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Basics
Consider the following nonlinear single input single output systems

ẋ = f (x) + g(x)u
y = h(x)

Here x ∈ℜn is the state, u ∈ℜ, is the input.
f (x),g(x) : ℜn→ℜn, represent the dynamics, that is they are
each vector fields or directions of evolution of x , and
h(x) : ℜn→ℜ is the output function and y ∈ℜ is the output.
A canonical problem is to find a control law u so that the output
tracks a specified function of time yd (t), t ∈ [0,T ]. Let us think
about this as a problem of inverting the control system, that is
given a desired yd (t) find the desired ud (t). To this end
differentiate the output y with respect to time to get

ẏ(t) = ḣ(x(t))
= Dh(x(t))(ẋ)
= Dh(x(t))(f (x(t)) + g(x(t))u(t)
= Lf h(x(t)) + Lgh(x(t))u(t)



Lie Derivatives

Recall that the derivatives of functions are row vectors:

Dh(x) = ( dh
dx1

,
dh
dx2

, . . . ,
dh
dxn

)

Thus, Dh(x) is the row vector of first derivatives of h(x) with
respect to x . Lf h(x),Lgh(x) are called the Lie derivatives of the
function h(x) along the vector fields (differential equations, or
directions) f (x),g(x) respectively and are defined as

Lf h(x) := Dh(x)f (x)
Lgh(x) := Dh(x)g(x)

Here Lf h(x) refers to the rate of change of h(x(t)) along the
direction of the flow of f (x). Similarly for Lgh(x). Note that
Lf h(x),Lgh(x) are both functions of x , that is from ℜn→ℜ.



Relative Degree One
Collecting the notation we have

ẏ(t) = Lf h(x(t)) = Lgh(x(t))u(t)

If the function Lgh(x) 6= 0 for xb in a set U ∈ℜn, then choosing
the control u(t) to be a state feedback control law of the form

u(t) = 1
Lgh(x(t)(ẏd (t)−Lf h(x(t)))

yields
ẏ(t) = ẏd (t)

We are almost home then in terms of y(t) tracking yd (t) except
that we cannot guarantee that y(0) = yd (0), since the initial
condition x(0) of the control system may result in y(0) 6= yd (0). In
this event, it is impossible to have y(t)≡ yd (t) and the best we
can do is to find a way to reduce the output error
e(t) := y(t)−yd (t) to zero asymptotically as t→ ∞.



Asymptotic Tracking for Relative Degree One

To this end we add an extra term to the control which is
proportional to the output error e(t) as follows with α1 ∈ℜ.

u(t) = 1
Lgh(x(t)(ẏd (t)−Lf h(x(t))−α1e(t))

Using this control law gives us

ẏ = ẏd (t)−α1e(t)
ė + α1e = 0

Amazingly, so long as α1 > 0 this control law results in e(t)→ 0 as
t→ ∞ regardless of the initial state. Better yet, you can control
the rate of convergence to zero through the maginitude of α1.



Relative Degree Two

In the event that Lgh(x)≡ 0 for x ∈ U, we see that
ẏ(t) = Lf h(x(t)), does not depend on the input u. In this case, we
keep going with the differentiation as follows:

ÿ(t) = d
dt Lf h(x(t))

= Lf (Lf h(x(t)) + LgLf h(x(t))u(t)
= L2

f h(x(t)) + LgLf h(x(t))u(t)

Here we have introduced the notation
L2

f h(x) := Lf (Lf h(x)) : ℜn→ℜ. Now if LgLf h(x) 6= 0 for x ∈ U it
follows that the control law,

u(t) = 1
LgLf h(x(t)(−L2

f h(x(t)) + ÿd (t))

yields
ÿ(t) = ÿd (t)



Tracking for Relative Degree Two

To allow for the possibility that the initial state x(0) does not yield
y(0) = yd (0), ẏ(0) = ẏd (0), we modify the control law above to

u(t) = 1
LgLf h(x(t)(−L2

f h(x(t)) + ÿd (t)−α2ė−α1e)

to yield
ë + α2ė + α1ė = 0

Once again, we can choose the proportional and derivative
feedback gains α1,α2 respectively to drive e, ė to 0 at a desired
rate. It is worth emphasizing that the control law is a state
feedback law by rewriting it as

u(t) = 1
Lg Lf h(x(t)(−L2

f h(x(t))
+ÿd (t)−α2(h(x(t))− ẏd )−α1(h(x(t))−yd ))



Higher Relative Degree
If in addition to Lgh(x)≡ 0, we also have LgLf h(x)≡ 0, keep
differentiating the output till the input appears on the right hand
side. Thus, let r be the smallest integer such that for x ∈ U

Lgh(x) = LgLf h(x) = . . . = LgLr−2
f h(x)≡ 0,LgL(r−1)

f h(x) 6= 0

Then, it follows that

y (r)(t) = Lr
f h(x(t)) + LgL(r−1)

f h(x)u

and the control law
u(t) = 1

Lg Lr−1
f hx(t)(y r

d (t)−Lr
f h(x)

−αr (L(r−1)
f h(x(t))−y (r−1)

d (t))−·· ·−α1(h(x(t))−yd (t)))

yields the following equation for the output error

er (t) + αr e(r−1)(t) + · · ·+ α1e(t) = 0

Once again, it is possible to control the speed of convergence to 0
of the output error regardless of the initial condition.
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Input Output Feedback Linearization

It is indeed quite miraculous, that if a system has relative degree r
that it is possible to make the output of the control system track
a(ny) desired trajectory. The only proviso is that the tracking is
asymptotic in t, though the rate of convergence can be sped up
through choice of the constants αi , i = 1, . . . , r (r 6 n under some
modest technical conditions on f ,g). This is referred to as input
output feedback linearization since the closed loop system is
linearized. For instance if yd (t)≡ 0, then we have

y r (t) + αr y r−1(t) + · · ·+ α1y(t) = 0



Input Output Linearization

This input output linearization is "exact" meaning to say that if
f ,g ,h are known as functions of x then we can make the output
equation exactly linear! This is different from several other options
such as Jacobian linearization, Poincare linearization, Carlemann
linearization, etc. For example if x0 ∈ U is an equilibrium point,
that is f (x0) = 0, then the Jacobian linearization is

ż = Az + bu
y = cz

with A = Df (x0) ∈ℜn×n,b = g(x(0)) ∈ℜn,c = Dh(x(0).
Two issues still need to be answered:

What about the remaining (n− r) states?
What if f ,g ,h were not known exactly?

We will start with the first question.



Normal Form
Let ξi , i = 1, . . . , r be the output and its r −1 derivatives:

ξ1 = h(x),ξ2 = Lf h(x), . . . ,ξr = Lr−1
f h(x)

It may be shown (Chapter 8, Sastry 1999) that the ξi , i = 1, . . . , r)
are independent, and further (n− r) additional coordinates
ηi , i = 1, . . .(n− r) can be chosen to be a smooth, invertible
transformation of coordinates Φ : x ∈ℜn→ (ξ ,η) ∈ℜn. In these
coordinates we have

ξ̇1 = ξ2
ξ̇2 = ξ3

...
ξ̇r = Lr

f h(Φ−1(ξ ,η)) + LgLh
f (Φ−1(ξ ,η))u

η̇1 = Lf η1(Φ−1(ξ ,η)) + Lg η1(Φ−1(ξ η))u
...

η̇n−r = Lf ηn−r (Φ−1(ξ ,η)) + Lg ηn−r (Φ−1(ξ η))u



Output Zeroing Control

This equation in more succinct form is

ξ̇1 = ξ2
ξ̇2 = ξ3

...
ξ̇r = b(ξ ,η) + a(ξ ,η)u
η̇1 = q1(ξ ,η) + p1(ξ η))u

...
η̇n−r = qn−r (ξ ,η)) + pn−r (ξ η))u

Choose the feedback linearizing control law for zeroing the output
yd (t)≡ 0, we have the particularly pleasing form

u(t) =− 1
a(ξ ,η)b(ξ ,η)



Output Zeroing Dynamics

Under the output zeroing control the closed loop system has the
form

ξ̇1 = ξ2
ξ̇2 = ξ3

...
ξ̇r = 0
η̇ = q(ξ ,η)−p(ξ ,η)b(ξ ,η)

a(ξ ,η)
y = ξ1

This has a chain of integrators in ξ1 variables. If they are start at
ξi (0) = 0 they will continue as ξi (t)≡ 0. While the η variables are
influenced by the ξ variables, the converse is not true. The output
y = ξ1 in particular is unaffected by the ηi .



Zero Dynamics: Minimum Phase

The zero dynamics are the dynamics consistent with the output
held identically zero. We assume, without loss of generality that x0
is at the origin and that H(x0) = 0. This is to make sure that the
undriven system has zero output with no input.
Now, y(t) = ξ1(t)≡ 0 implies that ξi (t)≡ 0, i = 2, . . . , r , and the
residual dynamics are

η̇ = q(0,η)−p(0,η)b(0,η)
a(0,η)

η = 0 ∈ℜn−r is an equilibrium point of these dynamics. If η = 0 is
a stable equilibrium point of this nonlinear system, the control
system is said to be minimum phase. If the equilibrium point is
unstable the system is said to be non-minimum phase.



Bounded tracking

Back to tracking a signal yd (t) which along with its derivatives
ẏd (t), ÿd (t), . . . ,y (r)

d (t) is bounded. The control law

u(t) = 1
Lg Lr−1

f hx(t)(y r
d (t)−Lr

f h(x)

−αr (L(r−1)
f h(x(t))−y (r−1)

d (t))−·· ·−α1(h(x(t))−yd (t)))

It is surprising that even if the zero dynamics, that is the η

variables are unstable, that the output tracks yd (t) asymptotically.
Using some Lyapunov analysis (see Ch 8 of Sastry 1999) it can be
seen that if the equilibrium 0 of the zero dynamics is exponentially
stable, then if yd (t) and its first r derivatives are bounded, that all
the state variables x(t) are bounded. If one is unconcerned about
the η part of the state space, no assumptions on minimum phase
are needed.



Inversion and Feedback Linearization

We set ourselves the control objective of tracking a desired output
yd (t). Thus, it should come as no surprise that the control law we
have derived "inverts" the model. Thus, if the model were
non-minimum phase, the inverse would be unstable. These are the
zero dynamics. However, by our artifact of rendering these
variables unobservable they do not affect the output tracking.
However, from a practical standpoint, having unstable zero
dynamics can be undesirable. Chapter 9 of Sastry 1999 gives
examples of the behavior of non-minimum phase control systems
and how to modify the controller in some instances of ”slightly
non-minimum phase” systems.
For general non-minimum phase systems there are limitations on
how accurate tracking can be even asymptotically! We will explore
this later!
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Exact Feedback Linearization
If the relative degree r = n, the dimension of the state space x ,
then the control law
u(t) = 1

Lg Ln−1
f hx(t)(yn

d (t)−Ln
f h(x)

−αn(L(n−1)
f h(x(t))−y (n−1)

d (t))−·· ·−α1(h(x(t))−yd (t)))
results in a closed loop system
yn(t)−yn

d (t) + αn(yn−1(t)−yn−1
d (t) + · · ·+ α1(y(t)−yd (t)) = 0

In terms of the normal form thus there are no η variables. This is
referred to as full state feedback linearization. There exists a state
feedback u = 1

Lg Ln−1
f h(x)(−Ln

f h(x) + v) and a change of coordinates
ξ = Φ(x), so that the closed loop system is completely linear!

ξ̇1 = ξ2
ξ̇2 = ξ3

...
ξ̇n = v
y = ξ1



Outline

Control of single input single output systems

Input Output Linearization

Full State Feedback Linearization

Multi-Input Multi-Output Systems

Control of Quadrotor UAVs
Feedback Linearization of the Planar Quadrotor
Feedback Linearization of 3 D quadrotors



Two-Input Two-Output (TITO) Systems

Consider the TITO system

ẋ = f (x) + g1(x)u1 + g2(x)u2
y1 = h1(x)
y2 = h2(x)

Let r1 be the smallest integer such that y1(t) needs to be
differentiated r1 times before one of the inputs appears. That is for
x ∈ U

Lg1h1(x) = Lg1Lf h1(x) = · · ·= Lg1L
r1−2
f h1 ≡ 0

Lg2h1(x) = Lg2Lf h1(x) = · · ·= Lg2L
r1−2
f h1 ≡ 0

Lg1L
r1−1
f h1(x) 6= 0 or Lg2L

r1−1
f h1(x) 6= 0

A similar definition holds for r2 for the second output h2.



Vector Relative Degree
The TITO system is said to have vector relative degree r1, r2 if the
matrix multiplying the two inputs is invertible:[

y r1
1

y r2
2

]
=
[

Lr1
f h1

Lr2
f h2

]
+
[

Lg1L
r1−1
f h1 Lg2L

r1−1
f h1

Lg1L
r2−1
f h2 Lg2L

r2−1
f h2

][
u1
u2

]
The matrix multiplying the control inputs A(x) ∈ℜ2×2 is referred
to as the decoupling matrix. Rewriting the preceding equation as[

y r1
1

y r2
2

]
= b(x) + A(x)

[
u1
u2

]
shows that the control law

u = A−1(x)(−b(x) + v)

decouples and linearizes the system from the new inputs v to y
resulting in the closed loop system[

y r1
1

y r2
2

]
=
[

v1
v2

]



Normal Form for a TITO system

It can be verified that the coordinates

ξ 1
1 = h1(x),ξ 1

2 = Lf h1(x), . . . ,ξ 1
r1 = Lr1−1

f h1(x),
ξ 2

1 = h2(x),ξ 2
2 = Lf h2(x), . . . ,ξ 2

r2 = Lr2−1
f h2(x)

are independent and can be completed with η ∈ℜn−r1−r2 to yield

ξ̇ 1
1 = ξ 1

2 ẋ i1
2 = ξ 1

3 . . . ξ̇ 1
r1 = v1

ξ̇ 2
1 = ξ 2

2 ξ̇ 2
2 = ξ 2

3 . . . ξ̇ 2
r1 = v2

η̇ = q(ξ ,η) + P(ξ ,η)v

Here q(ξ ,η) ∈ℜn−r1−r2 ,P(ξ ,η) ∈ℜn−r1−r2×2 and the zero
dynamics are

η̇ = q(0,η)



Dynamic Extension
One additional case that needs to be considered is when the
so-called decoupling matrix A(x) is singular, that is, it has rank 1.
When this happens we have to resort to a trick called dynamic
extension: Choose matrix β (x) ∈ℜ2×2 so as to compress the
columns, that is

A1(x) = A(x)β (x) = [a1
1(x)0]

with a1
1(x) ∈ℜ2. Define new inputs

u1 = β
−1(x)u

It is easy to see that the decoupling matrix for the TITO from v to
y is A1

1(x). Now make u1
1 a state variable xn+1 and augment the

state space equations by

ẋn+1 = u̇1
1 = v1

and define v2 := u1
2



Dynamic Extension Algorithm
With the extended control system with state space x ∈ℜn+1 and
new inputs v1,v2, we have

ẋ = f (x) + g(x)β (x)
[

xn+1
v2

]
ẋn+1 = v1

y1 = h1(x)
y2 = h2(x)

Repeat the procedure of differentiating till the inputs show up at
integers r̃1, r̃1

2 , and checking if the new decopling matrix is
non-singular. If it is not continue with the column compression and
dynamic extension procedure. Under some mild conditions
(roughly the “invertibility of the original nonlinear control system”
– see Sastry 1993) the procedure will converge and the augmented
nonlinear system has vector relative degree and the normal form for
that system can be derived. You will see this in action in a UAV
example soon.



MIMO Systems

There are no changes in generalizing the TITO discussion to a
Mutii-Input Multi-Output System provided they are square, that is
the number of inputs ni = no. Then the MIMO system is said to
have vector relative degree r1, r2, . . . , rni if the decoupling matrix
A ∈ℜni×ni with entries

Aij(x) = Lgj L
ri−1
f hi

is invertible. As in the TITO case, if A(x) is singular, we proceed
with the dynamic extension algorithm till the augmented control
system gets vector relative degree.
Also, if the sum of the relative degrees (or extended relative
degrees)

n = r1 + · · ·+ rni

then the system is full state linearizable by state feedback.
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A Simple Quadrotor
From Prof. Vijay Kumar and Dr. James Paulos
Lecture notes MEAM 620, University of Pennsylvania, Spring Term
2020.



Quadrotor Dynamics

From Prof. Vijay Kumar and Dr. James Paulos
Lecture notes MEAM 620, University of Pennsylvania, Spring Term
2020.



Dynamics of the Planar Quadrotor
From Prof. Vijay Kumar and Dr. James Paulos
Lecture notes MEAM 620, University of Pennsylvania, Spring Term
2020.



Planar Quadrotor Control System

With state variables y = x1, ẏ = x2,z = x3, ż = x4,φ = x5, φ̇ = x6,
the quadrotor control system is given by

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

=



x2
0

x4
−g
0
0

+



0 0
− 1

m sinx5 0
0 0
1
m cosx5 0
0 0
0 1

Ixx


[

u1
u2

]

with outputs
y1 = x1
y2 = x3



Planar Quadrotor Linearization

Diffferentiating the outputs till the inputs appear yields[
ÿ1
ÿ2

]
=
[
0
−g

]
+
[
− 1

m sinx5 0
1
m cosx5 0

][
u1
u2

]
The matrix multilying the inputs is singular: the second column is
all zeros. It appears that u1 has shown up before u2 (too soon!). A
trick to slow down the appearance of u1 is to first set
u1 = x7, u̇1 = v1, with the new input v1. This now yields[

y (3)
1

y (3)
2

]
=
[
− 1

m cosx5x6
− 1

m cosx5x6

]
+
[
− 1

m sinx5 0
1
m cosx5 0

][
v1
u2

]



Linearization with dynamic extension

The matrix multiplying the inouts v1,u2 is still singular, so we set
v1 = x8, v̇1 = w1, the new input. Now we get

[
y (4)

1
y (4)

2

]
=
[ 1

m sinx5x2
6

1
m sinx5x2

6

]
+
[
− 1

m sinx5 − 1
m cosx5

1
m cosx5 − 1

m sinx5

][
w1
u2

]
Now, the decoupling matrix has determinant − 1

m2 . With respect to
the augmented system with x ∈ℜ8 and the new inputs w1,u2 the
quadrotor control system has vector relative degree of (4,4). Thus,
the augmented control system can be full state linearized and
decoupled from w1,u2 to y1,y2! The only price to be paid is
slowing down the input u1 by two integrators.



Feedback Linearization of 3 D quadrotors



Outputs and differentiation



Singular Decoupling Matrix



Dynamic Extension 1



Dynamic Extension 2



Feedback Linearized 3D UAD Quadrotor

We see that we can find a dynamic extension to provide a feedback
linearized control system

y (4)
1

y (4)
2

y (4)
3

y (2)
4

=


w1
w2
w3
w4


These are 4 decoupled chains of integrators of length 4,4,4, 2
which are each linear. The sum of the vector relative degrees 4 +
4 + 4 + 2 = number of states 12 + 2 (extension) = 14. Thus,
after dynamic extension the quadrotor in 3D is full state
linearizable. It is instructive to attempt this calculation for other
choices of 4 outputs! There are singularities in the roll, piitch, yaw
representations of R. It may be instructive to do this calculation
with a quaternion representation of R as well, though the outputs
are best understood in position, roll pitch yaw coordinates.



Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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