
EECS C106B
Safe
Control
Project 4 Introduction

Feedback
Linearization

Deadlock CBF-QP
Safety-critical controller
for multiple agents

Tracking controller with
dynamic extension

Tasks

Vision CBF-QP
Vision-based safety
critical controller

Hardware
Implementation
Deploy a braking
CBF-QP on turtlebots

1

2

3

4

Feedback Linearization
● How can we transform a nonlinear system into a linear

system using feedback control?

● Once we’ve made the system linear with feedback, how can

we design tracking controllers?

Dynamic Extension
● For the turtlebot, we will have to use

dynamic extension for feedback

linearization

● Augment the state and input vector

of the system to linearize

● Implementing in code: use a

numerical integral

Linear Tracking Control
● How can we design an effective linear tracking controller for

the system?

○ We’d like to track a desired trajectory qd(t) (only care

about tracking x(t), y(t) - phi(t) may be anything

○ We have access to the first and second time derivatives

of qd(t)

● Hint: how can we choose an input z to get stable second

order error dynamics, where e is the tracking error?

Response Plots

Control Barrier Functions
● Imagine we have a system of many turtlebots

○ May encode the safety of each turtlebot with

respect to the others using a control barrier

function h(q)

● We’ll consider a control barrier function between

the turtlebot we wish to control (ego turtlebot)

and an obstacle turtlebot

● What should h(q) be?

Image Source: Deadlock Analysis and
Resolution for Multi-Robot Systems

Deadlock CBF-QP
● Let’s use our control barrier function to enable a system of

multiple turtlebots to safely track trajectories

● Challenge: if we apply a CBF-QP directly to a feedback

linearizing input, turtlebots will get stuck in face-off scenarios

called deadlocks

○ How can we resolve these deadlocks?

Deadlock CBF-QP
● We’ll apply a CBF-QP in the innermost linear layer of feedback

linearization - then pass the safe z to the outer layers

● To encourage the turtlebot to steer around obstacles, we can

weight the steering term in the input differently with a matrix Q

● Apply a barrier function constraint for each turtlebot, with

derivatives taken along the trajectories of the linear system

Deadlock CBF-QP Constraint
● Why do we need a second derivative in the constraint?

○ We take the derivatives of the barrier function h(q) along

the trajectories of the linear system

● The input z will not appear until we take the second derivative of

our barrier function along the trajectories of the linear system

● Challenge: how can we select the weights in the barrier constraint?

○ Try solving the ODE for h(t) - for which k1, k2 is h > 0?

Deadlock CBF-QP Summary
● Let’s summarize the structure of the CBF-QP:

Convert z input to a
w input using
z = A(q) w

Convert w input to a u
input via integration and
sent u to the system

Use your tracking
controller to find the
tracking z input

Apply a CBF-QP to
the tracking z input
to get a safe z input

Deadlock CBF-QP Demo

Vision-Based CBF-QP
● The turtlebots interact with their environment using LIDAR

sensors, which return a pointcloud in the turtlebot frame

● How can we come up with a single barrier function h(q) that

encodes the safety of the system based on the pointcloud?

○ Closest point, clustering, and many more methods!

○ Fine if you get some deadlocks

Braking CBF-QP
● We’ll implement a simplified CBF-QP on hardware

● We won’t incorporate the full relative degree 2 constraint for

simplicity - we’ll just require that our bot brakes for obstacles

● Now, we’ll apply this CBF-QP directly over the feedback

linearizing input, k(q) to get the input usafe

● Now, the derivative of h should be taken along the nonlinear

turtlebot dynamics, rather than the linear system

Braking CBF-QP
● The barrier function h(q) should be exactly the same as your

vision-based barrier function from simulation

● Implement this controller on hardware

○ Stand in the way of the turtlebot as it moves - the braking

CBF should slow the turtlebot and prevent it from crashing

○ If you move towards the turtlebot, it should evade you

Braking CBF-QP Demo

https://docs.google.com/file/d/1fSE0PZoZS1D_aZUUVTSQ5LfB8O9hXw7D/preview

● Remember to switch them OFF to charge

○ If a TurtleBot is not sufficiently charged for the next group you may

lose points

● Carry them by the base

● Watch where they’re going!

○ Be ready to press Ctrl + C

● Refer to the Robot Usage Guide for setup

Using the TurtleBots

