
EECS C106B Week 3 Lab

Project 1B Intro and Lab 0

Agenda

Project 1B Intro

Some relevant info for Project 1B

Project 0

Get (re)acquainted with the robots!

Goals

- Should already have trajectories defined (line, circle, arbitrary) in terms of SE(3) pose and se(3) body velocity at every point in time
- Implement 3 closed-loop controllers
 - Jointspace Velocity
 - Workspace Velocity
 - Jointspace Torque
- Compare trajectory tracking performance amongst your own controllers and Movelt!
- Present findings in conference paper format

Controllers

Jointspace Velocity

Given: desired joint positions, velocities, and accelerations

Produce: control input as joint velocities

Jointspace Torque

Given: desired joint positions, velocities, and accelerations **Produce:** control input as joint torques

Workspace

Given: desired
workspace
positions, velocities,
and accelerations
Produce: control
input as joint
velocities

Jointspace Velocity Controller

- **u(t)**: control input
- u_{ff}(t) and u_{fb}(t): feedforward
 and feedback terms
- θ(t) and θ_d(t): actual and desired joint positions
- K_p and K_v: proportional and derivative terms for PD controller
- **e(t)**: error in joint positions

$$u(t) = u_{ff}(t) + u_{fb}(t)$$

$$u_{ff}(t) = \dot{\theta}_d(t)$$

$$u_{fb}(t) = K_p e(t) + K_v \dot{e}(t)$$

$$e(t) = \theta_d(t) - \theta(t)$$

Jointspace Torque Controller

- **M(θ)**: inertia matrix
- **C(0)**: coriolis matrix
- **G(θ)**: gravity vector

$$u(t) = u_{ff}(t) + u_{fb}(t)$$

$$e(t) = \theta_d(t) - \theta(t)$$

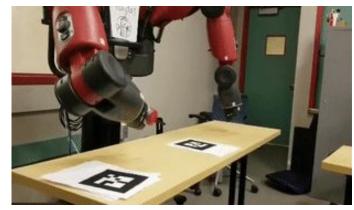
$$u_{ff}(t) = M(\theta)\ddot{\theta}_d(t) + C(\theta, \dot{\theta})\dot{\theta}_d(t) + G(\theta)$$

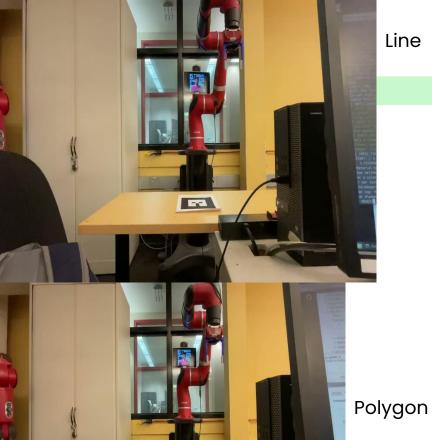
$$u_{fb}(t) = K_p e(t) + K_v \dot{e}(t)$$

Computed Torque Control Law (MLS p. 191)

$$u_{fb}(t) = M(\theta)(K_p e(t) + K_v \dot{e}(t))$$

Workspace Controller


- g_t and g_d: current and desired
 robot frames
- **K**_p: 6x6 positive diagonal matrix of proportional controller gains
- ξ_{td}: velocity which reduces error between frames
- **V**_d^b: velocity in desired frame
- Ad_{atd}: Adjoint of g_{td} frame
- (J^s_{st}(0)) †: spatial Jacobian pseudo-inverse


USE PROJECT DOC FOR UPDATED FORMULAS

Advice

- Don't expect things to work perfectly
 - Explain why in your report
- Implementation difficulty (probably)
 - Jointspace Velocity < Jointspace
 Torque < Workspace Velocity
 - Tackle an easier controller first to understand the codebase and get something working
- Test open-loop controllers before adding feedback terms
- Remember to tune the proportional term first, then the derivative term

-9 E2

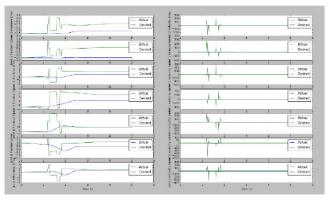
Line

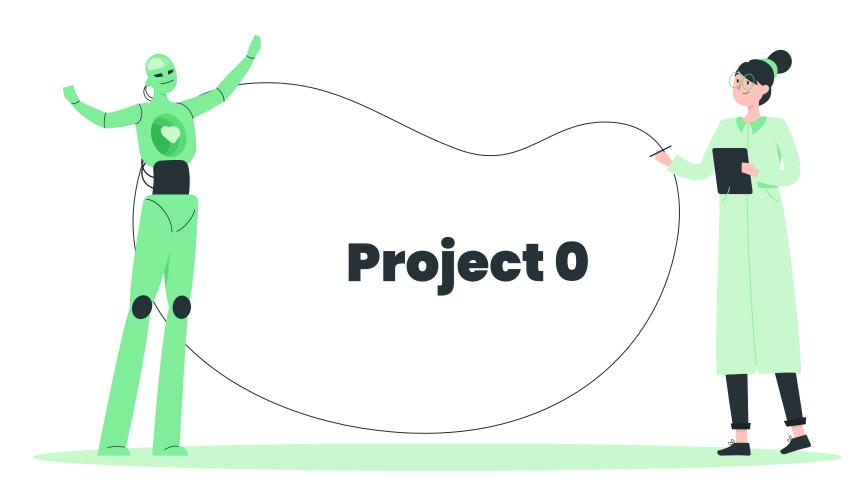
Circle

Visual Servo

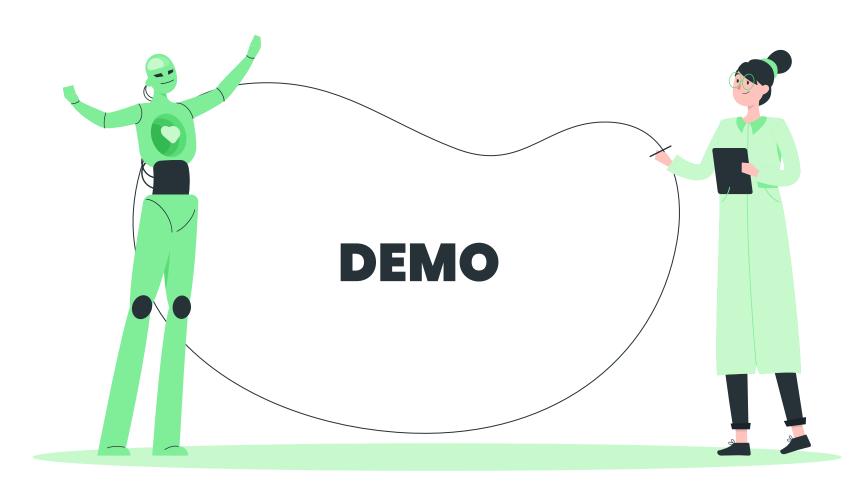
Levity

>source devel/setup.bash



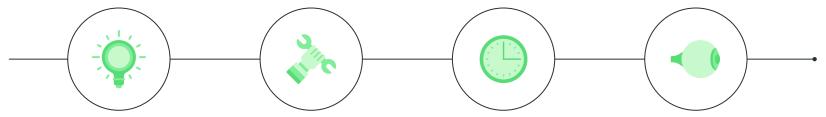

rosrun main.py -task circle controller_name jointspace -arm left rate 200 -timeout None -num_way
4000 --moveit --log -literaly every other command -line argument -in
existance

discontinuities in joint trajectory



Project 0

- Learn how to use lab robots safely Sawyer, Turtlebots
- Work in pairs to complete Project 0, does not have to be a project group member
- Make sure you know how to do concept checkpoints!


Timeline of the Near Future

Sign Up for Papers

First paper presentation is next week. Skim the first paper before your next lab section

HW₂

Due 2/7

Complete Robot Usage Quiz!

Project 1B

Due 2/14

Urgent To Dos!

Proj 1B Team Registration

https://docs.google.com/forms/d/e/1FAI pQLSflnxcwP4Bxc73h-jBlbQ1N-hy4L91Gf1Kj wAhYKw1qs6_W5g/viewform

Allows us to assign robots for Project 1B

Optional Project 1A Peer Eval

https://forms.gle/zeSaR6VzwuunMmgy9

<u>Robot Reservations!</u>

<u>Link</u>