocities of the generalized coordinates.
How can we formally distinguish between these two different types of Pfaffian
constraints - one which constrains positions and one which doesn’t? The answer
to this question lies in something called integrability.

3.1.2 Holonomic & Nonholonomic Constraints

In this section, we’ll work on classifying both single Pfaffian constraints and
systems of Pfaffian constraints. Let’s begin with the simpler case of a single
Pfaffian constraint.

A Single Pfaffian Constraint

Let’s formally classify the two types of constraints we discussed in our physical
examples above. If a Pfaffian constraint ωi(q)q̇ = 0 on the velocities of a system’s

119

ME/EECS/BioE C106B Robotic Manipulation & Interaction

generalized coordinates is equivalent to a constraint directly on the positions of
the generalized coordinates, the Pfaffian constraint is said to be integrable.
We can reason about this choice of word through the following mnemonic - if
we integrate velocity in time, we get position back out! Likewise, if a Pfaffian
constraint on the velocities of generalized coordinates is integrable, it’s equivalent
to a constraint directly on the positions of generalized coordinates.
Let’s discuss the concept of integrability in further mathematical detail, and
state the definition more precisely.

Definition 28 Integrable Constraint
A Pfaffian constraint ωi(q)q̇ = 0, where q ∈ Rn is a vector of generalized coor-
dinates, is said to be integrable if there exists a function h(q) such that:

ωi(q)q̇ = 0 → h(q) = 0 (3.26)

h(q) = 0 → ωi(q)q̇ = 0 (3.27)

In other words, a Pfaffian constraint is said to be integrable if all q(t) satisfying
the Pfaffian constraint satisfy the algebraic constraint h(q) = 0, and all q(t)
satisfying the algebraic constraint h(q) = 0 also satisfy the Pfaffian constraint
ωi(q)q̇ = 0. This means that the set of all trajectories q(t) satisfying the two
constraints are the same, which makes the constraints equivalent.
Let’s reason about integrability in terms of our physical examples from above.
We know that the Pfaffian constraints on the velocities of the generalized coor-
dinates:

[
1 0 lsinθ

] ẋẏ
θ̇

 = 0 (3.28)

[
0 1 −l cos θ

] ẋẏ
θ̇

 = 0 (3.29)

Are equivalent to the two constraints x−l cos θ = 0, y−l sin θ = 0 on the positions
of generalized coordinates. In other words, these two Pfaffian constraints are
integrable, as they’re both equivalent to expressions of the form h(q) = 0.
Mathematically, how can we tell if a constraint is integrable or not? Suppose
we have a Pfaffian constraint ω(q)q̇ = 0, which we’d like to show is equivalent
to an algebraic constraint h(q) = 0.
What properties do h(q), ω(q) need to give equivalent constraints? Since the
Pfaffian constraint is in terms of q̇, let’s begin by taking the time derivative of
h(q), to turn it into an expression involving velocities. Differentiating using the
chain rule:

ḣ(q) =
∂h

∂q
q̇ = 0 (3.30)

120

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Where ∂h
∂q is a row vector containing the partial derivatives of h with respect to

the generalized coordinates qi. Comparing this to the expression for a Pfaffian
constraint:

ω(q)q̇ = 0 (3.31)

We see that once again, we have a row vector multiplied by the velocities of
the generalized coordinates. Thus, we conclude that since both expressions
involve a row vector multiplied by q̇, and are equal to zero, they simply must
be equivalent up to a scale factor!
In other words, for ω(q)q̇ = 0 to be equivalent to h(q) = 0, there must exist a
scalar function α(q) such that:

α(q)ω(q)q̇ =
∂h

∂q
q̇ = 0 (3.32)

Since all that we’re doing is multiplying a zero by a scale factor function. If
we can find an α(q) and an h(q) to satisfy this property, we know that the
Pfaffian constraint will be equivalent to a constraint h(q) = 0 and will therefore
be integrable. In this case, the scalar function α(q) that achieves this property
is called an integrating factor.
Note that although finding an integrating factor and a function h(q) is suffi-
cient to prove integrability of a single Pfaffian constraint, the process of finding
an integrating factor is not always an easy one! Additionally, when we look
at systems of Pfaffian constraints, finding an integrating factor will no longer
generally be sufficient to prove the integrability of a system of constraints.

Systems of Pfaffian Constraints

Now that we’ve considered the case of a single Pfaffian constraint in reasonable
mathematical detail, let’s think about what happens when we have a system of
Pfaffian constraints! In this case, we’ll no longer look at one Pfaffian constraint
of the form ωi(q)q̇ = 0, but will rather explore the properties of a set of k
independent Pfaffian constraints:

{ω1(q)q̇ = 0, ..., ωk(q)q̇ = 0} (3.33)

Note that here, the word independent simply means that none of the constraints
are redundant with one another, and each imposes a new condition on the mo-
tion of the system.
Let’s develop some terminology for discussing the behavior of systems of con-
straints. First, let’s consider the case where all k constraints are integrable.

Definition 29 Holonomic Constraint
A set of k Pfaffian constraints {ω1(q)q̇ = 0, ..., ωk(q)q̇ = 0} is said to be holo-
nomic if every constraint ωi(q)q̇ = 0 is integrable.

121

ME/EECS/BioE C106B Robotic Manipulation & Interaction

In other words, for a system of Pfaffian constraints to be holonomic, each
ωi(q)q̇ = 0 must be equivalent to an algebraic constraint, hi(q) = 0, on the
generalized coordinates of the system.
Now that we’ve defined the case where all k constraints are integrable, let’s
consider the case where the constraints are not integrable.

Definition 30 Nonholonomic Constraint
A set of k Pfaffian constraints {ω1(q)q̇ = 0, ..., ωk(q)q̇ = 0} is said to be com-
pletely nonholonomic if none of the constraints ωi(q)q̇ = 0 are integrable.
If some of the k Pfaffian constraints are integrable and some are not, the set of
constraints is said to be partially nonholonomic.

For convenience, we’ll generally refer to both completely and partially nonholo-
nomic systems simply as being nonholonomic.
Can we mathematically prove a system of constraints is holonomic or nonholo-
nomic in the same way we can prove a single constraint is integrable?
Unfortunately, it turns out that mathematically proving a system of Pfaffian
constraints is holonomic or nonholonomic is an extremely challenging task -
much more so than the case of a single Pfaffian constraint. To formally prove
that a system of constraints is holonomic or not, we must appeal to a field of
mathematics known as differential geometry.
If you’re interested in learning more about the formal verification of holonomic
and nonholonomic constraints, you’re encouraged to read chapter 7 of a Math-
ematical Introduction to Robotic Manipulation by Murray, Li, and Sastry or
chapter 4 of Analytical Dynamics of Discrete Systems by Rosenberg for more
information.
Although the formal verification of general holonomic versus nonholonomic sys-
tems is quite a nontrivial task, it turns out that in many cases, we can use our
physical intuition to determine if constraints are holonomic or not.
To reason about the holonomy of constraints in an intuitive physical manner,
we use the following procedure. Note that this procedure is something that we
can verify formally for correctness!

Proposition 5 Determining Holonomy of Physical Constraints
Consider an unconstrained physical system described by n generalized coordi-
nates, q1, q2, ..., qn. Suppose we apply k independent Pfaffian constraints to the
system. To determine if the constraints are holonomic or nonholonomic, we
may follow the procedure outlined below:

1. Begin with the unconstrained physical system, where we need all n gener-
alized coordinated q1, q2, ..., qn to describe the motion of the system.

122

ME/EECS/BioE C106B Robotic Manipulation & Interaction

2. Add the first Pfaffian constraint ωi(q)q̇ = 0 to the system and reason about
the motion of the resulting constrained system.

3. If the constraint restricts the positions the generalized coordinates can
move to and reduces the number of generalized coordinates we need by one,
the constraint is integrable. Otherwise, the constraint is non-integrable.

4. Repeat steps 2 and 3 for the remaining Pfaffian constraints on the system
to determine if the set of constraints is holonomic or nonholonomic.

This procedure brings up an important point about describing the dynamics of
constrained systems. Since a single integrable constraint reduces the number of
generalized coordinates required to describe the system’s motion by one, we may
use the following formula to determine the number of generalized coordinates
needed to describe the motion of constrained systems.

Number of G.C.s = Number of Unconstrained G.C.s (3.34)

−Number of Integrable Constraints (3.35)

By subtracting the number of (independent) integrable constraints from the
number of generalized coordinates needed to describe the unconstrained sys-
tem, we find the number of generalized coordinates we need to describe the
constrained system.
Since each integrable constraint is equivalent to an algebraic constraint of the
form hi(q) = 0, each constraint allows us to solve for one of the generalized
coordinates in terms of the others, thus making one generalized coordinate re-
dundant. This decreases the number of generalized coordinates we need to
completely describe the motion of the system.
Let’s apply the procedure above to determine the nature of the constraints on
a simple car, which moves around in the flat plane at z = 0.

Above: A car travels in the x, y plane with a heading angle θ.

123

ME/EECS/BioE C106B Robotic Manipulation & Interaction

This car has two main constraints on its motion: firstly, it must remain in the
plane, at z = 0, and secondly, it cannot slide freely side to side. Let’s follow the
procedure to determine if these constraints are integrable or not!
First, we consider the unconstrained system. To describe the unconstrained
system, we can use four generalized coordinates: x, y, z, θ, where x, y, z are the
coordinates of the center of mass of the car, and θ is the car’s heading angle
with respect to the vertical.
Let’s consider the first constraint on the system, that the car is constrained to
move around in the flat plane at z = 0. Clearly, this constraint restricts the
positions the generalized coordiantes are able to move to, as it directly sets the
z coordinate of the car to zero at all times. Additionally, since it sets z = 0
for all time, it eliminates the need for a z generalized coordinate, as we always
know what z will be. By our criteria above, this constraint is integrable.
Now, we consider the next constraint - that the car can’t slide side to side. We
know from experience with vehicles in the real world that despite this constraint,
we can still move our car anywhere we want in the plane! Thus, this second
constraint doesn’t enforce any restrictions on the positions the system is able to
travel to, and is therefore non-integrable.

Above: Although the car is constrained to not slide side to side, we can still
steer it anywhere in space.

Since we have one integrable and one non-integrable constraint, we conclude
that the system of constraints is partially nonholonomic. We can use this sort of
physical intuition to reason about the holonomy of constraints on many physical
systems.
Let’s try another example: the rigid pendulum. Starting with the unconstrained
system, we recall that to describe the motion of an unconstrained rigid bar, we
need three generalized coordinates, (x, y, θ). When we add the first pendulum
constraint to the bar:

x− l cos θ = 0 (3.36)

124

ME/EECS/BioE C106B Robotic Manipulation & Interaction

We see that the values of x reachable by the bar are restricted! Further, we can
solve for x in terms of another generalized coordinate, θ, which eliminates the
need for the x generalized coordinate. This makes this constraint integrable.
We may similarly treat the second constraint on the pendulum:

y − l sin θ = 0 (3.37)

We see that we can also solve for y in terms of θ, which eliminates the need
for the y generalized coordinate. Further, the values of y are restricted. This
makes the second constraint integrable as well.
Thus, when we turn the unconstrained rigid bar into a pendulum by adding
two integrable constraints, we only need 3 − 2 = 1 generalized coordinates, for
example θ, to completely describe the motion of the bar.

Above: Two integrable constraints means we require two fewer generalized
coordinates than the unconstrained system.

Since all of the constraints on the pendulum are integrable, we conclude that
the set of pendulum constraints are holonomic.

3.1.3 Equivalent Control Systems

Thus far, we’ve constrained our discussion to focus on the structure of con-
straints on robotic and physical systems. Let’s bring our development of the
theory of constraints back to the realm of planning and control systems, and see
how we can exploit the fundamental structure of constraints to control various
robotic systems.
Let’s begin with the same system of k independent Pfaffian constraints, ω1(q)q̇ =
0, ..., ωk(q)q̇ = 0, where q ∈ Rn is a vector of n generalized coordinates. Let’s
rewrite the system of k constraints in matrix form, and see what conclusions we
can make about the constraints using linear algebra. We know:

ω1(q)q̇ = 0 (3.38)

ω2(q)q̇ = 0 (3.39)

... (3.40)

ωk(q)q̇ = 0 (3.41)

125

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Where each ωi(q) is an n dimensional row vector. Thus, if we place each ωi(q)
in a row of a matrix, we may rewrite this system of constraints as:− ω1(q) −

...
− ωk(q) −

 q̇ =
0...
0

 (3.42)

If we name the matrix of ωi(q) row vectors A(q) ∈ Rk×n, we see that the system
of Pfaffian constraints is of the form:

A(q)q̇ = 0 (3.43)

Let’s use our knowledge of linear algebra to interpret the conditions this system
of constraints enforces on q̇. The expression A(q)q̇ = 0 tells us the incredibly
important property that if q(t) is a trajectory that satisfies all of the constraints
on the system, then q̇(t) must be in the null space of A(q).
If q̇(t) is not in the null space of A(q), it does not satisfy the Pfaffian constraints
on the system, and q(t) is therefore not a trajectory that respects the laws gov-
erning the motion of the system.
Recognizing that the null space of A(q) tells us all of the allowable values of q̇,
we know that if we can find a basis for the null space of A(q), we’ll be able to
identify every q̇(t), and therefore every trajectory q(t), that respects the con-
straints on the system’s motion.
Let’s think about what the null space of A(q) might look like. If we have n gen-
eralized coordinates for the unconstrained system, and k independent Pfaffian
constraints on the velocities of the generalized coordinates, we may prove that
the null space of the matrix A(q) is:

m = n− k (3.44)

Dimensional. In other words, there is a set of m linearly independent vectors:

g1(q), g2(q), ..., gm(q) (3.45)

Such that A(q)gi(q) = 0. Notice that because A(q) is a function of q, the basis
vectors for the null space of A(q) are also a function of a q. Since each basis
vector gi(q) takes in a vector q and returns another vector gi(q), we note that
the basis vectors of the null space of A(q) are not simply vectors, but are rather
vector fields.
From linear algebra, we know that any linear combination of the basis vectors
of the null space of A(q) will still be in the null space of A(q). This means that
any vector of the form:

u1g1(q) + ...+ umgm(q) (3.46)

Where each ui ∈ R is an arbitrary scalar, still must be in the null space of A(q)!

A(q)(u1g1(q) + ...+ umgm(q)) = 0 (3.47)

126

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Since all valid values of q̇ are in the null space of A(q), by the definition of a basis,
all q̇ in the null space of A(q) may be represented as a linear combination of the
basis vectors g1, ..., gm. Thus, we know every q̇ that satisfies the constraints on
the system may be represented in the form:

q̇ = u1g1(q) + ...+ umgm(q) (3.48)

Miraculously, we now have a system that perfectly describes all possible values
of q̇(t), q(t) of the system. What’s more, this representation has a set of m
scalars that we can change arbitrarily! Because of this, we say that the system
q̇ = u1g1(q) + ...+ umgm(q) is an equivalent control system for the system,
since by choosing u1, ..., um, we can find the value of q̇.
These equivalent control systems act just like the control affine systems we
discussed earlier in the course, which had the form:

ẋ = f(x) + g(x)u (3.49)

An equivalent control system of the form above is simply a control affine system
where f(x) = 0 and the state vector x = q is a vector of generalized coordinates.
Because of this equivalence, we can use all of the methods of feedback control
we developed previously to drive our constrained equivalent control systems to
the positions we want.
Let’s consider a practical example of an equivalent control system. Famously,
Marc Raibert, the founder of the robotics company Boston Dynamics, employed
equivalent control systems in the design of a hopping robot called Raibert’s
hopper. Let’s set up the equivalent control system for Raibert’s hopper:

Above: A simplified model of Raibert’s hopper.

Note that the length of extension of the leg, l, can be changed to propel the
system into the air, while the angle ψ can be modified to change the angle of
the jump into the air. From conservation of angular momentum, the following
constraint can be shown to exist on the hopper as it travels through the air:

(I +m(l + d)2)θ̇ +m(l + d)2ψ̇ = 0 (3.50)

127

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Where I,m are the moment of inertia and mass of the body, respectively. Choos-
ing a vector of generalized coordinates q = [ψ, l, θ]T , we may rewrite this con-
straint in Pfaffian form as:

ω(q)q̇ =
[
m(l + d)2 0 I +m(l + d)2

] ψ̇l̇
θ̇

 = 0 (3.51)

Let’s try to find a basis for the null space of the constraint ω(q)! Since we have
three generalized coordinates, ψ, l, θ, and one Pfaffian constraint, we conclude
that there should be 3− 1 = 2 basis vectors for the null space of the constraint.
Looking at the constraint, we can pick the following for the first basis vector:

g1(q) =

 1
0

− m(l+d)2

I+m(l+d)2

 (3.52)

If we multiply the constraint by this choice of g1(q), the first and third entries
in the product ω(q)g1(q) will cancel out, leaving us with zero. Noticing that the
middle entry of ω(q) = 0, we can pick the following for our second basis vector:

g2(q) =

01
0

 (3.53)

Thus, we may use the following equivalent control system to control the hopping
robot as it flies through the air:

q̇ =

 1
0

− m(l+d)2

I+m(l+d)2

u1 +
01
0

u1 (3.54)

q̇ = g1(q)u1 + g2(q)u2 (3.55)

We know that by adjusting u1, u2, we’ll always end up with a q̇ that respects
the constraints on the system dynamics, since all linear combinations of g1, g2
will still be in the null space of the constraint.
Notice that the basis we pick for the null space is not unique, but some bases,
such as that which we picked above, can be more convenient than others when
designing controllers.

3.1.4 Lie Brackets & Controllability

We’ve now successfully converted our kinematic constraints into an equivalent
control system, q̇ = g1(q)u1 + ... + gm(q)um that we may use to control our
constrained system. Now, the question we ask is - can we drive the system
from any starting state q0 to any final state qd in a finite amount of time while

128

ME/EECS/BioE C106B Robotic Manipulation & Interaction

respecting the constraints on the system’s motion?
Let’s think about how we can answer the question of being able to drive the
system from any initial set of generalized coordinates q ∈ Rn to any final set of
generalized coordinates qd ∈ Rn. What does our constraint dynamics:

q̇ = g1(q)u1 + ...+ gm(q)um (3.56)

Tell us about the allowable motions of our system? From looking at the expres-
sion, we know that all allowable directions of motion, q̇, must be along the vector
fields g1, g2, ..., gm. Thus, at each point q in space, the vector fields g1, ..., gm
tell us the directions of motion we’re able to travel in.

Above: If q̇ = g1(q)u1 + g2(q)u2, at any point q, we may travel along either the
g1 or g2 vector field, or any combination of the two.

Since the vector fields g1, ..., gm tell us the directions our trajectory can “point”
at any q in space, by following combinations of paths along the vectors of the
vector fields, we can trace out the allowable trajectories q(t) of the system! We
refer to these paths along the vector fields as flows.

Above: The allowable values of q(t) are found by taking linear combinations of
flows along the vector fields.

By thinking about the motions of our system as being movements along these
vector fields at all times, to determine if we can move from a state q0 to a state
qd, we can try to determine if we can split up the overall motion as a set of
small motions along the vector fields g1, ..., gm.

129

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: Can we split up the motion from q0 to qd by travelling along the vector
fields g1, ..., gm?

If we can successfully travel from q0 to qd by moving along these vector fields,
then we can reach our desired state in finite time while respecting the constraints
on the system’s motion.
Now that we’ve thought conceptually about how to determine our ability to
reach different states, let’s develop a systematic mathematical procedure! We’d
now like to mathematically determine if we can reach an arbitrary state qd ∈ Rn

from an initial state q0 in finite time by travelling along the m vector fields
g1, ..., gm. To develop a procedure for determining such an ability, we’ll need to
develop a few more mathematical tools!

Lie Brackets & Lie Algebras

Before we begin discussing mathematical specifics, let’s take a moment to ap-
preciate the challenge of the task before us! By travelling along m linearly
independent vector fields g1, ..., gm, we’d like to be able to reach arbitrary loca-
tions in Rn, where m < n.
To achieve this, we’ll need to show that by composing motions along the m
vector fields, we can increase the directions we can travel in from the m direc-
tions along g1, ..., gm to a full range of n directions. This will enable us to travel
anywhere in space at a given point q.
Let’s think about the idea of composing motions along vector fields with a sim-
ple example. Suppose we have two vector fields f(q), g(q) ∈ Rn, where q ∈ Rn.
Let’s try out a simple composition of motions along these vector fields, and
see if we can generate any new directions of motion! If we can generate a new
direction of motion, perhaps we’ll be able to reach a large set of positions in
space by travelling along these vector fields!
Consider the following symmetric motion: first, starting from q0, we’ll travel
ε seconds along the vector field f(q). Next, we’ll travel ε seconds along the
vector field g(q). Following this, we’ll travel ε seconds in the direction of −f(q).
Finally, we’ll travel ε seconds in the direction of −g(q).
This simple, symmetric motion, known as a Lie bracket motion, helps us tell
if we can generate a new direction of motion by composing motions along the
two vector fields f(q), g(q).

130

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A Lie bracket motion along two vector fields. In the left example, f, g
do not commute. In the right, they do.

If after completing this symmetric motion, we end up at the same location as
where we started, q0, we know that the symmetric motion along the two vector
fields didn’t allow us to reach a new location! In this case, the vector fields f
and g are said to commute.
On the other hand, if after completing this motion, we end up at a new location
q1 ̸= q0, we know that we can reach a new location by performing this motion
along the vector fields. In this case, f and g do not commute.
Let’s introduce a little bit of mathematics to compute whether this symmetric
motion along the vector fields takes us back to our starting location. By assum-
ing that the time we travel along the vector fields, ε, is small, we may use a
second order Taylor approximation to derive the following famous expression.

Definition 31 Lie Bracket
The Lie bracket of two vector fields f(q), g(q) ∈ Rn is defined:

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q) (3.57)

Where [f, g](q) is another vector field in Rn. If [f, g](q) = 0, then f, g are said
to commute.

Moving forward, we’ll use this surprisingly simple expression to help us deter-
mine if we can generate new directions of motion by composing motions along
f and g. If [f, g](q) ̸= 0, thinking back to our definition of a Lie bracket motion,
we might be able to use [f, g](q) itself as a new direction of motion!
Let’s perform a simple example of a Lie bracket computation to check our un-
derstanding. Suppose we want to find the Lie bracket of the following two vector

131

ME/EECS/BioE C106B Robotic Manipulation & Interaction

fields, which are functions of a vector q = [q1, q2, q3]
T :

g1(q) =

 1
0
q2

 , g2(q) =
01
0

 (3.58)

By the definition of a Lie bracket, we must calculate:

[g1, g2](q) =
∂g2
∂q

g1(q)−
∂g1
∂q

g2(q) (3.59)

Let’s start by calculating the partial derivatives, ∂g2
∂q and ∂g1

∂q . Since we’re taking
the partial derivatives of vectors with respect to vectors, these two expressions
will both be matrices.

∂g2
∂q

=

∂g21
∂q1

∂g21
∂q2

∂g21
∂q3

∂g22
∂q1

∂g22
∂q2

∂g22
∂q3

∂g23
∂q1

∂g23
∂q2

∂g23
∂q3

 =

0 0 0
0 0 0
0 0 0

 (3.60)

∂g1
∂q

=

∂g11
∂q1

∂g11
∂q2

∂g11
∂q3

∂g12
∂q1

∂g12
∂q2

∂g12
∂q3

∂g13
∂q1

∂g13
∂q2

∂g13
∂q3

 =

0 0 0
0 0 0
0 1 0

 (3.61)

Now that we have these two matrices of partial derivatives, we simply multiply
the matrices by the vector fields to complete our computation of the Lie bracket:

[g1, g2](q) =
∂g2
∂q

g1(q)−
∂g1
∂q

g2(q) (3.62)

[g1, g2](q) =

0 0 0
0 0 0
0 0 0

 1
0
q2

−

0 0 0
0 0 0
0 1 0

01
0

 =

 0
0
−1

 (3.63)

Since the result of the Lie bracket computation was nonzero, we conclude that
the two vector fields g1, g2 do not commute! Thus, they have the potential to
generate new directions of motion! This idea of generating new directions of
motion by using Lie brackets bring us to the following concept.

Definition 32 Lie Algebra
The Lie algebra of a set of vector fields g1, g2, ..., gm ∈ Rn, denoted L(g1, ..., gm)
is the span of the vector fields and their Lie brackets.

L(g1, ..., gm) = span{g1, ..., gm, [g1, g2], ..., [gm−1, gm], [g1, [g1, g2]], ...} (3.64)

We define the dimension of a Lie algebra to be the number of linearly inde-
pendent vector fields we can generate from the vector fields g1, ..., gm and their

132

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Lie brackets.
Notice how in addition to computing Lie brackets such [g1, g2], we also compute
further nested Lie brackets such as [g1, [g1, g2]], which are called higher order Lie
brackets. Since each Lie bracket simply returns a vector field, the computations
required to calculate these higher order, nested Lie brackets involve reapplying
the same basic Lie bracket definition.
Since the Lie algebra of a set of vector fields represents the span of all of the
vector fields and their Lie brackets, it helps us identify the possible directions
of travel at each point in space by moving along the vector fields g1, ..., gm, and
their compositions.
Equipped with these tools, we may return to the problem of driving our system
to arbitrary states!

Controllability

The idea of being able to drive a system from any starting state to any desired
state in finite time is a key concept in control known as controllability, which
we introduced briefly in our exploration of linear control.
When discussing linear control systems, recall that we defined a system to be
controllable at q0 if there existed an input u(t) to drive the system from its
starting state q0 to a final state qf within some finite time interval [0, T].

Above: Can we drive a turtlebot to any of its surrounding states in finite time?

In this section, we’ll discuss controllability at a more advanced level, and will
extend our characterization of controllability to the set of nonlinear, equivalent
control systems of the form:

q̇ = g1(q)u1 + ...+ gm(q)um (3.65)

When studying controllability, since it’s important to have an understanding of
the states our system is able to reach within certain amounts of time, we make
the following definition.

Definition 33 Reachable States
Let V ⊆ Rn be a region of space inside Rn. The reachable states of a system

133

ME/EECS/BioE C106B Robotic Manipulation & Interaction

q̇ = g1(q)u1 + ...+ gm(q)um in time t from an initial state q0 ∈ V , denoted:

RV (q0, t) (3.66)

Is defined to be the set of all states that may be reached by the system at time t,
starting from q0 and staying within the set V .

The set of reachable states RV (q0, t) tells us which states we can reach at exactly
time t, starting from q0. What about the states we can reach in all times from
0 to T starting from q0 and staying within the region V ?

Definition 34 Reach Set
Let T ∈ R+ and V ⊆ Rn. The reach set of a nonlinear system q̇ = g1(q)u1+...+
gm(q)um is defined to be the union of all reachable states of the system across
times t = 0 to t = T . It is denoted:

RV (q0,≤ T) =
⋃

0≤t≤T

RV (q0, t) (3.67)

Where RV (q0, t) is the set of reachable states starting from q0 within a time t.

Note that in the definition above
⋃

0≤t≤T represents the union, or combined

collection, of all of the sets RV (q0, t), where t ranges from 0 to T .
It’s important to note that the only difference between the set of reachable
states at time t from q0 and the reach set from q0 is that the reach set contains
all of the states reachable for all times t up to a time T , rather than just for a
single time t.

Above: The reach set from q0 in time T is the set of all states we can reach
from q0 within a time T while staying within a region V .

Using the concept of a reach set, let’s formally state the definition of an im-
portant type of controllability. First, we’ll state a mathematical definition and
then give a more intuitive interpretation.

134

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 35 Small Time Local Controllability
A system q̇ = g1(q)u1+...+gm(q)um is small time locally controllable at q0 ∈ Rn

if its reach set around q0 within time T , RV (q0,≤ T), contains a neighborhood
of q0 for all neighborhoods V or q0 and all times T > 0.
Mathematically, we may express this as:

∀V ⊆ Rn, T > 0, ∃ ε s.t. Bε(q0) ⊆ RV (q0,≤ T) (3.68)

Let’s try to break down what this definition means. Looking at the conditions
in the definition, we see that for a system to be small time locally controllable,
we require that for all possible times T and sets of initial conditions V , we need
the set of states reachable by the system from an initial state q0 ∈ V to contain
a ball around q0.

Above: the states reachable from q0 form a ball around q0.

Thus, if a system is small time locally controllable, we can drive it to a set of
all nearby points in a small, finite amount of time! This is a highly desirable
property in robotics, as we want to know if we’re able to place our system where
we want while respecting the constraints on its motion.
Now that we have this definition of controllability, we must determine how to
actually prove that a system is small time locally controllable. We can use our
results from the previous section, where we used the idea of a Lie algebra to
express the possible motions along a set of vector fields. This idea brings us to
the following famous theorem.1

Theorem 6 Chow’s Theorem (Small Time Local Controllability)
A system q̇ = g1(q)u1 + ...+ gm(q)um, where ui ∈ R and q ∈ Rn, is small time
locally controllable at a point q if the Lie algebra of the vector fields:

L(g1, ..., gm) = span{g1, ..., gm, [g1, g2], ..., [gm−1, gm], [g1, [g1, g2]], ...} (3.69)

1Note that the condition for Chow’s theorem is stated more rigorously as the involutive
closure of the distribution generated by g1, ..., gm is equal to the tangent space to Rn at q.

135

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Has dimension n at point q.

Thus, we conclude that for a system q̇ = g1(q)u1 + ... + gm(q)um to be able
to reach any nearby state in finite time, we must be able to get n linearly
independent vector fields from g1, ..., gm and their Lie brackets.
Let’s complete a quick example of determining the controllability of a system
using Chow’s theorem,. We’ll now show that Raibert’s hopper is a small time
locally controllable system. Recall that earlier, we showed that the following is
an equivalent control system for the hopping robot as it flies through the air:

q̇ =

 1
0

− m(l+d)2

I+m(l+d)2

u1 +
01
0

u1 = g1(q)u1 + g2(q)u2 (3.70)

Where q = [ψ, l, θ]T is the vector of generalized coordinates needed to describe
the motion of the system. To show that the system is small time locally con-
trollable, we must show that its Lie algebra, L(g1, g2), has the same dimension
as the state vector, n = 3.
We can do this by showing we can find three linearly independent vector fields
from the vector fields g1, g2, and their Lie brackets. Looking at g1, g2, we notice
that they are already linearly independent! Thus, all we need is one more vector
field to complete the process of showing the Lie algebra is three dimensional.
Let’s try the following simple, first order Lie bracket as a candidate for our third
linearly independent vector field:

[g1, g2] =
∂g2
∂q

g1(q)−
∂g1
∂q

g2(q) (3.71)

First, we calculate the matrices of partial derivatives. Since g2 is a constant
vector field that doesn’t depend on q, we know that:

∂g2
∂q

=

0 0 0
0 0 0
0 0 0

 (3.72)

What about ∂g1
∂q ? Calculating each partial derivative and simplifying, we get:

∂g1
∂q

=

∂g11
∂q1

∂g11
∂q2

∂g11
∂q3

∂g12
∂q1

∂g12
∂q2

∂g12
∂q3

∂g13
∂q1

∂g13
∂q2

∂g13
∂q3

 =

0 0 0
0 0 0

0 −2m(l+d)I
(I+m(l+d)2)2 0

 (3.73)

Now, calculating out the expression of the Lie bracket in full, this leaves us with
the following:

[g1, g2] = 0−

0 0 0
0 0 0

0 −2m(l+d)I
(I+m(l+d)2)2 0

01
0

 =

 0
0

2m(l+d)I
(I+m(l+d)2)2

 (3.74)

136

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Is the set {g1, g2, [g1, g2]} linearly independent? If it is, we’ve found that the
dimension of our Lie algebra (the span of g1, g2 and their Lie brackets) is equal
to the dimension of the state vector, 3! If the set is not linearly independent,
we can keep taking further, higher order Lie brackets.
To check if the set {g1, g2, [g1, g2]} is linearly independent, we may place each
vector field in the column of a matrix and check that the determinant of the
matrix is nonzero.

det

 1 0 0
0 1 0

− m(l+d)2

I+m(l+d)2 0 2m(l+d)I
(I+m(l+d)2)2

 ?
= 0 (3.75)

Computing the determinant of this matrix using a symbolic calculator, we find:

det

 1 0 0
0 1 0

− m(l+d)2

I+m(l+d)2 0 2m(l+d)I
(I+m(l+d)2)2

 =
2Im(l + d)

(md2 + 2mdl +ml2 + I)2
(3.76)

Thus, as long as we have that l ̸= −d, the dimension of the Lie algebra of the
system will be equal to 3, as we have three linearly independent vector fields
generated from g1, g2, and their Lie bracket, [g1, g2].
Since the dimension of the state vector is equal to three, we may therefore apply
Chow’s theorem to conclude that when l ̸= −d, the system is small time locally
controllable.

137

Chapter 4

Estimation

So far in our study of dynamical systems, control, and path planning, we’ve
assumed that the state of our system is known with absolute precision. For
instance, when designing a basic state feedback controller:

u = −Kx (4.1)

We assume that we have full access to the state vector, x, of the system. Addi-
tionally, we assume that our knowledge of the state vector is perfect, and true
to what the state of the system actually is. In the real world, however, these
assumptions break down.
When interacting with robotic systems, we must gain information about the
state of our systems through noisy sensors, which we can use to piece together
the different components of our state vector as time passes. Since our sensors
contain noise, they will never give us a perfect measurement of the true state
of our system! Furthermore, we won’t always be able to directly measure every
component of the system’s state vector.
How can we get around these challenges? To solve the problem of filtering out
noise from our measurements and reconstructing the entire state vector of our
system from potentially incomplete measurements, we turn to the field of esti-
mation.
In this section of the course, we’ll study some fundamental concepts in the esti-
mation of stochastic systems - systems with random noise. Before getting into
the specifics of these techniques, let’s develop some foundational material in
probability and random processes.

4.1 Elements of Probability

When developing strong estimates of the state of a system using noisy sensors,
it’s important that we have a strong understanding of how to model the noise
the sensors actually experience! Let’s try and understand the noise we’ll be
dealing with with a simple example.

138

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Let’s imagine that we’re trying to measure the position of a turtlebot, which sits
stationary on the ground, using an AR tag. In this case, even though the turtle-
bot stays still in physical space, the measurements of the turtlebot’s position
from the AR tag will jump around due to noise in the sensor’s measurements.

Above: Due to noise, our measurements will jump around, despite the
underlying true value remaining the same.

As we take more and more measurements of our turtlebot’s state, we can keep
track of the ranges our measurements fall into using a histogram. By counting
the number of measurements that fall into certain distinct ranges, we may form
a plot such as the following:

Above: We can keep track of the occurrences of ranges of measurements using
a histogram.

As we can see from the image above, as we collect these measurements, we can
begin to form a distribution of the measurements of the turtlebot - a relation-
ship that describes the frequencies of certain measurements. Through applying
the techniques of probability theory, we can use the different properties of this
distribution of measurements to gain a prediction of where our turtlebot actu-
ally is in space!
Let’s begin by reviewing some fundamental concepts in probability. As we move
through this material, we’ll gradually work our way back to understanding how
noise interacts with robotic systems.
Our treatment of probability in this section will most closely follow Tomizuka’s

139

ME/EECS/BioE C106B Robotic Manipulation & Interaction

notes on optimal control, Optimization-Based Control by Murray, and Introduc-
tion to Probability by Blitzstein and Hwang.

4.1.1 Probability Spaces

Let’s begin our exploration of probability by setting up a simple problem. Sup-
pose we have a single, six-sided die. Imagine that we want to find how likely it
is that when we roll the die, we get a six. What tools do we need to treat this
problem in the language of formal mathematics? Let’s begin by making a few
definitions.
First, we define an experiment. An experiment is something in which we ob-
serve the outcome of a random process. For instance, rolling a die and observing
the number is considered to be an experiment in the language of probability,
since the act of rolling a die has some inherent randomness.
Next, we define the sample space, which we denote with the letter Ω. Ω is
the set of all possible outcomes in our probabilistic experiment. In the case of
a rolling a single die, since the dice may land on the numbers 1 through 6, the
sample space Ω would be the set:

Ω = {1, 2, 3, 4, 5, 6} (4.2)

As this set contains all of the possible outcomes of rolling a single die. When
referring to individual outcomes contained within the sample space Ω, we use
the letter ω. Using the conventions of set notation, we may indicate that ω is
an element of the sample space Ω by writing:

ω ∈ Ω (4.3)

When discussing the chances of certain outcomes or combinations of outcomes
occurring, we use something called an event. Formally, every event, denoted
by the letter S, is a subset of the sample space, Ω.

S ⊆ Ω (4.4)

Every possible event must be one of or a collection of some of the possible
outcomes for our experiment. Typically, each event S will contain a set of
outcomes ω that satisfy a certain condition that we’re looking for. For example,
in the example of rolling a dice S could be the set of outcomes where the dice
lands on a 6.
How can we reason about the chance that a certain event will occur? The
probability function, P(S), takes in an event S and returns a number between
0 and 1, called a probability, that tells us how likely that event is to occur. If
the probability of an event P(S) is equal to 1, then the event S is guaranteed to
occur, whereas if P(S) = 0, the event S has no chance of occurring.
The probability function must satisfy the following three fundamental rules,
known as the probability axioms:

140

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 36 Probability Axioms
If Ω is a sample space the probability function P must satisfy the following
properties for all events S1, S2 ⊆ Ω:

1. Probability is always positive: P(S1) ≥ 0

2. Probability of the outcome space is 1: P(Ω) = 1

3. Probability of disjoint events sum: P(S1 ∪ S2) = P(S1) + P(S2) if
S1 ∩ S2 = ∅

The first condition states that probabilities must always be positive! Since an
event has zero probability if it doesn’t happen, having a negative probability
doesn’t have any meaning. The second condition states that the probability of
all possible outcomes combined must be 1 - at least one outcome must happen
when performing an experiment.
Finally, the last rule states that the probabilities of disjoint events sum. If two
events, S1 and S2, have nothing in common, we can find the probability that S1

or S2 happens by adding the probabilities that they each happen individually.
For instance, if S1 is the event that our dice lands on a 3, and S2 is the event
that our dice lands on a 6, S1, S2 have nothing in common, as they represent
totally different outcomes. We may write this as:

S1 ∩ S2 = ∅ (4.5)

Where S1∩S2 is the intersection of S1 and S2, the set that contains all outcomes
shared by S1 and S2, and ∅ is the empty set, the set that contains no elements.
Thus, if we wanted to find the probability that we either roll a 3 or a 6, we could
add the probabilities of each individual event:

P(S1 ∪ S2) = P(S1) + P(S2) =
1

6
+

1

6
=

1

3
(4.6)

Since the events S1 and S2 of getting a three and getting a six are disjoint.
Note that in more advanced treatments of probability, the probability function
P is said to be a probability measure, as P measures the “size” of the event S
with respect to the “size” of the outcome space to find the probability of the
event occurring.1

Oftentimes, instead of directly finding the probability that an event happens, it
can be easier to solve for the probability that the event doesn’t happen. We can
formalize this idea mathematically with the idea of a complement.

1If you’re interested in learning more about this, look into the field of measure theory,
which forms the foundations for a rigorous construction of probability.

141

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 37 Complement of an Event
The complement of an event S ⊆ Ω, denoted Sc, is the set of all outcomes in Ω
that do not belong to S.

Intuitively, if S is an event containing some outcomes, Sc is the event containing
all of the other possible outcomes in the sample space. Using the probability
axioms and the definition of a complement, we may develop the following useful
result regarding the probability of events and their complements:

Proposition 6 Probability of a Complement
If S ⊆ Ω is an event with a complement Sc ⊆ Ω, the probability of S is computed:

P(S) = 1− P(Sc) (4.7)

Proof: The key to this result is that the intersection of S and Sc, S ∩ Sc is
empty, since Sc contains everything in Ω that is not in S. Additionally, we
know that the combination of S and Sc, S ∪ Sc = Ω, by the definition of the
complement. Applying the probability axioms, this tells us:

P(S ∪ Sc) = P(S) + P(Sc) (4.8)

P(Ω) = P(S) + P(Sc) (4.9)

1 = P(S) + P(Sc) (4.10)

P(S) = 1− P(Sc) (4.11)

This completes the proof! □

4.1.2 Random Variables and Vectors

Now that we’ve formed some basic definitions in probability, let’s discuss some
more interesting results! So far in our treatment of probability, we’ve discussed
some basic properties of the probability function P, but haven’t yet considered
what the function P might actually be.

Random Variables

We can begin answering this question in a more mathematical sense by defining
something known as a random variable. Thus far, you may have noticed
that our events, such as “the dice lands on a six,” or “the dice lands on a
six or on a three,” are objects that simply exist in words - they’re not yet
purely mathematical expressions! To abstract away the language and physical
descriptions associated with events, we introduce the following definition.

142

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 38 Random Variable
Suppose we have a sample space Ω which contains events S ⊆ Ω. A random
variable is a function of events:

X(S) : S → R (4.12)

That maps each event S ⊆ Ω to a real number X(S) ∈ R.

Thus, a random variable helps us think about events in terms of numerical
values. Let’s make this definition a little bit more concrete by turning back
to our example of rolling a single six sided die. In this case, we could use a
random variable X to represent the number that turns up when we roll the
die! We could then express the event “we roll a 6” through the mathematical
expression:

X = 6 (4.13)

This enables us to express the probability of rolling a six as:

P(X = 6) =
1

6
(4.14)

Where random variables become highly useful is in expressing the probability
of more complex events! For instance, if we wanted to find the probability that
we rolled something between a 2 and a 4, we could write:

P(2 ≤ X ≤ 4) =
1

6
+

1

6
+

1

6
=

1

2
(4.15)

Random variables and their associated notation will be immensely convenient
moving forwards as we generalize our study of probability to arbitrary events.
As you can see from the example above, by assigning real values numbers to
arbitrary events, we can see events and probability itself in a more precise,
mathematical light.
Our random variable X from above is an example of a discrete random vari-
able. A discrete random variable is a random variable that can only take on a
countable number of values!2 For instance, the random variable X representing
our die roll can only have the values of 1, 2, 3, 4, 5, 6.
In robotics, where our random variables might refer to things such as positions
in space, having just these discrete random variables won’t be good enough!
After all, even in one dimension, there are an uncountably infinite number of
positions we can travel to. If a random variable can take on any value in the
real numbers, is is said to be a continuous random variable. This implies
that the number of values a continuous random variable can take on are infinite.

2Countable doesn’t necessarily mean finite! The set of integers is a countable set of num-
bers, for instance - you can think of the integers as a typical set of countable numbers. The
real numbers, on the other hand, are uncountable.

143

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Probability Density and Cumulative Distribution Functions

Now that we’ve defined random variables, we may think about how the proba-
bility function P is actually constructed for different experiments.
Once again, we’ll begin our discussion by thinking about the probabilities asso-
ciated with the different outcomes of a die roll. Let’s come up with a function
P(X = x) that tells us the probability that we will roll x on any given trial.
Since the die is equally likely to land on any of its sides, we know that for all
integer values of x between 1 and 6:

P(X = x) =
1

6
(4.16)

This function holds for all integer values of x, as landing on any one of the six
sides of a die is equally likely as landing on another. We can plot this function
on the domain [1, 6] as follows:

Above: A dice has equal probability of landing on any one number.

Notice how the total area under this curve is equal to 1, the probability of the
total outcome space Ω occurring.
What other probabilities might we be interested in? In addition to knowing the
probability that the dice will land on any one value, perhaps it would be useful
to know the probability that the dice lands on something less than or equal to
a certain value x. For the die, we can express P(X ≤ x) on the same domain as
above as follows:

P(X ≤ x) =
x

6
(4.17)

Where x is an integer between 1 and 6.
We can think of this probability as something that accumulates the probabilities
of all of the ways X can be less than or equal to a certain value x.
Let’s discuss the equivalents of these two functions for a continuous random
variable X! Recall that one of the conditions for a random variable to be
continuous is that it must have an infinite number of possible values! With this
in mind, we define the following function.

144

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 39 Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of a continuous random variable
X, denoted F (x), is defined to be the probability that X ≤ x.

F (x) = P(X ≤ x) (4.18)

Just like with the (discrete) case of the dice, a cumulative distribution function
accumulates the probabilities of all of the ways a random variable can have a
value less than or equal to a value x. Since a continuous random variable X has
values across all of the real numbers, we may equivalently write the cumulative
distribution function of X as:

F (x) = P(−∞ < X ≤ x) (4.19)

Let’s now think about the other function we defined for the dice, which gave
the value that P(X = x). For the case of a continuous random variable, the
equivalent of this function is much more subtle. Since X now has an infinite
range of possible values, the probability that X will take on any specific value
of x will now be zero! How can we define a meaningful function that tells us
something about each individual value of a random variable?
Consider the following definition:

Definition 40 Probability Density Function (PDF)
The probability density function (PDF) of a random variable X, is defined to be
the function f(x) such that:

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx (4.20)

For a differentiable cumulative density function F (x), the probability density
function may therefore be found by differentiating F (x) with respect to x:

f(x) =
dF

dx
(4.21)

By integrating the probability density function over a range of values, we may
find the probability that our random variable X falls within a certain range!
It’s extremely important to note that the value of the PDF, f(x), does not give
the probability that X = x. The probability that X = x is always equal to zero
for a continuous random variable X.
This definition tells us that we may derive the cumulative distribution F (x)

145

ME/EECS/BioE C106B Robotic Manipulation & Interaction

from a density f(x) of a random variable X by computing the integral:

F (x) =

∫ x

−∞
f(χ)dχ (4.22)

Furthermore, by the fundamental theorem of calculus, we may calculate the
probability that X lies between a and b, where a ≤ b, through computing:

P(a ≤ X ≤ b) = F (b)− F (a) (4.23)

These useful facts will help us switch between the CDF and PDF of a continuous
random variable, and easily calculate the probabilities associated with ranges
of values.

Above: We can integrate the density function to obtain a probability.

Since both the PDF and CDF tell us exactly how to find the probability that
our random variable X will fall inside a certain range of values, we may specify
either the PDF or CDF to entirely characterize a random variable!
Using the axioms of the probability function P, we may arrive at the following
rules for the probability density function of any random variable.

Proposition 7 Density Properties
If X is a continuous random variable with density f(x), f(x) must have the
following properties.

1. Non-Negative: f(x) ≥ 0 for all x ∈ R.

2. Integrates to 1: The integral of the density over the entire real line must
be equal to 1. ∫ ∞

−∞
f(x)dx = 1 (4.24)

The first property comes from the fact that probability must always be positive.

146

ME/EECS/BioE C106B Robotic Manipulation & Interaction

To avoid the possibility of having a negative probability in a region, we constrain
the PDF to always be greater than or equal to zero. The second property comes
from the fact that P(Ω) = 1, as it’s a certainty that our random variable X will
obtain some value in the real numbers.
Notice that the fact that the probability density is always ≥ 0 tells us a useful
fact about the cumulative distribution of a random variable: the CDF of a
random variable x is either constant or increasing at any value of x, as the
CDF may be found by taking the integral of the PDF. Further, from the second
property of the probability density function, we know that the CDF F (x) must
have a value between 0 and 1 for all x.
When working with multiple random variables, it’s often important to think
about the relationship between random variables. For instance, the outcome of
a random variable:

X = {It will rain today} (4.25)

Might have an impact on the outcome of the random variable:

Y = {I will use an umbrella today} (4.26)

We can express the idea of two random variables being “related” with the idea
of a joint distribution.

Definition 41 Joint Cumulative Distribution Function
Given two random variables X,Y the joint cumulative distribution function
F (x, y) of the two random variables expresses the probability that X ≤ x and
Y ≤ y.

F (x, y) = P(X ≤ x, Y ≤ y) (4.27)

Note that the comma in the joint cumulative distribution definition, F (x, y) =
P(X ≤ x, Y ≤ y), simply means “and.” We’ll often use “joint CDF” as short-
hand for the name of this function.
Just like we can find a single random variable’s probability density function by
differentiating its cumulative density function, we may do something similar to
find a joint density of multiple random variables!

Definition 42 Joint Density Function
The joint density function f(x, y) of two random variables X,Y with a joint
CDF F (x, y) is computed:

f(x, y) =
∂2

∂x∂y
(F (x, y)) (4.28)

147

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Note that using the rules of partial derivatives, it doesn’t matter if we take
the partial derivative with respect to x and then y or y and then x - both will
produce equivalent expressions.
Using the joint density function f(x, y), we may calculate the probability that
the random variables X and Y will fall into certain ranges of values by taking
a double integral. For instance, we can compute:

P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =

∫ x2

x1

∫ y2

y1

f(x, y)dydx (4.29)

Using the concept of a joint distribution, is there some way we can mathemati-
cally verify if a relationship between two random variables actually exists? We
may define what it means for two random variables to be independent as follows:

Definition 43 Independence of Random Variables
Let X, Y be two random variables. If for all values of x, y, is is true that:

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) (4.30)

Then X and Y are said to be independent random variables.

If two random variables are independent, then the outcome of one random
variable will have no effect on the outcome of another random variable! For
instance, since the value I get on one roll of a die has no influence on the values
I get on future rolls, we consider each die roll to be independent.
The definition of independence also allows us to make a conclusion about the
relationship between the joint density of two independent random variables
and the individual densities of the random variables. If X,Y are independent
random variables with densities fx(x), fy(y) and a joint density f(x, y), then
the joint density is actually the product of the two individual densities:

f(x, y) = fx(x)fy(y) (4.31)

Note that in literature, the individual densities of the random variables, fx(x)
and fy(y), are referred to as the marginal densities of X and Y .

Expectation and Variance

Let’s briefly think back to our example of measuring the position of a turtlebot
in space. As time passes, the measurements we take of the turtlebot’s position
jump around due to noise and form a distribution describing the possible states
of the turtlebot!

148

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: We can model the possible measured states of our turtlebot using a
distribution.

How can we use this distribution to find the most likely, or expected, position of
the turtlebot? Let’s simplify this problem somewhat for the sake of discussion.
Suppose that the x position of the turtlebot can be any one of the k values
x1, ..., xk, and that we represent the x position of the turtlebot using the discrete
random variable X. Intuitively, we can compute the most likely position of the
turtlebot by averaging all of our measurements!
If each position xi appears ni times when taking measurements, we can compute
the most likely value of this random variable by computing the weighted sum:

xexpected =
n1x1 + ...+ nkxk
n1 + ...+ nk

=
n1
N
x1 + ...+

nk
N
xk (4.32)

Where N = n1 + ... + nk is the total number of measurements we have taken.
After we take many measurements, in the limit as N → ∞, we may show that
each ratio, ni

N , will actually converge to the probability that each xi is measured
by the sensor! Thus, in the limit, we have:

xexpected = P(X = x1)x1 + ...+ P(X = xn)xn (4.33)

What we have above is the probability of each outcome multiplied by the value
of that outcome! Thus, for the case of a discrete random variable, the average,
or “expected value,” of a random variable is a weighted sum of the different
possible values of the random variable.
Can we generalize this idea of finding the most likely value of a simple random
variable to a continuous random variable with an arbitrary density function
f(x)? The expected value of a random variable, defined to be the average
value of the random variable across its probability distribution, accomplishes
this generalization. To calculate the expected value of a continuous random
variable, we perform a similar operation to the above, now using an integral in
the place of a sum and density in the place of probability.

149

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 44 Expected Value
The expected value of a random variable X with density f(x) is defined:

µX = E[X] =

∫ ∞

−∞
xf(x)dx (4.34)

Expected value is also called the mean or average of a random variable, and is
a deterministic (non-random) quantity.

Notice how we perform an operation similar to that which we discussed above!
To find the expected value, we use an integral to accumulate the products of
random variable values and densities.
The expression E[X] is typically read as the “expected value” or “expectation”
of X. Note that the variable µX is also commonly used as shorthand for the
expected value of a random variable X. Expected value has the following im-
portant property we’ll make extensive use of:

Proposition 8 Linearity of Expectation
Expectation is a linear function of random variables. If X,Y are two jointly
distributed random variables and a, b ∈ R are scalar constants, then:

E[aX + bY] = aE[X] + bE[Y] (4.35)

Proof: Let’s assume that X,Y are jointly distributed random variables with a
joint probability distribution f(x, y). Let’s try expanding the expression E[aX+
bY] in terms of the integral definition of expected value, and see what we find!
We may calculate E[aX + bY] by performing a double integral over the joint
distribution of X and Y .

E[aX + bY] =

∫ ∞

−∞

∫ ∞

−∞
(ax+ by)f(x, y)dxdy (4.36)

Note how in the above, we integrate over both x and y when taking the expected
value, as we are using the joint distribution f(x, y), rather than an individual
marginal distribution of one of the random variables. Let’s split up the x and
y terms in this integral.

E[aX + bY] =

∫ ∞

−∞

∫ ∞

−∞
(ax+ by)f(x, y)dxdy (4.37)

=

∫ ∞

−∞

∫ ∞

−∞
axf(x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
byf(x, y)dxdy (4.38)

150

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Now, by changing the order of integration, we may extract the marginal distri-
butions of each of the random variables! Performing this operation and pulling
the constants out of the integrals, we find:

E[aX + bY] = a

∫ ∞

−∞
x

∫ ∞

−∞
f(x, y)dydx+ b

∫ ∞

−∞
y

∫ ∞

−∞
f(x, y)dxdy (4.39)

Performing the inner integrals, we may prove that we get the marginal density
functions of X and Y , fx(x) and fy(y):

E[aX + bY] = a

∫ ∞

−∞
xfx(x)dx+ b

∫ ∞

−∞
yfy(y)dy (4.40)

Miraculously, after performing this operation, we see that the integrals that
remain provide the expected values of X and Y ! Thus:

E[aX + bY] = aE[X] + bE[Y] (4.41)

This completes the proof! □

Now that we’ve developed some basic properties of random variables, we can
think about some other properties that might characterize the probabilistic na-
ture of random variables.
Suppose, for instance, that we have two noisy sensors that allows us to deter-
mine the position of our robot. Imagine that after taking a few measurements
of our robot’s position with both of these sensors, we arrive at the following
plots:

Above: A wide spread of data will have high variance, while a tight cluster will
have low variance.

As we can see from the image above, even though both of the sensors might
produce data with the same average (expected value), as time goes on, the
spread of the measurements taken by the two sensors might differ significantly!
To characterize how “spread out” the values of a random variable will be, we
may use a quantity known as variance.

151

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 45 Variance
Suppose X is a random variable with a probability density function f(x). The
variance of X, σ2

X is defined:

σ2
X = E[(X − µX)2] =

∫ ∞

−∞
(x− µX)2f(x)dx (4.42)

Where µX = E[X], the expected value of X.

As we can see from the definition above, the variance of a random variable tells
us the expected squared distance of the random variable to its mean! The higher
the squared distance between the random variable and the mean, the wider the
spread of the values of the random variable will be.
Note that we take the squared distance to the mean so symmetric spreads around
the mean of the variable don’t cancel one another out and give zero variance.

Above: By finding the expected square distance of our random variable to the
mean, we can find variance.

Based on the sensor measurements discussed above, we would expect the first
sensor to have a high variance in its measurements, as it has a wide spread of
data, and the second sensor to have a small variance, as the measurements as
its measurements are clustered tightly around the average.
Notice how in the symbol for variance, σ2

X , we have an exponent! If we take the
square root of variance, which will give us σX , we’re left with a quantity known
as the standard deviation of a random variable. Standard deviation may be
used to help us understand the spread of the distribution in non-squared units,
as opposed to the squared distance values that variance provides.
Closely related to the concept of variance is covariance, which shares a similar
definition. Instead of just telling us about the spread of a single random variable,
covariance helps us express the relationship between two random variables.

152

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 46 Covariance
Suppose X and Y are jointly distributed random variables with expected values
µx and µy. The covariance of X and Y , denoted Σxy, is defined:

ΣXY = E[(X − µX)(Y − µY)] (4.43)

Let’s take a moment to think about what this definition expresses. Recall that
the joint probability distribution between X and Y expresses a relationship
between X and Y . Let’s think about some different possibilities for this rela-
tionship and see where covariance comes into the picture.
First, imagine that we have the following relationship: if X frequently takes on
a value higher than its mean, then Y will also frequently take on a value higher
than its mean. This means that X − µX and Y − µY will both frequently be
positive, which will give a positive covariance ΣXY .
Similarly, if X frequently being lower than its mean implies that Y will fre-
quently be lower than its mean, X − µX and Y − µY will both frequently be
negative, and ΣXY will again be positive.
Because of these relationships, we say that the covariance of X and Y , ΣXY ,
measures the tendency of two random variables to move up or down in their
values together. Using this idea, if X and Y have a covariance of 0, there will
be no correlation between the changes in values of X and Y . Thus, if ΣXY = 0,
we say that X and Y are uncorrelated random variables. Note that all inde-
pendent random variables are uncorrelated.
Notice how our notation for covariance means that the variance of a single ran-
dom variable, σ2

X , may also be denoted ΣXX , as the definitions of ΣXX and σ2
X

will be the same.

ΣXX = E[(X − µX)(X − µX)] = E[(X − µX)2] = σ2
X (4.44)

Random Vectors

Thus far, we’ve constrained our discussion of probability to the theory of scalar
random variables. In robotics, however, we know that when dealing with quan-
tities such as position and velocity, we require vectors.
How can we extend the concepts of probability we’ve developed thus far to the
vector case? By placing a set of jointly distributed random variables together
in a vector, we can form random vectors that describe higher dimensional
probabilistic systems.
Let’s define random vectors a little bit more formally to assign some mathemat-
ical meaning to this idea.

153

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Definition 47 Random Vector
Let X1, X2, ..., Xn be scalar random variables with a joint probability density
function f(x1, ..., xn). The vector:

X =

X1

...
Xn

 ∈ Rn (4.45)

Is called a random vector.

As we can see from the definition above, random vectors are simply collections
of potentially related random variables that have been organized in a vector.
Using this definition, we may extend concepts from scalar random variables up
to random vectors without too much trouble. For instance, the expected value
of a random vector X = [X1, ..., Xn]

T is defined:

E[X] =

E[X1]
...

E[Xn]

 =

µX1

...
µXn

 (4.46)

As we can see from the above, the expected value of a random vector is simply
a vector containing the expected values of each random variable within the
random vector.
When defining quantities such as variance and covariance for random vectors, we
must change our approach slightly! Recall that the variance of a single random
variable X is defined:

σ2
X = E[(X − µX)2] (4.47)

If we were to try and directly apply this definition to a vector, however, we
wouldn’t be able to, as we can’t take the exponent of a vector quantity! Simi-
larly, we can’t define the covariance of two random vectors X and Y using our
original definition:

ΣXY = E[(X − µX)(Y − µY)] (4.48)

Since we can’t directly take the product of two vectors. To get around these
problems, we redefine the covariance in a more general sense as follows:

Definition 48 Covariance of Random Vectors
Let X ∈ Rn and Y ∈ Rm be two random vectors. The covariance of X and Y ,
ΣXY , is defined to be the matrix:

ΣXY = E[(X − µX)(Y − µY)
T] ∈ Rn×m (4.49)

154

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Thus, for the more general case of a random vector, covariance provides us with
a matrix, each entry of which expresses the relationship between the elements
of the random vector X and the elements of the random vector Y .
Note that instead of using variance to describe the spread of a single random
vector X, moving forward we’ll simply use the covariance of the random vector
X with itself:

ΣXX = E[(X − µX)(X − µX)T] ∈ Rn×n (4.50)

Note that in practice, the covariance of a vector with itself is often written as
ΣX for short.
Notice how these matrix definitions reduce to our original definitions for variance
and covariance when n = 1! Just as with the n = 1 case, if the covariance of two
random vectors X and Y is the zero matrix, we say that the random vectors
are uncorrelated.

4.1.3 The Gaussian Distribution

Now that we’ve covered a fairly significant body of work in probability, we
can discuss one of the most important distributions in all of probability, the
Gaussian (normal) distribution. For a single scalar random variable X ∈
R, the Gaussian distribution is defined according to the following probability
density function:

Definition 49 Gaussian Distribution
Let X ∈ R be a scalar random variable. X is said to be Gaussian (normally)
distributed with mean µX and variance σ2

X if it has the probability density func-
tion:

f(x) =
1√
2πσ2

X

exp
(
− (x− µX)2

2σ2
X

)
(4.51)

Where exp is the exponential function ex.

Note that if X is a random variable with a Gaussian probability density function
of mean µX and variance σ2

X , we often specify its distribution using the notation:

X ∼ N (µX , σ
2
X) (4.52)

Where ∼ means “is distributed as.” Note that the symbol N comes from the
alternate name of the Gaussian distribution: the normal distribution.
When plotted on a set of axes, the Gaussian density forms a smooth, symmetric
bell-shaped curve that extends to +∞ and −∞.

155

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Above: A Gaussian PDF of mean µX and variance σ2
X .

Let’s extend the definition of the Gaussian distribution from a single random
variable X to a random vector X = [X1, ..., Xn]

T ∈ Rn.

Definition 50 Multivariate Gaussian
If X is Gaussian distributed random vector with a mean µX ∈ Rn and a co-
variance matrix ΣX ∈ Rn×n, we may define its probability density function
according to the multivariate Gaussian density function:

f(x) =
1√

(2π)n|ΣX |
exp

(
− 1

2
(x− µX)TΣ−1

X (x− µX)
)

(4.53)

Where |ΣX | is the determinant of the covariance matrix ΣX .

In this case, we may indicate that X is Gaussian distributed using the same
shorthand as before:

X ∼ N (µX ,ΣX) (4.54)

Similarly to the one dimensional Gaussian PDF, the multivariate Gaussian PDF
takes on a symmetric bell-shape that extends to infinity in all directions. If
X ∈ R2 is a Gaussian random vector, for instance, we may plot its PDF as:

Above: A multivariate Gaussian density.

156

ME/EECS/BioE C106B Robotic Manipulation & Interaction

The Gaussian distribution is of fundamental importance in probability theory.
Amazingly, it can be proven for many distributions that by adding independent
random variables of the same distribution, we get a random variable whose dis-
tribution approaches a Gaussian as the number of variables in the sum approach
infinity!
This famous result, known as the central limit theorem, hints at the univer-
sal importance of the Gaussian distribution across probability theory.
Because of this property and many others, the Gaussian distribution will be
at the core of our developments in robotic state estimation. Note that in our
treatment of this material, we’ll avoid going too deep into the mathematical
properties of this distribution, and will rather keep our focus on the major
highlights and results.
For a more mathematically detailed treatment of this material, you’re encour-
aged to reference chapter 2 of Optimal Control and Estimation by Stengel.

4.1.4 Conditional Probability

Let’s take a moment to bring our discussion of probability back to robotics.
When taking measurements of robotic systems with noisy sensors, we’re often
faced with the problem of finding the best estimate of the current state of the
system based on measurements we’ve taken in the past.
Is there some way we can use probability to best inform our estimate of the
current state of the system using results we’ve observed in the past? The concept
of conditional probability will help us answer this question, and will allow us use
information we’ve observed about our system to make more accurate predictions.
Let’s discuss some of the core concepts of conditional probability!
Imagine we have two random variables, X and Y , which have a joint probability
density function f(x, y). We know that the joint distribution f(x, y) describes
some sort of relationship between the random variables X and Y .
Using this joint distribution, can we make use of the relationship between X
and Y and find how our knowledge of X changes when we know Y has a certain
value? We may define the following probability density function, known as the
conditional density, to answer this question.

Definition 51 Conditional Density Function
Suppose X and Y are jointly distributed random variables or vectors with joint
density f(x, y). If we know that Y has the value y1, we define the conditional
density of X given Y = y1 to be the function:

fX|Y=y1
(x) =

f(x, y1)

fY (y1)
(4.55)

Where fY is the marginal density of Y .

157

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Based on the definition above, we may find the conditional distribution of X
given Y = y1 by considering the joint distribution of X and Y , and normalizing
by the value of the density of Y when Y = y1. This gives us a new distribution
for X based on the relationship between X and Y and the knowledge that Y =
y1. Note that the notation X|Y = y1, which is used in conditional probabilities,
is read as “X given Y = y1.”
Using the conditional distribution, we define conditional expectation, which
gives the expected value of X given Y = y1, as:

µX|Y=y1
= E[X|Y = y1] =

∫ ∞

−∞
xfX|Y=y1

(x)dx (4.56)

Observe that the only difference between the definition of conditional expecta-
tion and standard expectation is that we use the conditional density of X given
Y = y1 instead of the standard unconditional density of X when taking the
expected value integral.
Using conditional expectation, we define the conditional covariance of a random
variable or vector X as:

ΣX|Y=y1
= E[(X − µX|Y=y1

)(X − µX|Y=y1
)T] (4.57)

Where the only difference to the standard definition of covariance is that we
use the conditional expectation of X rather than the standard unconditional
expectation in the definition of covariance.
By examining these quantities, we can determine how knowing Y = y1 influences
our knowledge of the properties of X. Note that if X and Y are independent
random variables or vectors, knowing the value of Y should give us no new
information about the values of X!
Because of this, in the case where X and Y are independent, the conditional
density of X given Y = y1 is simply the same as the original marginal density
of X, as knowing the value of Y gives us no new information about X.

fX|Y=y1
(x) = fX(x) (For X,Y independent R.V.s) (4.58)

4.1.5 Random Processes

In robotics, we know that we can use discrete time sequences to describe the
behavior of robotic systems. Recall that earlier, we developed models for our
systems of the form:

xk+1 = Axk +Buk (4.59)

Where k is an integer that describes the current time step of the system. Note
that the notation xk is equivalent to x(k) - the two can be used interchangeably
depending on which is more convenient.
Using such relationships, we were able to describe the motion of discrete time
systems through sequences of the form:

x0, x1, x2, ... (4.60)

158

ME/EECS/BioE C106B Robotic Manipulation & Interaction

A key property of these sequences was that they were deterministic - there was
no randomness involved in the description of these sequences at each point in
time, and we therefore assumed perfect knowledge of xk.
Let’s think about how we can apply the tools of probability to describe these
sequences when each term in the sequence is not a deterministic vector xk, but
rather a random vector Xk.

X0, X1, X2, ... (4.61)

After developing some theory for random sequences, we’ll be ready to bring our
knowledge of probability back to robotic systems to solve practical problems in
state estimation!
Fortunately, the probabilistic tools we’ve developed thus far extend nicely to the
description of random sequences. One difference to note is that the probability
distribution of our random vector Xk now has the potential to change with k.
At each time step k, we may therefore define the expected value of Xk using
our standard definition as:

µXk
= E[Xk] =

∫ ∞

0

xf(x, k)dx (4.62)

Where the density of our random vector Xk now has the potential to change
with respect to k. Note that in some literature, when it is clear that the random
vector in question is X, the value µXk

is simply written in shorthand as µk.
When defining the covariance of a random vector sequence, we have to be a
little bit more precise! Since the properties of the density of X now have the
potential to change with k, it’ll be informative not only to take the covariance of
Xk with Xk, but also to take the covariance of Xk with Xj - the random vector
at a different point in the sequence! This brings us to the following definition:

Definition 52 Auto-Covariance
The auto-covariance of a random vector sequence Xk is defined to be the covari-
ance of X between two points, k and j, in time:

ΣXkXj
= E[(Xk − µXk

)(Xj − µXj
)T] (4.63)

When it is clear that the random vector in question is X, ΣXkXj may be written
in shorthand as Σkj .
This definition helps us express the relationship between the random vector
sequence Xk and itself at different points in time! With this idea in mind, let’s
consider the following scenario. Suppose the auto-covariance of a random vector
sequence Xk has the following property, where ΣX ̸= 0:

ΣXkXj =

{
ΣX if k = j

0 if k ̸= j
(4.64)

159

ME/EECS/BioE C106B Robotic Manipulation & Interaction

In this case, we see that Xk is only correlated with itself, and no other Xj in the
random sequence! In this case, the next random vector in the sequence has no
relation to the current random vector in the sequence! This property frequently
appears when describing the noise experienced by sensors.
Just like we can define a covariance between a random sequence and itself at
different points in time, we can define the a covariance between two entirely
different random sequences.

Definition 53 Cross-Covariance
Suppose Xk ∈ Rn and Yk ∈ Rm are two random sequences. The cross-covariance
between Xk at time k and Yk at time j is defined:

ΣXkYj
= E[(Xk − µXk

)(Yj − µYj
)T] (4.65)

This quantity expresses the relationship between the elements of X at time k
and Y at time j. If ΣXkYj

= 0 for all values of k and j, the sequences Xk and
Yk are said to be uncorrelated.
Using these definitions, we may easily extend the ideas of conditional expecta-
tion and covariance from single random vectors to sequences of random vectors
by replacing densities with conditional densities and expectations with condi-
tional expectations. Let’s get to work on applying these concepts to robotic
systems!

160

ME/EECS/BioE C106B Robotic Manipulation & Interaction

4.2 Stochastic Estimation

Let’s tackle the problem of optimal state estimation in robotics. We know that
the sensors which provide us with position, orientation, and velocity informa-
tion about our system all experience noise. How can we filter this noise out to
provide the best possible estimate of where our system actually is?
In this section, we’ll piece together the Kalman filter, a famous filtering tech-
nique with extensive applications in robotics and control. Let’s begin our de-
velopment of this technique by formally analyzing the effect of noise on robotic
systems.

4.2.1 Stochastic Dynamical Systems

In the previous section, we performed an expository discussion of random vector
sequences, mathematical objects which model processes that evolve randomly
in time. When modeling the noise experienced by systems, these random vector
sequences will be an incredibly useful tool. Let’s see how this is!
We’ll begin by reviewing the formulation for a discrete time linear system, which
will be the cornerstone of our results in this section. We stated that in discrete
time, we may model a linear system using the following set of equations:

xk+1 = Axk +Buk (4.66)

yk = Cxk (4.67)

Where xk ∈ Rn indicates the state vector of the system at time k, uk ∈ Rm

represents the input to the system at time k, and yk ∈ Rp is the output of
the system at time k. In the past, when discussing the control of dynamical
systems, we thought of the output yk of the system to be a vector containing
the variables we want to control.
In the context of estimation, however, we define the output of the system to be
a vector of variables that we can measure. For instance, if we had a turtlebot
with a state vector:

xstate =

xy
ϕ

 (4.68)

But our sensors only gave us the ability to directly measure x and y, the output
of our system would be the vector:

yout =

[
x
y

]
(4.69)

As these are the two quantities we have the ability to measure.
Let’s think about how we can effectively model random noise for this class of
systems. When discussing the effect of noise on dynamical systems such as the
above, we will consider two separate classes: process noise andmeasurement
noise. Let’s discuss the differences between these two classes.

161

ME/EECS/BioE C106B Robotic Manipulation & Interaction

The process noise is a vector of noise that impacts the actual evolution of the
system’s state vector. For instance, if a random disturbance were to be applied
to the turtlebot at each step in time, the disturbance would be considered an
example of process noise! If we fly a quadrotor through an area with winds that
change randomly with time, the force the winds apply to the quadrotor would
also be considered process noise.
Since this noise directly impacts how the state vector of the system changes,
the total process noise is a term that appears directly in the state equation, the
equation which governs the dynamics of the system.
We can model the process noise by adding a random vector sequence wk ∈ Rn

to the state equation! To model the effect of process noise disturbances on the
linear system, we therefore use a state equation of the form:

xk+1 = Axk +Buk + wk (4.70)

Since the equation determining the change of the state vector in time now has
a random term wk in it, we know that the overall evolution of the state vector
xk must be random! Thus, xk itself becomes a random vector sequence when
we add process noise into the system. When a system becomes noisy and is
governed by random processes, we say it is stochastic.
Let’s discuss the second class of noise. Whereas process noise directly influences
how the actual state vector of the system changes, measurement noise simply
influences how noisy our sensor measurements of the system are - it has no
actual influence on the dynamics of the system.
If we were to have zero sensor noise, we would be able to perfectly read the
outputs of the system as time progresses. The more measurement noise we
have, the harder it is to get an accurate reading of the output of the system.
Since the measurement noise only influences the measurements we take of the
system, it will only appear in the output equation of the system. We can model
measurement noise through a random vector sequence vk ∈ Rp, where p is the
size of the output vector. By adding this noise to the output equation, we can
accurately model real-world noisy sensors.

yk = Cxk + vk (4.71)

Overall, we can think of the effects of process noise and measurement noise on
the system through the following diagram:

Above: Noises may be added to the state and output equations of the system.

162

ME/EECS/BioE C106B Robotic Manipulation & Interaction

As we can see in the graphic above, we can think of process and measurement
noises as being injected into the system at different points, and disturbing both
the state vector and the measurements, respectively.

Standard Noise Assumptions

When describing the types of process and measurement noise applied to the
system, there are several important properties we have to specify. Let’s discuss
some common assumptions we make when specifying process and measurement
noise.
Firstly, we must specify the expected values of the process and measurement
noises. Typically, we’ll assume that both the process and measurement noise
have zero expected value for all time:

µwk
= E[wk] = 0 ∈ Rn (4.72)

µvk = E[vk] = 0 ∈ Rp (4.73)

Let’s think about real-world systems, and reason about why zero expected value
is a reasonable assumption for noise. Consider sensor noise, for instance. If
the noise experienced by a sensor has nonzero expected value, then all of our
measurements will effectively be shifted from the true value by a constant!

above: Noise with nonzero expected value will cause sensor readings to be offset
from the true value.

In this case, all of our measurements will be offset by some constant, and our
sensor will never accurately measure our system. We typically assume that our
sensors are well-calibrated, so that there will be no constant offsets with respect
to the true value of the system’s state. This means that as long as our sensors
are well-calibrated, we should assume zero expected value for noise.
What else do we need to specify? It’s also important that we specify the auto-
covariance of the process noise. Recall from the previous section that the auto-
covariance of a random process tells us how the value of a random process at
one instant in time is correlated with the value of the random process at another
instant in time.
Typically, we’ll assume that the value of the noise at a time k is uncorrelated
with the value of the noise at a time j, as long as j ̸= k. This means that the
values of the noise at different instants in time have no effect on one another -

163

ME/EECS/BioE C106B Robotic Manipulation & Interaction

they’re entirely random!
Furthermore, we’ll assume that the auto-covariance of the noise with itself at
the same instant in time does not depend on the index, k. This means that
the relationships between each element in the noise vector are always the same,
regardless of time.
Based on these assumptions, the measurement and process noise have auto-
covariances defined as:

Σwkwj
=

{
Σw if k = j

0 if k ̸= j
(4.74)

Σvkvj =

{
Σv if k = j

0 if k ̸= j
(4.75)

Where Σw and Σv are the covariances between the random vectors wk and vk
between themselves at any instant in time.

Σw = E[(wk − µwk
)(wk − µwk

)T] (4.76)

Σv = E[(vk − µvk)(vk − µvk)
T] (4.77)

Recall that our assumptions state that these covariances do not depend on k.
Why are these assumptions reasonable to make? Typically, when considering
random noise experienced by sensors, the random noise experienced by the sen-
sor at one instant in time does not influence the random noise experienced by
the sensor at the next instant in time.
Furthermore, we assume that the actual characteristics of the sensor and the
process noise largely remain constant with respect in time, which means that
the covariances Σw and Σv should remain constant.
Since these two properties are such common assumptions to make, whenever
random processes satisfy the conditions above on expectation and covariance,
they are known as white noise random processes.
Now that we’ve discussed the auto-covariance of our noises, what about the
cross-covariances? Typically, we assume that the noise experienced by the sen-
sors and that random disturbances applied to the system have no relation to each
other! We can express this mathematically by stating that the cross-covariance
between the process noise wk and the measurement noise vk is zero at all times.
Thus, we write:

Σwkvj = E[(wk − µwk
)(vj − µvj)

T] = 0 (4.78)

In addition to assuming that our random processes will be white noise and
uncorrelated, we’ll also generally assume that their distributions at each point
in time are Gaussian, as most sensor and process noises may be modeled as
Gaussian processes. To express that wk, vk are white noise, Gaussian random
processes, we may write:

wk ∼ N (0,Σw) ∈ Rn (4.79)

vk ∼ N (0,Σv) ∈ Rp (4.80)

164

ME/EECS/BioE C106B Robotic Manipulation & Interaction

Where 0 refers to the mean of the random process and Σw,Σv refer to the
covariances. Note that we may use this notation for all k since we assume
Σw,Σv are constant in time.

Stochastic Initial Conditions

Earlier, when discussing the evolution of deterministic (non-noisy) discrete time
systems, we required an initial condition, x0, to completely describe the states
the system travels to in time.
Once we had the initial condition, we could repeatedly apply the state equation
to figure out where the system would go. For instance, we could compute x1 by
calculating:

x1 = Ax0 +Bu0 (4.81)

And so on for x2, x3, ..., xn. How might we perform a similar calculation for
a stochastic system with process noise? Since the system experiences process
noise at all point in time, specifying a deterministic initial condition is no longer
sufficient!
Now, instead of providing a deterministic initial condition x0, we must specify
a probability distribution for x0. In particular, it’ll be important for us to know
the expected value of x0 and the auto-covariance of x0 with itself at time 0.

µ0 = E[x0] (4.82)

Σ0 = E[(x0 − µ0)(x0 − µ0)
T] (4.83)

Once we know these properties and the probability distribution of the initial
condition, we’ll be ready to take on problems in state estimation.

4.2.2 The Kalman Filter

In this section, we’ll finally propose a solution to the problem of state estimation
that we’ve been building towards. Let’s state our goal in state estimation a
little bit more precisely. Imagine that we have a linear stochastic system with
measurement and process noise that can be described by uncorrelated Gaussian
white noise processes, wk and vk:

xk+1 = Axk +Buk + wk, wk ∼ N (0,Σw) (4.84)

yk = Cxk + vk, vk ∼ N (0,Σv) (4.85)

Suppose we have a sensor that gives us a sequence of measurements at each
time step up until time k:

{y0, y1, .., yk} (4.86)

Where these measurements are taken according to the noisy output equation
yk = Cxk + vk. How can we use all of these noisy measurements to make the

165

ME/EECS/BioE C106B Robotic Manipulation & Interaction

best possible guess of our entire state vector at time k?
Let’s discuss some of the challenges involved in this process. Firstly, we’ll need
to find some method of filtering out the noise from our measurements, despite
the noise in the measurement being governed by a completely random white
noise process.
Secondly, we want to reconstruct our entire state vector just from a set of partial
measurements of the system! Recall that earlier, when discussing a turtlebot,
we considered an example where our sensors only provided noisy measurements
of x, y but our state vector contained x, y, ϕ. There may be additional quantities
in the state vector that we can’t directly measure but we’d still like to estimate.
Let’s frame this estimation problem more mathematically!

Least Squares Estimation

Let’s try and frame the problem of optimal estimation of our state vector as
an optimization problem. First, we’ll define the variable x̂k to represent our
estimate of the state of the system at time k. At each time step k, what
properties would we like our estimate x̂k to have?
We’d like our estimate x̂k to have the smallest possible error with respect to the
true state of our system, xk. Thus, we’d like our estimate x̂k to minimize:

||xk − x̂k||2 (4.87)

Note that we square the magnitude above so that we may more easily use
techniques from linear algebra to solve our optimization problem. How can we
frame this optimization problem to find x̂k that minimizes ||xk − x̂k||2?
Firstly, we notice that xk is a random variable, as we have process noise in our
system. Thus, we cannot directly minimize this quantity, as ||xk − x̂k||2 has a
random value! Therefore, instead of minimizing ||xk − x̂k||2 directly, we seek to
minimize the expected value of ||xk − x̂k||2.
What else should we consider? When solving this optimization problem, we
want to make use of as much information we know about our system as possible.
Thus, we can use the measurements we’ve taken of the states x0, .., xk:

{y0, y1, ..., yk} (4.88)

To inform our estimate x̂k of the system’s state.
To make use of these measurements, instead of directly minimizing the expecta-
tion of ||xk − x̂k||2, we can minimize the conditional expectation of ||xk − x̂k||2
given that the measurements y0, ..., yk have been taken of our system’s state.
All together, we’d like to solve the following optimization problem for x̂∗k, our
optimal estimate of the state at time k:

x̂∗k = arg min
x̂k∈Rn

E[||xk − x̂k||2|y0, ..., yk] (4.89)

Where |y0, ..., yk expresses the fact that the measurements y0, ..., yk are given.
By expanding the expression inside the expectation, we can prove that the

166

ME/EECS/BioE C106B Robotic Manipulation & Interaction

solution to this optimization problem is given by the following:

x̂∗k = E[xk|y0, ..., yk] (4.90)

Thus, the best possible estimate of our system’s state at time k is given by the
conditional expectation of xk given that the measurements y0, ..., yk have been
taken. Since this estimate minimizes the squared error, this solution is called
the least squares estimate of the state vector.
For Gaussian process and measurement noises, we can miraculously solve for
the conditional expectation, E[xk|y0, ..., yk], in closed form. If we place all of
our measurements y0, ..., yk together into a large vector:

Y = [yT0 , ..., y
T
k]

T (4.91)

We can prove that we can solve for the conditional expectation E[xk|y0, ..., yk] =
E[Xk|Y] using:

E[xk|Y] = E[xk] + ΣxkY Σ
−1
Y Y (Y − E[Y]) (4.92)

Where ΣxkY is the covariance between xk and Y and ΣY Y is the covariance
between Y and itself.
Although this closed form solution does give us an optimal solution to the
problem, is it the most convenient and computationally efficient solution? Let’s
think about some challenges that might come up with using this form of the
least squares solution for robotic systems.
As time passes, Y , our vector of measurements, will become larger and larger.
This means that the covariance matrix:

ΣY Y ∈ Rk×k (4.93)

Will also become larger and larger. Examining the formula for conditional ex-
pectation from above, we notice that we must take the inverse of this matrix,
Σ−1

Y Y , when computing the least squares solution. Thus, after taking many mea-
surements of this system, this matrix will become inefficient to invert!
How can we make use of all k measurements of the system while keeping an
efficient solution? To answer this question, we’ll develop a recursive state esti-
mation method called Kalman filter.

Recursive Estimation with the Kalman Filter

To avoid having to invert this large matrix ΣY Y as time goes on, we may
rewrite the solution to the least squares error estimation problem recursively. By
deriving a recursive relationship between the system dynamics, noise properties,
and expected values, we can efficiently compute the least squares estimate of a
noisy system’s state for any number of measurements.
The Kalman filter is the name of the set of equations that recursively compute
the least squares solution to the estimation problem. For linear systems, since
the Kalman filter equations provide the least squares solution, the Kalman filter

167

ME/EECS/BioE C106B Robotic Manipulation & Interaction

is provably the optimal least squares estimator.
Before we write out the equations of the Kalman filter, let’s develop a little bit
of notation to make our formulation of the filter cleaner. Firstly, let’s introduce
some notation for conditional expectation. For convenience, we’ll write the
conditional expectation of xk given the measurements y0, ..., yj as:

µk|j = E[xk|y0, ..., yj] (4.94)

We’ll use similar notation to easily write the conditional covariance of xk given
measurements y0, ..., yj :

Σk|j = E[(xk − µk|j)(xk − µk|j)
T] (4.95)

This notation will prove convenient when writing out the estimation equations.
In terms of this notation, we may define the Kalman filter as follows.

Theorem 7 Kalman Filter
Given a system xk+1 = Axk + Buk + wk, yk = Cxk + vk, where wk, vk are
uncorrelated, white noise random sequences, the following equations, which form
the Kalman filter, give the best least squares estimate of the state vector.

µk+1|k = Aµk|k +Buk (4.96)

Σk+1|k = AΣk|kA
T +Σw (4.97)

µk+1|k+1 = µk+1|k +Σk+1|kC
T (CΣk+1|kC

T +Σv)
−1(yk+1 − Cµk+1|k) (4.98)

Σk+1|k+1 = Σk+1|k − Σk+1|kC
T (CΣk+1|kC

T +Σv)
−1CΣk+1|k (4.99)

At each point in time, the estimate µk|k provides the best possible estimate of
the state vector xk using the measurements y0, ..., yk with respect to the least
squares distance to the actual value of xk.
Let’s review the role of each of these equations in recursively constructing the
best estimate of the state. Let’s begin with the first two equations:

µk+1|k = Aµk|k +Buk (4.100)

Σk+1|k = AΣk|kA
T +Σw (4.101)

The first equation gives us a prediction of the state xk+1 given that we’ve taken
measurements y0, ..., yk. To compute the estimate of the state at time k + 1,
this equation makes use of the state equation to predict where the system will
be one time step in the future, starting from the estimated state µk|k. Notice
that this equation relies entirely on the system dynamics to predict the next
state. Similarly, the second equation uses the system dynamics to predict the
conditional covariance at the next time step.
Since these equations predict the future of the system based on the current

168

ME/EECS/BioE C106B Robotic Manipulation & Interaction

measurements, they are often known as the predictor equations.
Let’s examine the differences between the first two state estimation equations
and the second two. The second two equations state:

µk+1|k+1 = µk+1|k +Σk+1|kC
T (CΣk+1|kC

T +Σv)
−1(yk+1 − Cµk+1|k) (4.102)

Σk+1|k+1 = Σk+1|k − Σk+1|kC
T (CΣk+1|kC

T +Σv)
−1CΣk+1|k (4.103)

Let’s examine the equation for µk+1|k+1 first. As we can see, as opposed to
purely using the system dynamics, like µk+1|k, the equation for µk+1|k+1 relies
on yk+1, the measurement taken at time k + 1. Additionally, it uses the esti-
mate µk+1|k that we made purely from the system dynamics. We find a similar
comparison between the equations for Σk+1|k+1 and Σk+1|k.
Since the second two equations use the current measurement of the system to
correct the estimate we made purely from system dynamics, they are often re-
ferred to as the corrector equations.
Through a continual process of predicting using the system dynamics and cor-
recting using the latest measurement of the system, we’re able to gain the least
squares estimate of our system’s state in an entirely recursive manner. Notice
how the number of calculations required in each step never changes, unlike in
our simple least squares formula!
Let’s summarize how we may apply the Kalman filter to linear systems with a
step-by-step process.

Definition 54 Kalman Filter Algorithm
To optimally estimate the state of a linear system using the Kalman filter, apply
the following procedure.

1. Initialize the filter with µ0|−1 = E[x0] and Σ0|−1 = Σ0, where E[x0] and Σ0

are provided by the probability distribution of the initial condition. Note
that the −1 signifies that no measurements have been taken yet.

2. Take a first measurement y0 of the system at time k = 0.

3. Apply the corrector equations to find µ0|0 and Σ0|0, the state estimate and
covariance using the first measurement:

µ0|0 = µ0|−1 +Σ0|−1C
T (CΣ0|−1C

T +Σv)
−1(y0 − Cµ0|−1) (4.104)

Σ0|0 = Σ0|−1 − Σ0|−1C
T (CΣ0|−1C

T +Σv)
−1CΣ0|−1 (4.105)

4. Apply the predictor equations to predict the state of the system and the
covariance one step in the future:

µ1|0 = Aµ0|0 +Bu0 (4.106)

Σ1|0 = AΣ0|0A
T +Σw (4.107)

Where u0 is the first input sent to the system.

169

ME/EECS/BioE C106B Robotic Manipulation & Interaction

5. Take a measurement y1 of the system at time k = 1.

6. Apply the corrector equations to find µ1|1 and Σ1|1, the state estimate and
covariance using the first two measurements:

µ1|1 = µ1|0 +Σ1|0C
T (CΣ1|0C

T +Σv)
−1(y1 − Cµ1|0) (4.108)

Σ1|1 = Σ1|0 − Σ1|0C
T (CΣ1|0C

T +Σv)
−1CΣ1|0 (4.109)

7. Repeat steps 4-6 to continually find the best estimate µk|k of xk.

You’re encouraged to try deriving the different update steps of the Kalman
filter equations - linearity of expectation and the uncorrelation between the
noise sequences wk and vk will be particularly useful in this derivation. For a full
derivation of the equations and the different forms of the Kalman filter, Optimal
Control and Estimation by Stengel is a helpful reference. For a derivation of
a continuous time version of the Kalman filter, Optimization-Based Control by
Murray is useful.

4.2.3 Observability

So far in our development of the Kalman filter, we’ve assumed that recovering
the state vector xk from a set of noisy measurements y0, ..., yk is always possible.
Is this a valid assumption, or are there some cases where we can’t recover the
entire state vector of the system? Consider the following linear system, which
has no noise applied:

xk+1 =

[
1 0
0 1

]
xk +

[
0
1

]
uk (4.110)

yk =
[
1 0

]
xk (4.111)

Examining the output equation, we see that the only term in the output vector
is xk1, the first element of the state vector. Can we use the output measurements
yk of this system to fully reconstruct the values of xk?
When we look at the state equation of the system, we see that the dynamics
of xk1 and xk2 are entirely decoupled - there are no cross-terms that relate xk1
and xk2 at any points in time! Due to this lack of relation, we have no way to
fully reconstruct the state vector xk from the partial measurements yk = xk1 of
the state vector. Is there some way we can check for a problem like this in an
arbitrary system? Consider the following definition.

Definition 55 Observability
A linear discrete time system is said to be observable at time k if there exists

170

ME/EECS/BioE C106B Robotic Manipulation & Interaction

some time j ≥ k such that knowing the inputs uk, uk+1, ..., uj and the outputs
yk, yk+1, ..., yj is enough to recover the full state vector xk at time k.

Thus, if a system is observable, we’ll be able to determine the full state vector
of the system just from our knowledge of inputs and measurements. Using this
definition, we would say that the example above is an unobservable system, as
we cannot determine x from y and u.
How can we determine if an arbitary linear system is observable or not?

Proposition 9 Linear Observability Matrix
Consider a linear system xk+1 = Axk +Buk, yk = Cxk +Buk, where xk ∈ Rn.
If the following matrix has rank n, the system is observable.

O =

C
CA
...

CAn−1

 (4.112)

This matrix is known as the observability matrix.

Using the observability matrix, we can tell if we’ll be able to reconstruct the
entire state vector of our system from partial measurements. Notice how the
definition of the linear observability matrix closely mirrors the definition of
the linear controllability matrix! This similarity, which appears in many other
results in control, hints at an underlying duality between the control and esti-
mation of dynamical systems.

171

	Dynamical Systems
	Modeling Dynamical Systems
	Classifying Dynamical Systems
	Solving Differential Equations
	Equilibrium Points
	Linearization
	Discrete Time Systems

	Mathematical Preliminaries
	Quantifiers
	Neighborhoods
	Bounds
	Closed & Compact Sets

	Stability
	Naive Stability
	Lyapunov Stability
	An Energetic Approach
	Energy-Like Functions
	Lyapunov Stability Theorems

	Feedback Control Fundamentals
	Motivating Feedback
	Linear Control
	Controllability
	Stabilization

	Feedback Linearization
	SISO Feedback Linearization
	MIMO Feedback Linearization
	Dynamic Extension

	Nonholonomic Planning
	Kinematic Constraints
	Pfaffian Constraints
	Holonomic & Nonholonomic Constraints
	Equivalent Control Systems
	Lie Brackets & Controllability

	Estimation
	Elements of Probability
	Probability Spaces
	Random Variables and Vectors
	The Gaussian Distribution
	Conditional Probability
	Random Processes

	Stochastic Estimation
	Stochastic Dynamical Systems
	The Kalman Filter
	Observability

