
ECE C147/C247, Winter 2022 Midterm Solution

Department of Electrical and Computer Engineering Prof. J.C. Kao
University of California, Los Angeles TAs: T. Monsoor, T. Wang, P. Lu, Y. Li

UCLA True Bruin academic integrity principles apply.
Open: Book, computer.
Closed: Internet, except to visit Bruin Learn and Piazza.
4:00pm-5:50pm.
Wednesday, 16 Feb 2022 (or Saturday, 19 Feb 2022).

State your assumptions and reasoning.
No credit without reasoning.
Show all work on these pages.

Name:

Signature:

ID#:

Problem 1 / 25

Problem 2 / 40

Problem 3 / 25

Problem 4 / 15

BONUS / 5 bonus points

Total / 105 points + 5 bonus points

1

1. ML basics (25 points).

(a) (5 points) Consider a k-nearest neighbors binary classifier which assigns the class of
a test point to be the class of the majority of the k-nearest neighbors, according to a
Euclidean distance metric. Using the data set shown above to train the classifier and
choosing k = 5, what is the classification error on the training set? Assume that a point
can be its own neighbor.

Answer as a decimal with 4 significant figures, e.g. (6.051, 0.1230, 1.234e+7) or a
fraction.

solution: 0.2857

(b) (7 points) Assume we have a training and test set drawn from the same distribution,
and we would like to classify points in the test set using a k-nearest neighbors classifier.

i. (3 points) In order to minimize the classification error on this test set, we should
always choose the value of k which minimizes the training set error.
Select one:

A. True

B. False
solution: B

ii. (4 points) Consider two methods for optimizing the hyperparameters.

• Method 1 chooses the hyperparameters that minimize the training set error.

• Method 2 splits the data into training and validation sets, and chooses the
hyperparameters that minimize the validation error.

2

Which method is better? Justify with no more than 3 sentences. Select one:

A. Method 1

B. Method 2

solution: B

(c) (5 points) Please select all true statements about k-nearest neighbors:

(Note: Justification is not necessary, but may result in partial credit if the answer is
incorrect.)

Select all that apply:

A Increasing k will generally result in a smoother decision boundary

B Icreasing k will generally reduce the impact of noise or outliers in the data.

C Increasing k increases the likelihood of overfitting the data increases.

D It is possible to use cross-validation to select the value of k.

E We should never select the k that minimizes the error on the validation dataset.

F None of the above.

Solution: ABD

(d) (8 points) Consider a classifier trained till convergence on some training data Dtrain,
and tested on a separate test set Dtest. You evaluate the test error, and find that it is
very high. You then compute the training error and find that it is close to 0.

i. (3 points) Has this classifier (1) underfit, (2) reasonably fit, or (3) overfit the data?

Solution: overfitting

ii. (5 points) Which of the following are expected to help improve this classifier?
(Note: Justification is not necessary, but may result in partial credit if the answer
is incorrect.)
Select all that apply:

3

A. Increase the training data size.

B. Decrease the training data size.

C. Increase model complexity.

D. Decrease model complexity.

E. Train on a combination of Dtrain and Dtest and test on Dtest.

F. Conclude that Machine Learning does not work.
Solution: AD

4

2. Detecting signature forgery using similarity network (40 points)

Bank of Westwood has been receiving many complaints from its clients about their signa-
tures being forged. In order to address this problem, the bank has decided to hire you for
designing a machine learning system for detecting signature forgery. You have learned about
the similarity network recently and want to use it for this problem.

A similarity network is a Fully Connected Feedforward network that accepts distinct in-
puts but share the same weights. To be precise, {(x(i), x̂(i)), y(i)} constitutes the ith training
example, where (x(i) 2 Rd,x̂(i) 2 Rd) represents the ith pair of single input example and
y(i) 2 {+1,�1} is the output label for the ith pair. For this problem,

• If the ith pair of input (x(i), x̂(i)) is composed of signature images both of which are
genuine, then the label for the ith example is +1 (y(i) = +1).

• If the ith pair of input (x(i), x̂(i)) is composed of signature images both of which are
forged, then the label for the ith example is -1 (y(i) = �1).

• If the ith pair of input (x(i), x̂(i)) is composed of signature images one of which is genuine
and the other is forged, then the label for the ith example is -1 (y(i) = �1).

The architecture of the similarity network is given below:

h1 = ReLU(W1x)

ĥ1 = ReLU(W1x̂)

z = W2h1

ẑ = W2ĥ1

s = coshz, ẑi = z
T
ẑ

kzk2kẑk2
L = �y · s

(a) (30 points) Having defined the architecture of the similarity network, you are now
ready to learn the parameters of the network using stochastic gradient descent. The
main ingredient of the gradient descent algorithms are the gradients. In the following
parts, we will be walking you through the gradient computation process. To aid the
gradient computations, we have drawn out the computational graph for you below. You
may directly use any results derived in class.

5

⇥

⇥

x

x̂

W1

ReLU

ReLU

⇥

⇥

W2 coshz, ẑi ⇥

�y

L

m

n

h1

ĥ1

z

ẑ

s

Figure 1: Computational graph of the similarity network

i. (10 points) Compute rzL and rẑL and denote them as �z and �ẑ respectively. For
all the following parts, you can use �z and �ẑ to refer to rzL and rẑL respectively.

Hint: Recall the derivative quotient rule for scalars:

d

dz

✓
f(z)

g(z)

◆
=

f 0(z)g(z)� g0(z)f(z)

g(z)2

for f 0(z) = df(z)
dz and g0(z) = dg(z)

dz .

Solution: By chain rule,

rzL = �y @s
@z

rẑL = �y @s
@ẑ

.

Using quotient rule for multivariate derivatives, we have

@s

@z
=

(kzk2kẑk2)ẑ� (zT ẑ)(kẑk2kzk2)z

kzk22kẑk22
@s

@ẑ
=

(kzk2kẑk2)z� (zT ẑ)(kzk2kẑk2)ẑ

kzk22kẑk22
.

Putting it all together, we have

�z = �y ·
(kzk2kẑk2)ẑ� (zT ẑ)(kẑk2kzk2)z

kzk22kẑk22

�ẑ = �y ·
(kzk2kẑk2)z� (zT ẑ)(kzk2kẑk2)ẑ

kzk22kẑk22

6

ii. (5 points) Compute rW2L. For all the following parts, you can use �W2 to refer
to rW2L.

Solution: Since there are two paths to W2, so by law of total derivatives

rW2L =
@z

@W2

@L
@z

+
@ẑ

@W2

@L
@ẑ

.

By the tensor trick learned in class (outer product of two vectors), we have

�W2 = �zh
T
1 + �ẑĥ

T
1

iii. (5 points) Compute rh1L and rĥ1
L. For all the following parts, you can use �h1

and �ĥ1
to refer to rh1L and rĥ1

L respectively.

Solution: By chain rule,

rh1L =
@z

@h1

@L
@z

rĥ1
L =

@ẑ

@ĥ1

@L
@ẑ

.

Since,

@z

@h1
=

@ẑ

@ĥ1

= W
T
2 ,

so

�h1 = W
T
2 �z

�ĥ1
= W

T
2 �ẑ.

iv. (5 points) Compute rmL and rnL. For all the following parts, you can use �m and
�n to refer to rmL and rnL respectively. Use the symbol � to denote elementwise
multiplication (Hadamard product).

Solution: By chain rule,

rmL =
@h1

@m

@L
@h1

rnL =
@ĥ1

@n

@L
@ĥ1

.

Since ReLU gate routes the gradient, so

�m = (m � 0)� �h1

�n = (n � 0)� �ĥ1

7

v. (5 points) Compute rW1L.

Solution: Since there are two paths to W1, so by law of total derivatives

rW1L =
@m

@W1

@L
@m

+
@n

@W1

@L
@n

.

By the tensor trick learned in class (outer product of two vectors), we have

�W1 = �mx
T + �nx̂

T

(b) (9 points) In the similarity network architecture, z and ẑ represents the embedding
vectors for input signature images x and x̂ respectively. Suppose we are given a training
sample, {(x(g), x̂(g)),+1}.
i. (3 points) Compute the loss for the training sample if z(g) = ẑ

(g).

Solution: If z(g) = ẑ
(g), then

s(g) = coshz(g), ẑ(g)i
= 1.

Therefore,

L(g) = �1 · s(g)

= �1.

ii. (3 points) Compute the loss for the training sample if z(g) and ẑ
(g) are orthogonal

to each other

Solution: If z(g) and ẑ
(g) are orthogonal to each other, then

s(g) = coshz(g), ẑ(g)i
= 0.

Therefore,

L(g) = �1 · s(g)

= 0.

iii. (3 points) Compute the loss for the training sample if z(g) = �ẑ(g).

Solution: If z(g) = �ẑ(g), then

s(g) = coshz(g), ẑ(g)i
= �1.

Therefore,

L(g) = �1 · s(g)

= 1.

8

(c) (1 points) Based on your answer to part (b), explain if the loss function is forcing the
embedding vectors in the right direction.

Solution: From part (b), we can see that by minimizing the loss function the em-
bedding vectors for the input pair of images that are genuine are getting forced to be
similar to each other (loss for b(i) is the least) which is what we want to achieve for the
signature forgery detection application.

9

3. Training neural networks (25 points)

(a) (4 points) Which of the following activation functions where vanishing gradients usually
happen? Select all that apply. (Note: Justification is not necessary, but may result
in partial credit if the answer is incorrect.)
A. ReLU
B. Tanh
C. Sigmoid
D. Leaky ReLU
E. Identity

Solution: A, B, C.
A. ReLU saturates for negative values, giving zero gradient.
B. Like the sigmoid unit, when a unit saturates, i.e., its values grow larger or smaller,
the unit saturates and no additional learning occurs.
C. At extremes, the unit saturates and thus has zero gradient. This results in no learn-
ing with gradient descent.

(b) (5 points) What is true about batch normalization? Select all that apply. (Note:
Justification is not necessary, but may result in partial credit if the answer is incorrect.)
A. Batch normalization slows down the training process by requiring more iterations.
B. Batch normalization is a non-learnable transformation.
C. Batch normalization is a non-linear transformation to make the output of each layer
have unit statistics.
D. Batch normalization introduces noise to a hidden layer’s activation.
E. Batch normalization is not applicable at test time.

Solution: D.
A. Batch normalization accelerates training by requiring fewer iterations to converge to
a given loss value.
B. Batch normalization has learnable parameters
C. Batch normalization is a linear transformation
D. It introduces noise to a hidden layer’s activation because the mean and the standard
deviatio nare estimated with a mini-batch of data.
E. Use the running mean and variance from training statistics instead.

10

(c) (5 points) Which of the following are true about regularization? Select all that ap-

ply. (Note: Justification is not necessary, but may result in partial credit if the answer
is incorrect.)
A. L1 regularization often results in some weights being 0.
B. Adding a regularization penalty will always reduce the training loss.
C. Dropout acts as regularization.
D. Unsuccessful regularization attempts (such as having too large a weight on a param-
eter norm penalty) could lead to model underfitting.
E. None of the above

Solution: A, C, D.

(d) (5 points) Which of the following are true? Select all that apply. (Note: Justifica-
tion is not necessary, but may result in partial credit if the answer is incorrect.)
A. In transfer learning, we can freeze most parameters of the original network
B. Data augmentation could help address the class imbalance problem for image clas-
sification
C. Multitask learning is not applicable if you have a small amount of data for a partic-
ular task
D. Ensemble methods are an e↵ective way to improve performance
E. None of the above

Solution: A, B, D.

(e) (6 points) Early stopping is a popular regularization method that constantly evaluates
the training and validation loss on each training iteration, and returns the model with
the lowest validation error. Now, you are going to draw an illustration of early stopping
and introduce the concept of it to your friend. Fill in the blanks in the figure with
precise answers.

11

Hint:
(1) and (2) describe the axis legends.
(3) and (4) describe specific values on the vertical and horizontal axes.
(5) and (6) describe the names of curves.

Solution:

(1) Loss (or error)
(2) Number of iterations (or number of epochs)
(3) Best validation loss value (or best validation error)
(4) Optimal stopping point (or early stopping point)
(5) Validation loss (or validation error)
(6) Training loss (or training error)

12

4. Gradient-based optimization algorithms (15 points)

We have learned several optimization algorithms. Given a loss function L(✓), the algorithms
make use of the gradient information g = r✓L to iteratively update the parameters ✓. The
update rule, however, varies for di↵erent algorithms.

Let gt := r✓L(✓t�1) be the gradient at ✓t�1. This question will discuss the following update
rules from class, reproduced here for convenience:

Gradient Descent At the tth iteration,

✓t ✓t�1 � "gt,

where " is the step size hyperparameter.

Gradient Descent with Momentum At the tth iteration,

vt ↵vt�1 � "gt

✓t ✓t�1 + vt

where " is the step size hyperparameter, and ↵ 2 [0, 1] is the running average parameter
for momentum.

AdaGrad At the tth iteration,

at at�1 + gt � gt

✓t ✓t�1 �
"

p
at + ⌫

� gt,

where ⌫ is a small value to prevent zero-division and " is the step size hyperparameter.

Adam At the tth iteration,

vt �1vt�1 + (1� �1)gt

at �2at�1 + (1� �2)gt � gt

ṽt =
1

1� �t
1

vt (bias correction for first moment)

ãt =
1

1� �t
2

at (bias correction for second moment)

✓t ✓t�1 �
"p

ãt + ⌫
� ṽt,

where ⌫ is a small value to prevent zero-division, �1 and �2 are the running average
parameter for the first and second moment estimation. " is the step size hyperparameter.

(a) (10 points) Getting out of a “trap”. Figure 2 is the landscape of a loss function
with an 1-D parameter ✓ 2 R. As the plot shows, there is a “plateau” between ✓ = 3
and ✓ = 6.

In the plot, the arrows show 6 vanilla gradient descent steps (with a fixed step size ")
before reaching the red dot near a local minimum. Note that the 6th step is so small that

13

the details can only be shown in the zoom-in inset. This demonstrates that the plateau
acts as a “trap” for gradient descent, where the gradient almost vanishes, leading to
marginal update magnitude.

Now consider the optimization algorithms mentioned above. Assume they all share the
same " and starting point as that are used for the plotted gradient descent steps, and
that Adam and AdaGrad share the same ⌫.

i. (5 points) Which optimization algorithms would have a better chance to get out of
the trap compared to Gradient Descent? Briefly explain your reasons.

Solution: The Gradient Descent with Momentum and Adam would have better
chance to get out of the plateau “trap”, because they would be able to gather
momentum starting uphill on the left, and even though the gradient vanishes in
the plateau, the accumulated momentum will drive the optimizer rightward out of
the plateau.

ii. (5 points) After several updates from the same starting point, when the optimizers
“just step into the plateau”, please order the “update magnitude” given by Gradi-
ent Descent with Momentum, AdaGrad, and Adam. Briefly explain your reasons.

Here “update magnitude” refers to the norm of the update step, for example, at
the tth step, “update magnitude” is k✓t � ✓t�1k2.

Solution: The update magnitude order is

Gradient Descent with Momentum > Adam > AdaGrad

Momentum will help increase the update magnitude at the plateau, while AdaGrad
will shrink the update magnitude. Combining both, Adam will give an update
magnitude in the middle of the two extremes.

14

�2 0 2 4 6 8 10 12

✓

�1

0

1

2

3

L

Figure 2: Loss landscape of L(✓), and a gradient descent trajectory on it.

(b) (5 points) Notice that the Adam algorithm designs the “bias correction” steps for the
first and second moment estimation of the gradients. In this question, we are going to
derive the correction factors.

We will treat the gradients along the optimization trajectory as random variables, and
assume that g1,g2, . . ., are i.i.d. with some distribution that has the first and second
moment. That is, we assume

E[gt] = µ, t = 1, 2, . . .

E[g2
t] = s, t = 1, 2, . . .

where for simplicity, we denote gt � gt as g2
t .

We first expand the recursive relation and express vt in terms of g1,g2, . . . ,gt.

This gives

vt = (1� �1)gt + �1(1� �1)gt�1 + �2
1(1� �1)gt�2 + . . .+ �t�1

1 (1� �1)g1

= (1� �1)
tX

i=1

�t�i
1 gi (1)

and similarly,

at = (1� �2)
tX

i=1

�t�i
2 g

2
i (2)

Then consider the expectation of vt, E[vt], and compare with µ.

15

Show that the correction factor �1 =
1

1� �t
1

satisfies

�1E[vt] = µ = E[gt].

You will see that �2 =
1

1� �t
2

corrects E[at] to s (i.e. E[g2
t]) in a similar way.

Hint: The sum of a geometric series p0, p1, . . . , pn�1 is given by:

n�1X

j=1

pj =
1� pn

1� p

Solution: Change the time index variable i to j = t� i, then vt = (1� �1)
t�1X

j=0

�j
1gt�j .

Now

E[vt] = (1� �1)
t�1X

j=0

�j
1 E[gt�j] = (1� �1)

1� �t
1

1� �1
µ = (1� �t

1)µ =
1

�1
µ

Similarly,

E[at] = (1� �2)
t�1X

j=0

�j
2 E[g2

t�j] = (1� �2)
1� �t

2

1� �2
s = (1� �t

2)s =
1

�2
s

16

5. Bonus (5 points) Nesterov Momentum.

Recall that in class, we discussed the Nesterov momentum update. For parameters ✓, Nes-
terov momentum performs:

v ↵v � ✏r✓L(✓ + ↵v)

✓ ✓ + v

In class, we showed the result that by defining ✓̃old = ✓old + ↵vold, the update becomes:

vnew = ↵vold � ✏r✓L(✓̃old)
✓̃new = ✓̃old + vnew + ↵(vnew � vold)

followed by setting vold = vnew and ✓̃old = ✓̃new. Show that these two update rules are
equivalent.

Solution: The first equation,

vnew = ↵vold � ✏r✓L(✓̃old)

follows from substituting the definition of ✓̃ into v ↵v � ✏r✓L(✓ + ↵v). For the second
equation, note:

✓̃new = ✓new + ↵vnew

= ✓old + vnew + ↵vnew

= ✓̃old � ↵vold + vnew + ↵vnew

= ✓̃old + vnew + ↵(vnew � vold)

where in the second line, we used ✓new = ✓old + vnew and the third line, we used ✓old =
✓̃old � ↵vold.

17

