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Midterm statistics:

Overall statistics

High score: 106

Mean score: 91.1

Median score: 92.5

Standard deviation: 8.6

C247

High score: 106

Mean score: 91.6

Median score: 93

Standard deviation: 8.3

C147

High score: 103

Mean score: 89.0

Median score: 89.5

Standard deviation: 9.4
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Comments:

• This is the highest mean (91.1) I have ever seen on any exam in ECE. Congratulations on

your excellent performance.

• If you have grading questions, please submit through Gradescope. Regrades should be sub-

mitted if you believe we applied the rubric mistakenly. Inquiries into particular questions

should be directed to the person who graded that question.

Questions 1a, 1b: Ken-Fu

Questions 1c, 1d: Weixi

Question 2: Johannes

Question 3: Michael

Question 4a: Cheng

Question 4b: Jonathan

Bonus: Jonathan

• Regrades close one week from today (March 2, 2020).
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ECE C147/C247, Fall 2020 Midterm
Department of Electrical and Computer Engineering Prof. J.C. Kao
University of California, Los Angeles TAs: W. Feng, J. Lee,

K-F. Liang, M. Kleinman, C. Zheng

UCLA True Bruin academic integrity principles apply.
Open: Four cheat sheets allowed.
Closed: Book, computer, internet.
2:00pm-3:50am.
Wednesday, 19 Feb 2020.

State your assumptions and reasoning.
No credit without reasoning.
Show all work on these pages.

Name:

Signature:

ID#:

Problem 1 / 30

Problem 2 / 20

Problem 3 / 20

Problem 4 / 30

BONUS / 6 bonus points

Total / 100 points + 6 bonus points
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1. Short Answer on ML Basics (30 points)

(a) (5 points) Your colleague is tasked with designing the image recognition component for
a self-driving vehicle. His goal is to classify images in real-time, identifying objects on
the road (like a stop sign, pedestrian, tra�c light, etc.) Each image is 1024 ⇥ 1024
pixels2. He desires to use a k-nearest neighbors classifier, with distance measured by
the Euclidean (L2) norm. What are two reasons he should avoid using the classifier?
Justify your answer in no more than 4 sentences.

Solution: 1. Testing is computationally expensive. 2. Distance measurements in a
high dimensional space do not necessarily reflect similarity between two data points due
to the curse of dimensionality).

(b) (5 points) Batch normalization aims to normalize each artificial neuron so that its mean
is 0 and its variance is 1. Why, intuitively, should this help with training deep neural
networks? Justify your answer in no more than 4 sentences.

Solution: When performing gradient updates, our gradient updates for a given weight
matrix assume the other ones are held constant. This is not true in general. Therefore,
gradient steps in earlier layers may dramatically change the statistics of the neurons for
the next layer. Batch normalization normalizes these statistics, so that they aren’t dra-
matically di↵erent after each gradient step. We also accepted that batch normalization
prevents the outputs of each layer from being too large or too small.

(c) (10 Points) The loss function of a softmax classifier can be written as:

L =
mX

i=1

0

@log
cX

j=1

eaj(x
(i)) � ay(i)(x

(i))

1

A

where (x(i), y(i)) are data pairs (of which there are m) and aj(x(i)) = wT
j x

(i) + bj is the
score of class j (there are c total classes). Calculate the gradient of L with respect to
all the weights and biases.
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(d) (10 Points) Assume that you have a handwritten digit image dataset for a classification
task. All the images are of size 32 ⇥ 32. This dataset is split into training, validation
and testing. Your CNN takes inputs of size 28 ⇥ 28. You resize the 32 ⇥ 32 images to
28 ⇥ 28 and then feed them into the network. During training, you observe that the
training error is always decreasing while the validation error decreases first and then
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increases. After training completes, the testing error is much higher than the training
error.

i. (5 Points) What is the problem with your trained CNN? What are 2 potential
reasons for this? Justify your answer in no more than 4 sentences.
Solution: Problem: Overfitting.
Reasons: The model is overtrained. The training data is not enough. The training
data is enough but highly correlated. The model is too complex for the dataset.
The data is too noisy (and other reasonable answers).

ii. (5 Points) Your colleague suggests that you need a larger training set with more
images. However, no additional images are available. What can you do to the
existing training images to increase the number of training set examples? Recall
that the images are of digits. Justify your answer in no more than 3 sentences.

Solution: Randomly crop out several 28 ⇥ 28 regions from each image. Scaling
up or down the images and then resize to 28 ⇥ 28. Horizontal or vertical shift by
random values and then resize. Random rotation within a certain range of degrees
and then resize (and other reasonable methods).
Not a valid answer: horizontal or vertical flip as most of the digits are not horizon-
tally or vertically symmetric.
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2. Backpropagation (20 points). Suppose you aim to predict y from x using the following
neural network:

z = W3relu(W1x) +W2x.

Here, z is an estimate of y and the loss function is:

L =
1

2
||z� y||22 =

1

2
(z� y)T (z� y),

with x 2 Rn, y, z 2 Rm, W1 2 Rp⇥n, W2 2 Rm⇥n, and W3 2 Rm⇥p,

(a) (4 points) Draw a computational graph of this network to compute the loss L. You
may use the following elements:

Solution:

(b) (4 points) What is @L
@z (i.e., rzL)? Your answer must be simplified to only contain the

following allowed terms: x,y, z,W1,W2, and W3? (To be clear, you do not need to
simplify z, since that is an allowed term.)

Solution:

L =
1

2
||z� y||22

=
1

2
(z� y)T (z� y)

=
1

2
(zT z� 2yT z+ yTy)

@L
@z

= z� y

(c) (12 Points) In terms of x,y, z,W1,W2,W3, and
@L
@z , find:

i. (6 points) @L
@W1
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ii. (6 points) @L
@x

You should not need to derive any local gradients, as we have derived all of the local
gradients for these operations in class. In particular, recall the following:

• For p = Cq,

@L
@C

=
@L
@p

qT

@p

@q
= CT

• For v = relu(u),

@L
@u

= (u)� @L
@v

where (·) is the indicator function defined as:

(u) =

(
1, ui � 0

0, ui < 0

and � is the Hadamard (elementwise) product. Be sure also to define any inter-
mediate variables used or label them on the computational graph.

Solution:
Using the chain rule and the computational graph:
(i)
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(ii) To account for the law of total derivatives, we define a = e = x. This results in:

@L
@x

=
@L
@a

+
@L
@e

=
@b

@x

@L
@b

+
@f

@x

@L
@f

=
@b

@x

@L
@b

+
@f

@x

@z

@f

@L
@z

= WT
1

✓
(b)� (WT

3
@L
@z

)

◆
+WT

2
@L
@z

= WT
1

✓
(W1x)� (WT

3
@L
@z

)

◆
+WT

2
@L
@z

with

@z

@f
= I

@f

@x
= WT

2

6



3. Regularization and Optimization (20 points)

For each statement below, determine whether it is true or false. You must justify your answer
to receive full credit.

(a) (5 points) Regularization is helpful to achieve lower loss on the training set.

Solution: False. Helpful for generalization/ test set performance.

(b) (5 points) When performing (minibatch) stochastic gradient descent, you are calculating
the gradient of the training set exactly.

Solution: False. Noisy approximation because you’re using fewer samples.

(c) (5 points) An optimizer using Adagrad will always have an equal or smaller learning
rate in successive iterations.

Solution: True. The gradient history stays the same or increases in each dimension
for every iteration of Adagrad.

(d) (5 points) You are performing stochastic gradient descent with a learning rate ✏ =
5 ⇥ 10�6. You believe your network is correctly implemented, but when training your
network, the value of the loss remains approximately constant across many training
iterations. You should try increasing ✏.

Solution: True. This likely reflects that the learning rate is too small. Some points
were also given for False, if the question was interpreted that the loss had plateaued,
assuming proper justification.

7



4. Fully Connected and Convolutional Neural Networks (30 points)

(a) Residual Fully connected networks. In this problem, we modify the two-layer FC
network with residual connections, according to the equation below. Given the input
vector x 2 Rn, the forward propagation is,

First layer: h1 = f(W1x+ b1) +Wsx

Second (Output) layer: z = W2h1 + b2

where b1 2 Rm and b2 2 Rl. Ws is the linear mapping for the ”shortcut” connection.
f is the non-linear activation function like ReLU.

i. (3 points) Write the dimension of the following variables: W1,Ws,W2.
Solution: W1 2 Rm⇥n, Ws 2 Rm⇥n, W2 2 Rl⇥m.

ii. (3 points) How many trainable parameters does this residual FC network have?
Your answer should be expressed in terms of l,m, n.
Solution: Total number of trainable parameters:= mn + m + mn + ml + l =
2mn+ml +m+ l.

iii. (9 points) To select a proper activation function f , we are considering whether
it: (1) saturates (and if so, for what values does it saturate), (2) is di↵erentiable
everywhere, (3) approximates identity near the origin (activation functions where
f(0) = 0 and f 0(0) = 1 and f 0 is continuous at 0 have this property.). For the
following candidate activation functions, explain from the three aspects andBriefly
justify each solution you give.

A. Hyperbolic tangent: tanh(x).
Solution: Saturates as x becomes very positive or negative. Is di↵erentiable
everywhere as it has no discontinuities. Approximates identity near the origin.

B. Leaky ReLU: max(0.01x, x).
Solution: Does not saturate. Is not di↵erentiable at x = 0. Does not
approximates identity near the origin.

C. Gaussian Error Linear Unit (GELU): it is popular in recent transformer struc-
tures like BERT. This activation function can be approximated as GELU(x) =
0.5x(1 + tanh[

p
2/⇡(x+ 0.044715x3)]

Figure 1: Gaussian Error Linear Unit (GELU)

Solution: Saturates when x is very negative. Is di↵erentiable everywhere as
it has no discontinuities. Does not approximate identity near the origin.
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(b) (15 points) Convolutional neural networks. Consider a convolutional neural net-
work (CNN) that is used to classify CIFAR-10 images that are 32 ⇥ 32 ⇥ 3. The first
layer of the CNN is a convolutional layer, whose output is 26⇥ 26⇥ 16.

i. (5 points) How many filters are in the first convolutional layer, and what are the
dimensions of each filter? Assume there is no zero padding and the stride is equal
to 1.

Solution: There are 16 filters, each of which is 7⇥ 7⇥ 3.

ii. (5 points) There is a second convolutional layer immediately after the first convo-
lutional layer. In the second convolutional layer, there are 32 filters that are 3⇥ 3.
What is the depth of each filter, and how many total trainable parameters are there
in this layer? (Do not include biases in the number of parameters.)

Solution: Their depth is 16. Therefore, the number of trainable parameters is
32⇥ 3⇥ 3⇥ 16.

iii. (5 points) In general, why do convolutional layers have less parameters than fully
connected layers? Justify your answer in no more than 3 sentences.

Solution: Convolutional layers have sparse connectivity and share parameters.
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5. (Bonus, 6 points). Binary cross-entropy loss. In class, we have said that maximizing
the likelihood of the observed data is equivalent to minimizing the “cross-entropy” loss in
machine learning. Consider that we have data: (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)). The
data comes from one of two classes, class 0 or class 1, i.e., y(j) 2 {0, 1}. For each input
sample, x(j), we calculate ŷ(j), which is the probability that y(j) = 1, i.e.,

ŷ(j) = Pr(y(j) belongs to class 1|x(j), ✓)

Though not necessary for this question, this probability could be given by, for example, the
sigmoid function:

ŷ(j) = �(✓,x(j))

=
1

1 + exp(�✓Tx(j))

The cross-entropy loss is:

L(✓) = 1

N

NX

j=1

h
y(j) log ŷ(j) + (1� y(j)) log(1� ŷ(j))

i

Show that minimizing the cross-entropy loss is equivalent to maximizing the likelihood of the
data,

argmax
✓

p((x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))|✓).

Assume that each data point (x(j), y(j)) is independent given the parameters ✓ (i.e., the same
assumption we made in class to simplify the joint probability).

Hint: When y(j) is binary, show that p(y(j) |x(j), ✓), which is the probability that xj belongs
to class y(j) under a model with parameters ✓, can be written as

p(y(j)|xj , ✓) = (ŷ(j))y
(j) · (1� ŷ(j))1�y(j)

Solution: First, we show the hint. Note that:

Pr(y(j) = 1|xj , ✓) = ŷ(j)

Pr(y(j) = 0|xj , ✓) = 1� ŷ(j)

And therefore, when y(j) = 1, then p(y(j)|xj , ✓) = ŷ(j) and when y(j) = 0, then p(y(j)|xj , ✓) =
1� ŷ(j). The single expression

p(y(j)|xj , ✓) = (ŷ(j))y
(j) · (1� ŷ(j))1�y(j)

captures both of these cases, since when y(j) = 1, then 1 � y(j) = 0, leaving just the ŷ(j)

term. Likewise, when y(j) = 0, then 1� y(j) = 1, leaving just the (1� ŷ(j)) term.
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The likelihood of the data is:

L(✓) =
NY

j=1

p(x(j), y(j)|✓)

=
NY

j=1

p(x(j)|✓)p(y(j)|x(j), ✓)

=
NY

j=1

p(x(j)|✓)p(y(j) = 1|x(j), ✓)y
(j)
(1� p(y(j) = 1|x(j), ✓))(1�y(j))

We take the log of both sides, and also recognize that p(x(j)) is independent of ✓. This gives
that:

argmax
✓

logL(✓) = argmax
✓

NX

j=1

log p(y(j)|x(j), ✓)

= argmax
✓

NX

j=1

log p(y(j) = 1|x(j), ✓)y
(j)

+ (log(1� p(y(j) = 1|x(j), ✓)))(1�y(j))

= argmax
✓

NX

j=1

y(j) · log p(y(j) = 1|x(j), ✓) + (1� y(j)) · (log(1� p(y(j) = 1|x(j), ✓)))

= argmax
✓

NX

j=1

y(j) · log ŷ(j) + (1� y(j)) · log(1� ŷ(j))
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