
C106B Discussion 5: Kinematic Constraints

1 Introduction

Today, we’ll talk about:

1. Pfaffian Constraints

2. Equivalent Control Systems

3. Lie Brackets & Controllability

2 Pfaffian Constraints

When performing path planning tasks in robotics, it’s essential to have an understanding of how our sys-
tem moves, as we always want to generate paths that are feasible for our system to follow! It’s therefore
important for us to understand the kinematic constraints on a system - the constraints that impact the
possible positions and velocities of the system.
Let’s consider a physical system with generalized coordinates q1, q2, ..., qn. We know that using La-
grangian mechanics, we can find the dynamics of the system by computing n differential equations:

d

dt

( ∂L

∂q̇i

)
− ∂L

∂qi
= Fi (1)

A kinematic constraint imposes restrictions on the generalized coordinates and their velocities. A Pfaffian
constraint is a constraint of the form:

ωi(q)q̇ = 0 (2)

Where q is a vector of the system’s generalized coordinates. A Pfaffian constraint on the velocities of qi
is said to be integrable if it is equivalent to a constraint on the positions of qi:

ωi(q)q̇ = 0 ⇐⇒ hi(q) = 0 (3)

If a set of k Pfaffian constraints ωi are all integrable, the set of constraints is said to be holonomic. If
a subset of the constraints are integrable, then the constraints are said to be partially nonholonomic. If
no constraints are integrable, the set is completely nonholonomic.

Problem 1: A uniform, rigid pendulum of length 2L swings about a pivot point. The angle of
the pendulum to the vertical is θ and the position of the center of mass is (x, y). Write the constraints
on the values of x, y subject to the pendulum’s motion. Are these constraints holonomic?
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3 Equivalent Control Systems

Suppose we have k independent, nonholonomic Pfaffian constraints ω1(q)q̇ = 0, ..., ωk(q)q̇, where q ∈ Rn

is a vector of generalized coordinates. We can write these constraints in matrix form A(q)q̇ = 0 as:− ω1(q) −
...

− ωk(q) −

 q̇ =

0...
0

 (4)

We know that the columns of A(q) above are linearly independent, and that all allowable trajectories q̇
must be in the null space of A(q). Since q ∈ Rn, and the matrix is in Rk×n with k independent constaints,
the null space must be n− k = m dimensional.
Therefore, there exist g1(q), ..., gm(q) that span the basis of this null space such that:

q̇ = u1g1(q) + ...+ umgm(q) (5)

Are all allowable trajectories, where ui ∈ R are scalars. Since we can arbitrarily control ui, we have
found an equivalent control system for our dynamics just using the kinematic constraints. This equivalent
control system is a simpler model that expresses what it means for a trajectory to be allowable, and we
can use it to control our system’s generalized coordinates. Note that each gi(q) ∈ Rn is called a vector
field, as it maps a vector to a vector.

Problem 2: The Raibert hopper, which has generalized coordinates q = [ϕ, l, θ]T has the following
nonholonomic constraint on its dynamics.

Iθ̇ +m(l + d)2(θ̇ + ϕ̇) = 0 (6)

Rewrite this constraint in the form A(q)q̇ = 0, and find a basis for the null space of A(q).
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4 Lie Brackets & Controllability

How can we use a nonholonomic constraint q̇ = A(q)q, q ∈ Rn to design feedback controllers and path
planners for our system? Let’s imagine that we want to drive our system to the position qd ∈ Rn? Under
our kinematic constraints, is it actually possible to steer our system to qd? To answer this question, we’ll
need a few tools from the field of differential geometry.

Definition 1 Lie Bracket
The Lie bracket of two vector fields f(q), g(q) is defined:

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q) (7)

The Lie bracket measures whether flows of equal time along f and g commute.

Definition 2 Lie Algebra
The Lie algebra of a set of vector fields {g1, g2}, denoted L(g1, g2), is the span of all linear combinations
of g1, g2, their Lie brackets, and higher order Lie brackets:

g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]], ... (8)

For a set of m vector fields, g1, ..., gm, the Lie algebra L(g1, ..., gm) is similarly defined by taking the span
of the vector fields and their Lie brackets with each other.

Here’s the basic concept of our big idea for this section: if the vector fields g1(q), ..., gm(q) from our
equivalent control system have nonzero Lie brackets, we might be able to form a basis of vector fields we
may travel along to reach any location.

Theorem 1 Small Time Local Controllability
A system is small time locally controllable at a point q0 if the set of states the system can reach in finite
time starting from q0 forms a ball around q0. If the dimension of L(g1, ..., gm) is equal to the dimension
of q, and the positive span of the vector [u1, ..., um] is Rm, then the system:

q̇ = g1(q)u1 + ...+ gm(q)um (9)

Is small time locally controllable.

Problem 3: Imagine we have a vector of generalized coordinates q = [x, y, z]T . These coordinates have
a kinematic constraint which may be represented by the control system:

q̇ =

10
y

u1 +

01
0

u2 = g1(q)u1 + g2(q)u2 (10)

Where u1 and u2 can have any values in R. Find the Lie bracket [g1, g2], conclude the Lie algebra
L(g1, g2) has dimension 3, and show that the system is small time locally controllable.

3


	Introduction
	Pfaffian Constraints
	Equivalent Control Systems
	Lie Brackets & Controllability

