4:5 C106B

contra @‘ 4

Project 4 Introduction
\/

i

Tasks

Feedback Vision CBF-QP
timwmller with Vision-based safety
dynamic extension critical controller
Deadlock CBF-QP Hardware
Safety-critical controller Implementation
for multiple agents Deploy a braking

CBF-QP on turtlebots

Feedback Linearization

e How can we transform a nonlinear system into a linear
system using feedback control?
e Once we've made the system linear with feedback, how can

we design tracking controllers?

Dynamic Extension

For the turtlebot, we will have to use
dynamic extension for feedback
linearization

Augment the state and input vector
of the system to linearize
Implementing in code: use a

numerical integral

Desired Trajectory (x4(t). ya(t))

¢ (za(t),ya(t))

¢ = Aq' + Bz

12
A1 (G

w = q)z

Linear Tracking Control

How can we design an effective linear tracking controller for

|
S

S R 8.

the system?

o We'd like to track a desired trajectory qa(t) (only care

about tracking x(t), y(t) - phi(t) may be anything

o We have access to the first and second time derivatives

of qa(t)

Hint. how can we choose an input z to get stable second

order error dynamics, where e is the tracking error?

(o= [oo Ji 0w [l o=
OO -
S == D

LSC=R R

O = O O

-0 O O

- — €

C1€

coe = ()

Response Plots

o
v
=]
@
o L O o o | O
- - - - -
e Fo o o +©
Fo Fo Fo Fo o
- < < < < <
ey FeN o o FoeN
\ lw
O O O =] T o
B! 2 bic - T A 223 & 8 t
(w) sod X L ~ s 8 © o
(w) sod A (peJ) Iyd "

(s/ped) ebawo

Time (s)

Control Barrier Functions

e Imagine we have a system of many turtlebots

o May encode the safety of each turtlebot with

respect to the others using a control barrier

h(g) > 0
(q) [Xm', Yoi, ¥ o:]

function h(q) e

e We'll consider a control barrier function between »
the turtlebot we wish to control (ego turtlebot) ¢

h(g) = 0
and an obstacle turtlebot), ¢

e What should h(g) be? Z

Deadlock CBF-QP

Let’s use our control barrier function to enable a system of
multiple turtlebots to safely track trajectories
Challenge: if we apply a CBF-QP directly to a feedback
linearizing input, turtlebots will get stuck in face-off scenarios
called deadlocks

o How can we resolve these deadlocks?

Image Source: Deadlock Analysis and
Resolution for Multi-Robot Systems

Deadlock CBF-QP

e We'll apply a CBF-QP in the innermost linear layer of feedback
linearization - then pass the safe z to the outer layers

e To encourage the turtlebot to steer around obstacles, we can
weight the steering term in the input differently with a matrix Q

e Apply a barrier function constraint for each turtlebot, with

derivatives taken along the trajectories of the linear system

Zsafe = arg min (z — k(2))TQ(z — k(2))
u€R?

s.t. hz(q, Z) - klhz(Q) == k’th B O, A= 2,3, SRERNE

Deadlock CBF-QP Constraint

e Why do we need a second derivative in the constraint?
o We take the derivatives of the barrier function h(q) along

the trajectories of the linear system

<= R R
I
[,] o L o
o e & &
OO O -
OO = O
RSSO BN
o= O O
| =0 A o [=)

e The input z will not appear until we take the second derivative of
our barrier function along the trajectories of the linear system
e Challenge: how can we select the weights in the barrier constraint?
o Try solving the ODE for h(t) - for which ki, k2 is h > 0?

.

Deadlock CBF-QP Summary

Let’s summarize the structure of the CBF-QP:

Use your tracking
controller to find the
tracking zinput

Apply a CBF-QP to Convertzinputtoa Convertwinputtoau
the tracking z input w input using input via integration and
to get a safe zinput z=A(q)w sent u to the system

Deadlock CBF-QP Demo

Omega (rad/s)

X Pos (m)
o 0~ IS

IS

Y Pos (m)
~

5
o 8

([
N
S 9
8 8

D —
0 2 4 6 8 10
~ g a—

[A

V 5 w
0 i 4 6 8 10

Time (s)

Vision-Based CBF-QP

The turtlebots interact with their environment using LIDAR

sensors, which return a pointcloud in the turtlebot frame

How can we come up with a single barrier function h(q) that

encodes the safety of the system based on the pointcloud?
o Closest point, clustering, and many more methods!

o Fine if you get some deadlocks

Obstacle Pointcloud

Braking CBF-QP

We'll implement a simplified CBF-QP on hardware
We won't incorporate the full relative degree 2 constraint for

simplicity - we'll just require that our bot brakes for obstacles

Ueese = arg min [|u — k(q)| cos¢ 0]
uel g= |[sing Ofu
s.t. h(q) > —vh(q) L8 &

Now, we'll apply this CBF-QP directly over the feedback
linearizing input, k(q) to get the input usafe
Now, the derivative of h should be taken along the nonlinear

turtlebot dynamics, rather than the linear system

Braking CBF-QP

e The barrier function h(qg) should be exactly the same as your
vision-based barrier function from simulation
e Implement this controller on hardware
o Stand in the way of the turtlebot as it moves - the braking
CBF should slow the turtlebot and prevent it from crashing

o If you move towards the turtlebot, it should evade you

Braking CBF-QP Demo

https://docs.google.com/file/d/1fSE0PZoZS1D_aZUUVTSQ5LfB8O9hXw7D/preview

Using the TurtlieBots

e Remember to switch them OFF to charge
o If a TurtleBot is not sufficiently charged for the next group you may
lose points
e Carry them by the base
e Watch where they’re going!
o Beready to press Ctrl + C

e Refer to the Robot Usage Guide for setup

