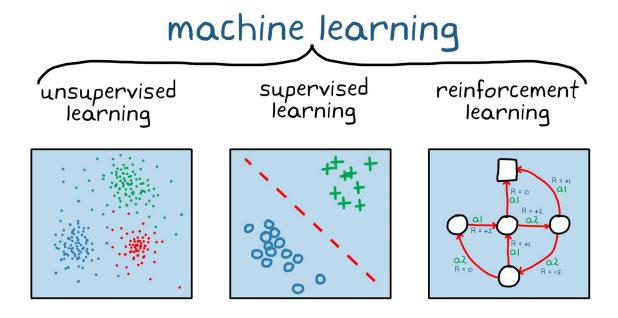
Principles of Reinforcement Learning: A Speedrun

Tarun Amarnath

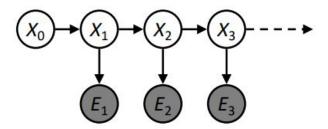


Note: Many examples derived from CS 188 content

Part 1: Hidden Markov Models

Hidden Markov Models

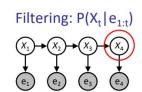
- Similar to what we covered with SLAM (but in a discrete space)
- Underlying Markov chain over states
- We can only observe evidence variable at each time step

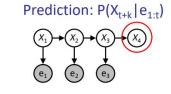


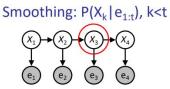
- Example of robot localization:
 - We know where the robot's been
 - We can read sensor data
 - Can we figure out a probability distribution for where we are now?

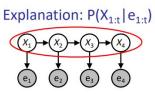
What We Have

- Given in an HMM:
 - Initial distribution P(X_0)
 - Transition model P(X_t | X_(t-1))
 - Sensor model P(E_t | X_t)
- We can do a ton of things with this!







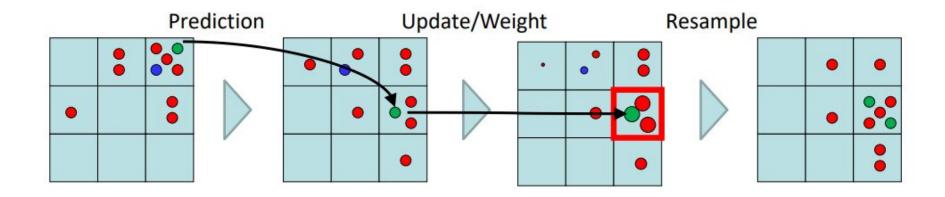


 The process for filtering has a 1) prediction and 2) update step, just as we saw in SLAM

Aside: Particle Filtering

- Solving HMMs might be computationally expensive
 - Could have too many states and transition probabilities
 - Unknown starting location
 - Ex. massive maze where the robot could be
- Instead use particle filtering
 - 1) Assign n particles to positions randomly
 - 2) Elapse time based on their transition probabilities
 - 3) Find updated distribution of state based on positions of particles
 - 4) Resample particles (reassign locations)

Particle Filtering Process

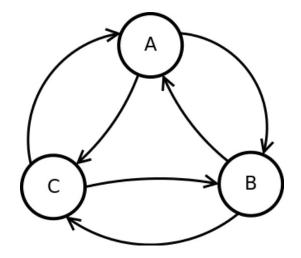


Part 2: Markov Decision Processes

Markov Decision Processes

- Set of states
- Set of actions
 - Each with some probability of going to another state (transition model)
- Reward for each transition
- Start state
- Terminal state(s)
- Discount factor to prefer sooner rewards

 Question: What action should we take from each state?



Discount Factor, $\gamma = 0.5$

S	a	s'	T(s,a,s')	R(s,a,s')
Α	Clockwise	В	1.0	0.0
Α	Counterclockwise	C	1.0	-2.0
В	Clockwise	Α	0.4	-1.0
В	Clockwise	C	0.6	2.0
В	Counterclockwise	Α	0.6	2.0
В	Counterclockwise	C	0.4	-1.0
С	Clockwise	Α	0.6	2.0
С	Clockwise	В	0.4	2.0
C	Counterclockwise	Α	0.4	2.0
С	Counterclockwise	В	0.6	0.0

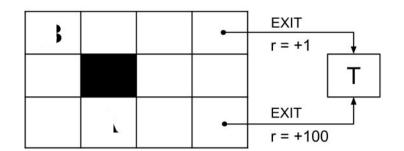
Value Iteration

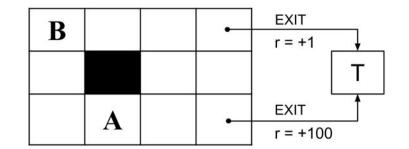
- A technique to find the best possible value we can get from a state
- Perform a Bellman update to get the utility that can be derived from starting at a particular node
- Find the action that maximizes expected utility, and then set the value of the node to that utility

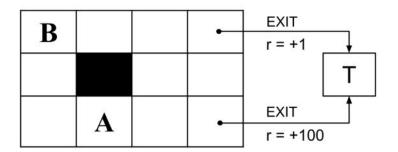
$$U_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s' \mid a,s) \left[R(s,a,s') + \gamma U_{k}(s') \right]$$

Do this for many iterations until convergence

Quick Value Iteration Example







Q Values and **Q** Iteration

- A value is the best expected reward you can get if you start at a particular state (maximized over all actions)
- A Q-value is the maximum expected reward if you start at a state and perform a particular action = Q(s, a)
 - This allows us to get the max expected rewards for each action we can perform at a state
- Bellman equation looks very similar:

$$Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

= $\sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$

Policies and Policy Iteration

- Policy: what action should you take at a particular state?
- Policy extraction (from values or Q-values):

$$\pi_{U}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s' \mid a,s) [R(s,a,s') + \gamma U(s')]$$

- Policy iteration:
 - Perform value iteration, but also keep track of which action you select
 - If the actions selected don't change, then the policy has converged (you know what you should do at some state, but not necessarily what reward it'll get you)
- Policy evaluation: follow through on the policy from some state and see what reward it gets you

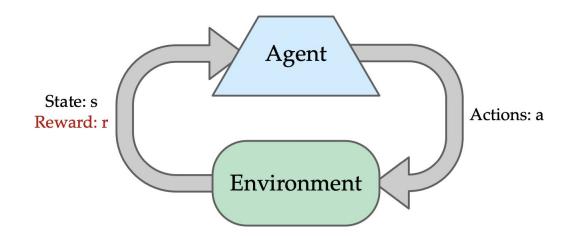
Part 3: Reinforcement Learning

Reinforcement Learning

- Huge idea in CS/robotics right now!
- In Markov Decision Processes, we had states, actions, transitions, and rewards
- We can think of Reinforcement Learning as a similar framework, but we don't know transition probabilities or rewards
- So we just try stuff to learn what works!
- And then we reinforce the good behaviors!

The Framework

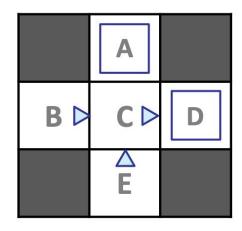
- Perform an action and get some reward for it
 - \circ Sample \rightarrow observe result
- Learn to maximize expected rewards



Model-Based RL

- Figure out the resulting state (s') you reach from a given state and action (s, a)
- Find transition probabilities for each (s, a, s')
- Find rewards for each (s, a, s')
- Learn the model, and then solve this MDP

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

$$\hat{R}(s, a, s')$$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

Model-Free RL

- Model-based has the limitation of having to construct the MDP
 - Need to figure out what the resulting state is for every action
- Instead, we can learn the control policy directly without having to determine which state we will reach
 - Decide what to do from a particular state to get the highest reward

Temporal Difference Q-Learning

- Start at a state
- Take some action
- Get some reward

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

- Update Q-value for (s, a)
- Keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Converges to optimal policy! As long as you keep going for long enough

Part 4: Generalizing to Continuous Spaces

State Space Representation

- With discrete spaces, it's easy to represent our states
- Real-world robots, however, have many more variables
- Instead use state vectors that we are used to

- Question: How can we do Q-learning if we don't have a consistent (s, a, s') because of uncertainties in the real world/continuous spaces?
 - Example: Action to move forward for 2 seconds
 - End up at slightly different final states s'

Deep Reinforcement Learning

- Neural networks can help solve this problem!
- Learn an optimal policy for each state
- Inputs:
 - Current state
 - Some kind of desired movement
- Output:
 - Optimal control policy to achieve desired movement (maximize reward)

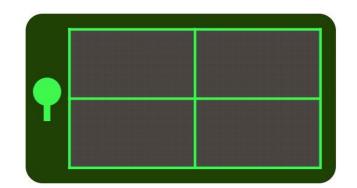
Different RL approaches have different ways of including the action

Exploration vs. Exploitation

- We want to both explore different policies and fine-tune them so they can be used effectively
- Explore a new action or choose randomly with some probability (exploration) or follow optimal policy (exploitation)
- Probability of exploration reduces as training time goes on

Ping-Pong Learning

- An example of RL used by Google researchers to create a robot that plays table tennis effectively
- RL can be sample-inefficient doesn't use data as well as it could
- Google technique combines Learning from Play and Goal-Conditioned Supervised Learning to build database and policy simultaneously



Gait Library to Inform Controller

