
ECE C147/C247, Winter 2024 Midterm Review
Neural Networks & Deep Learning Prof. J.C. Kao
UCLA ECE TAs: T. Monsoor, Y. Liu, S. Rajesh, L. Julakanti, K. Pang

1. Multiple choice (Shreyas)
Please pick the correct answers for each questions, note that each question can
have one or more than one correct.

(a) Consider Figure 1 plotting loss values as a function of the number of epochs, select
the option that best describe the shaded regions in the plot, and the point where you
would stop training to achieve the best generalization.

Figure 1

i. R1: Overfitting, R2: Underfitting, stop at a.

ii. R1: Overfitting, R2: Underfitting, stop at b.

iii. R1: Underfitting, R2: Overfitting, stop at b.

iv. R1: Underfitting, R2: Overfitting, stop at c.

(b) When we minimize the negative log likelihood for a classification problem with c classes,
which of the following are we inherently performing?

i. Maximizing the likelihood of observing the training data.

ii. Minimizing the Mean Squared Error.

iii. Minimizing the Cross Entropy loss.

(c) Mark all the correct choices regarding cross validation.

i. A 5-fold cross-validation approach results in 5-different model instances being fit-
ted.
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ii. A 5-fold cross-validation approach results in 1 model instance being fitted over and
over again 5 times.

iii. A 5-fold cross-validation approach results in 5-different model instances being fitted
over and over again 5 times.

iv. None of the above.

(d) Which of the following are considered as hyperparameter choices while training a neural
network.

i. Loss Function.

ii. Learning Rate.

iii. Number of Layers.

iv. Batch Size.

v. All of the above.

(e) Assuming Stochastic Gradient Descent (SGD) computes gradient using a single sample
from the training data, which of the following statements are true.

i. Gradient computed using SGD will be noisier than gradient computed using Batch
Gradient Descent.

ii. Empirically, SGD takes longer (in terms of clock time) to converge than Batch
Gradient Descent.

iii. SGD usually avoids the trap of poor local minima.

iv. SGD is computationally more expensive than Batch Gradient Descent.

2. Short answer (Kaifeng)

(a) Please explain the difference between batchnormalization during training and testing.

(b) Your friend designed a novel activation function:

f(x) = x3 (1)

Please discuss if this is a good idea to use this activation in a neural network.

(c) Your friend is utilizing a Multi-layer Perceptron (MLP) for a deep learning task and is
trying to increase the number of units within each layer to enhance the model’s complexity.
Please explain potential effect of this action on the model performance.

(d) Please explain the role of ℓ1 regularization.

(e) Please explain the role of the bias correction step in the Adam optimizer.

3. Backpropagation in parallel neural network (Tonmoy)

A parallel neural network consists of twin networks which accept distinct inputs but share
the same weights. The outputs of the twin networks are later processed by more hidden
layers. Let’s assume we have a parallel neural network with the following architecture:
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hp = W1x
(i)
p + b1

z1 = ReLU(hp)

hq = W1x
(i)
q + b1

z2 = ReLU(hq)

z = z1 − z2

z3 = W2z + b2

ŷ(i) = σ(z3)

L(i) = LCE(y
(i), ŷ(i))

L = − 1

m

m∑
i=1

L(i)

In the above architecture, (x
(i)
p ,x

(i)
q ) represent the pair of ith input example and are each of

shape Dx. y(i) represent the label of the ith input example and is a scalar. We also assume
z1 and z2 have shape of Dz.

(a) Draw the computational graph for the parallel neural network described above. You
can start from L(i) as your output variable and then backtrack to the input variables

x
(i)
p and x

(i)
q .

(b) Compute ∇ŷ(i)L
(i) and denote it as δŷ(i) . For all the following parts, you can refer to

this computed gradient as δŷ(i) .

(c) Compute ∇z3L
(i) and denote it as δz3 . For all the following parts, you can refer to this

computed gradient as δz3 .

(d) Compute ∇b2L
(i) and denote it as δb2 . For all the following parts, you can refer to this

computed gradient as δb2 .

(e) Compute ∇W2L
(i) and denote it as δW2 . For all the following parts, you can refer to

this computed gradient as δW2 .

(f) Compute ∇zL
(i) and denote it as δz. For all the following parts, you can refer to this

computed gradient as δz.

(g) Compute ∇z1L
(i) and denote it as δz1 . For all the following parts, you can refer to this

computed gradient as δz1 .

(h) Compute ∇z2L
(i) and denote it as δz2 . For all the following parts, you can refer to this

computed gradient as δz2 .

(i) Compute ∇hqL
(i) and denote it as δhq . For all the following parts, you can refer to this

computed gradient as δhq .

(j) Compute ∇hpL
(i) and denote it as δhp . For all the following parts, you can refer to this

computed gradient as δhp .

(k) Compute ∇b1L
(i).
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(l) Compute ∇W1L
(i).

4. Regularization techniques (Yang)

(a) True or False: Regularization is intended to reduce training error but not validation
error.

(b) Consider a model L̃(θ) = L(θ;X,y)+αΩ(θ) where L(θ;X,y) is some loss function and
Ω(θ) is some norm penalty. What are the effects on the model when α = 0 and α → ∞?

(c) Mathematically show that ℓ2 regularization shrinks the weight in gradient descent.
Hint: start with L̃(θ;X,y) = L(θ;X,y) + α

2 ||θ||
2
2 and derive the gradient descent step

for θ.

(d) List two dataset augmentation techniques for image classification.

(e) How did you implement dropout in homework 4? Please comment on both training and
testing.

5. Optimization techniques (Lahari)

(a) In lecture, we have learnt about Nesterov Momentum and it’s update rule for parame-
ters. The update rule for parameter θ is given by:

vt = αvt−1 − ϵ∇θL(θt−1 + αvt−1)

θt = θt−1 + vt (2)

Prove that the update rule in (3) is equivalent to the update rule in (2)

vnew = αvold − ϵ∇
θ̃old

L(θ̃old)

θ̃new = θ̃old + vnew + α(vnew − vold) (3)

Explain one advantage of using the update update rule in (3) over the update rule in
(2).

(b) Consider the two loss curves L1(x) and L2(x) shown in Figure 2. Which loss curve has
a saddle point? Which loss curve has a poor local minima? In which of the loss curves,
is an optimizer more likely to escape the trap of a saddle point or a poor local minima?
And what property does the optimizer require for it to escape these traps in this case?

(c) Consider the contour plot shown in Figure 3 , where the loss surface is plotted with
respect to just 2 weights w1 and w2, where w1, w2 ∈ R (scalars). Assume you are given
a hypothetical scenario, where you start from point A and use vanilla gradient descent
in many iterations to get to point B. During this process, we have started accumulating
momentum based on the following equation,

gt = ∇θtL(θt)

vt = vt−1 − ϵgt

Comment on which direction does the weight update occur if we use the following
optimizers : vanilla gradient descent, gradient descent with momentum, gradient descent
with Nesterov momentum, Adagrad.
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Figure 2: Loss curves L1(x) (Left), L2(x) (Right)

Figure 3: Contour plot of a Loss function L(w1, w2)

(d) In the Gradient descent + momentum scheme, find a general expression of vt in terms
of gradients g1, g2, ..., gt and ϵ(learning rate), considering an initial value of momentum
v0 = 0.

(e) Consider that the gradients g1, g2, ..., gt in part (d) are i.i.d. random variables with
mean µ and variance σ. Find the expected value of weights θt at t = 3.

6. ℓ∞ regularization (Tonmoy)

Let x ∈ Rn, then we define the ℓ∞ norm and the Log-Sum-Exponent (LSE) of it as follows:

∥x∥∞ = max
i

|xi|

LSE(x) = ln

( n∑
i=1

exi

)

(a) Show that the following inequality holds for n ≥ 1,
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∥x∥∞ ≤ LSE(x) ≤ ∥x∥∞ + ln(n) (4)

(b) Is the lower bound in (4) strict for n > 1?

(c) Under what condition on x, will the upper bound in (4) be satisfied with equality.

(d) Use the result from (4) to show that the following inequality holds,

∥x∥∞ ≤ 1

t
LSE(tx) ≤ ∥x∥∞ +

ln(n)

t
(5)

for some scaling constant t > 0.
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