
EECS C106B Week 5 Lab

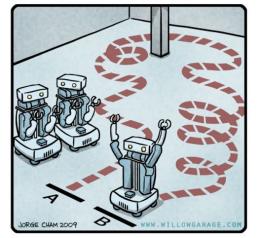
Paper Presentation and Project 2 Intro

Paper Presentations

Thanks to your peers for presenting Realizing Simultaneous Lane Keeping and Adaptive Speed Regulation on Accessible Mobile Robot Testbeds!

Project 2 Intro

Some relevant info for Project 2



Goals

- Become versed with motion planning problem for nonholonomic systems
 - Bicycle modeled car
- Implement 3 open-loop path planners
 - Optimization
 - RRT
 - Requires tuning!
 - Steering with Sinusoids
- Compare performance of planners in different scenarios

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Tasks

Simple Motion

Simple drive forward and to the left

Point Turn

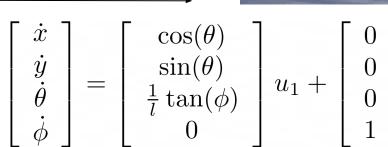
Drive to turn around and return to the same spot

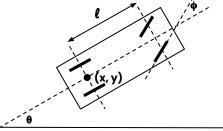
Parallel Park

Move in a direction that you cannot instantaneously move in

Navigation

Avoid obstacles in 2 different maps


Bicycle Modeled Car


- Inputs:
 - Linear velocity u₁
 - Steering rate u₂
- Nonholonomic Constraints
- (For Project) Physical constraints
 - Steering angle
 - Steering rate
 - Linear Velocity
- Simulate through unicycle model 🤔 (STDR sim)
 - Wrapper node handles making unicycle behave like bicycle

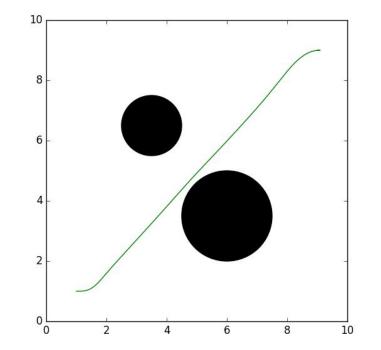
 u_2

Planners

Optimization

Format problem as nonlinear optimization problem

RRT

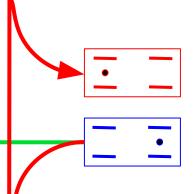

Randomly sample the configuration space to build a graph

Sinusoid

Control inputs with out-of-phase sinusoids

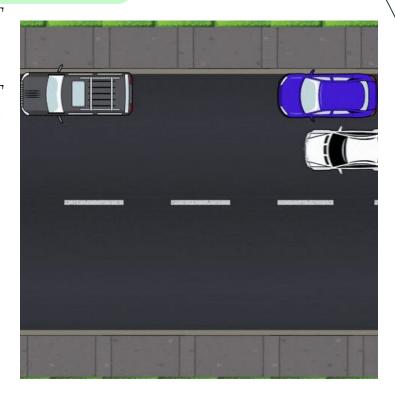
Optimization Planner

- Optimization: minimize cost subject to constraints
- Cost
 - Distance to goal
 - Input
- Constraints:
 - \circ Dynamics
 - Obstacles
 - Start/end configuration


RRT Planner (Algorithm)

- Build graph G
 - Vertices are configurations
 - Edges are motion plans
- Start with start configuration in G
- Sample a configuration and construct a local plan from nearest node in G
- Take a small step along local plan and add new configuration to G
- Repeat until close enough to goal

Steven LaValle reflection on his work


RRT Planner (Considerations)

- Come up with a distance function
 - Also consider heading angle which is periodic
- Create motion primitives
 - Simple (or not, it's really your choice) motions for time Δt
 - Consider directions and speeds
- Sampling heuristics
 - Goal bias: sample the goal more often
 - Goal zoom: sample around the goal

Sinusoid Planner

- Canonical Car Model $\begin{bmatrix} x & \phi & \alpha & y \end{bmatrix}^T$
 - Singularity when θ is 90° or -90°
- Alternate Car Model $\begin{bmatrix} y & \phi & \alpha & x \end{bmatrix}^T$
 - Singularity when **0** is 0° or 180°
- Steps
 - Steer \mathbf{x} (or \mathbf{y})
 - Steer **\$**
 - Steer **θ**
 - Steer **y** (or **x**)
- Binary search parameters dynamically
- Constraints on state (how would you handle **y**?) and input

Using the TurtleBots

- Remember to switch them OFF to charge
 - If a TurtleBot is not sufficiently charged for the next group you may lose points
- Carry them by the base, not the acrylic platforms
- Watch where they're going!
 - Be ready to press Ctrl + C
- Refer to the Robot Usage Guide for setup

Timeline of the Near Future

