
ECE C147/C247, Winter 2024 Homework #2
Neural Networks & Deep Learning Prof. J.C. Kao
UCLA ECE TAs: T. Monsoor, Y. Liu, S. Rajesh, L. Julakanti, K. Pang

Due Monday, 29 Jan 2024, by 11:59pm to Gradescope.
100 points total.

1. (10 points) Noisy linear regression

A real estate company have assigned us the task of building a model to predict the house
prices in Westwood. For this task, the company has provided us with a dataset D:

D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}

where x(i) ∈ Rd is a feature vector of the ith house and y(i) ∈ R is the price of the ith house.
Since we just learned about linear regression , so we have decided to use a linear regression
model for this task. Additionally, the IT manager of the real estate company has requested
us to design a model with small weights. In order to accommodate his request, we will design
a linear regression model with parameter regularization. In this problem, we will navigate
through the process of achieving regularization by adding noise to the feature vectors. Recall,
that we define the cost function in a linear regression problem as:

L(θ) = 1

N

N∑
i=1

(y(i) − (x(i))
T
θ)2

where θ ∈ Rd is the parameter vector. As mentioned earlier, we will be adding noise to the
feature vectors in the dataset. Specifically, we will be adding zero-mean gaussian noise of
known variance σ2 from the distribution

N (0, σ2I)

where I ∈ Rd×d and σ ∈ R. With the addition of gaussian noise the modified cost function
is given by,

L̃(θ) = 1

N

N∑
i=1

(y(i) − (x(i) + δ(i))T θ)2

where δ(i) are i.i.d noise vectors with δ(i) ∼ N (0, σ2I).

(a) (6 points) Express the expectation of the modified loss over the gaussian noise, Eδ∼N [L̃(θ)],
in terms of the original loss plus a term independent of the dataset D. To be precise,
your answer should be of the form:

Eδ∼N [L̃(θ)] = L(θ) +R
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where R is not a function of D. For answering this part, you might find the following
result useful:

Eδ∼N [δδT ] = σ2I

.

(b) (2 points) Based on your answer to (a), under expectation what regularization effect
would the addition of the noise have on the model?

(c) (1 point) Suppose σ −→ 0, what effect would this have on the model?

(d) (1 point) Suppose σ −→ ∞, what effect would this have on the model?

2. (20 points) k-nearest neighbors. Complete the k-nearest neighbors Jupyter notebook.
The goal of this workbook is to give you experience with the CIFAR-10 dataset, training and
evaluating a simple classifier, and k-fold cross validation. In the Jupyter notebook, we’ll be
using the CIFAR-10 dataset. Acquire this dataset by running:

wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

tar -xzvf cifar-10-python.tar.gz

rm cifar-10-python.tar.gz

If you don’t have wget you can simply go to: https://www.cs.toronto.edu/~kriz/cifar.
html and download it manually.

We have attached a screenshot of the paths the files ought to be in, in case helpful (though
it should be apparent from the Jupyter notebook).

Print out the entire workbook and related code sections in knn.py, then submit them as a
pdf to gradescope.
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3. (30 points) Softmax classifier gradient. For softmax classifier, derive the gradient of the
log likelihood.

Concretely, assume a classification problem with c classes

• Samples are (x(1), y(1)), . . . , (x(m), y(m)), where x(j) ∈ Rn, y(j) ∈ {1, . . . , c}, j = 1, . . . ,m

• Parameters are θ = {wi, bi}i=1,...,c

• Probablistic model is

Pr
(
y(j) = i | x(j), θ

)
= softmaxi(x

(j))

where

softmaxi(x) =
ew

T
i x+bi∑c

k=1 e
wT

k x+bk

Derive the log-likelihood L, and its gradient w.r.t. the parameters, ∇wiL and ∇biL, for
i = 1, . . . , c.

Note: We can group wi and bi into a single vector by augmenting the data vectors with an

additional dimension of constant 1. Let x̃ =

[
x
1

]
, w̃i =

[
wi

bi

]
, then ai(x) = wT

i x+ bi = w̃T
i x̃.

This unifies ∇wiL and ∇biL into ∇w̃iL.

4. (10 points) Hinge loss gradient.

Owing to the drastic changes in climate throughout the world, a weather forecasting orga-
nization wants our help to build a model that can classify the observed weather patterns as
severe or not severe. They have accumulated data on various attributes of the weather pat-
tern such as temperature, precipitation, humidity, wind speed, air pressure, and geographical
location along with severity of weather. However, the contribution of the attributes to the
classification of weather as severe or not is unknown.

We choose to use a binary support vector machine (SVM) classification model. The SVM
model parameters are learned by optimizing a hinge loss. The company has provided us with
a data-set

D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(K), y(K))}

where x(i) ∈ Rd is a feature vector of the ith data sample and y(i) ∈ {−1, 1}. We define the
hinge loss per training sample as

hingey(i)(x
(i)) = max

(
0, 1− y(i)(wTx(i) + b)

)
(1)

, where w ∈ Rd and bias b ∈ R are the model parameters. With the hinge loss per sample
defined, we can then formulate the average loss for our model as:

L(w, b) =
1

K

K∑
i=1

hingey(i)(x
(i)) (2)
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Find the gradient of the loss function L(w, b) with respect to the parameters i.e ∇wL and
∇bL.
Hint: An Indicator function, also known as a characteristic function, takes on the value of 1
at certain designated points and 0 at all other points. Mathematically, we can represent it
as follows:

1{p<1} =

{
1, if p < 1

0, otherwise
(3)

5. (30 points) Softmax classifier. Complete the Softmax Jupyter notebook. Print out the
entire workbook and related code sections in softmax.py, then submit them as a pdf to
gradescope.
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