Lecture 14: CNNs + RNNs

Announcements:

« HW #5 is due today Monday, March 4, uploaded to Gradescope. Appreciate that you went
from 35-40% accuracy with softmax on Homework 2 to 65+ % accuracy with CNNs!

* Remaining schedule: Today: CNNs + RNNs, 3/6: RNNs + object detection, 3/11: object
detection + adversarial examples, 3/13: adversarial + overview.

* The project and its accompanying data have been uploaded to Bruin Learn. It is due
March 15, 2024 (Friday of Week 10).

* You will be allowed to use PyTorch, Keras, or other deep learning libraries for the
project.

* We will cover RNNs today, though we may not finish LSTMs. Our lectures on LSTM go
over why it's a good idea and why it works; you can feel free to implement them using
LSTM cells in PyTorch (https://pytorch.org/docs/stable/generated/torch.nn.L. STM.html)
or Keras (https://keras.io/api/layers/recurrent_layers/Istm/) and play with
hyperparameters.

* We will release midterm grades tonight; regrades due within a week.
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What about depth?

New architectures, that are

substantially deeper. 28.2
152 layers
A
\
\
\
\
\
\
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} 22 layers 19 layers
\\ 6.7 7.3
3.57

ILSVRC'15
ResNet

ILSVRC'14
GoogleNet

ILSVRC'14
VGG

ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
AlexNet

http://ka

minghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Prof J.C. Kao, UCLA ECE



VGGNet \

4 Pt
INPUT [224x224%3] 224*224*3  ~ 150K 0
CONV (64) [224x224x64] D24*224*64 ~ 3.2M (3*3*3)*64 = 1,728
CONV (64) [224x224x64] D24*224*64 ~ 3.2M (3*3*64)*64 = 36,864
POOL [112x112x64] 112*112*64 ~ 800K 0
CONV (128) [112x112x128] 112*112%128 ~ 1.6M (3*3*64)*128 = 73,728
CONV (128) [112x112x128] 112*112%128 ~ 1.6M (3*3*128)*128 = 147,456
POOL [56X56x128] 56*56*128  ~ 400K 0
CONV (256) [56x56x256] 56*56*256  ~ 800K (3*3%128)*256 = 294,912
CONV (256) [56x56x256] 56*56*256  ~ 800K (3*3*256)*256 = 589,824
CONV (256) [56x56x256] 56*56*256  ~ 800K (3*3*256)*256 = 589,824
POOL [28x28x256] 28*28*256  ~ 200K 0
CONV (512) [28x28x512] 28*28*512  ~ 400K (3*3*256)*512 = 1,179,648
CONV (512) [28x28x512] 28*28*512  ~ 400K (3*3*512)*512 = 2,359,296
CONV (512) [28x28x512] 28*28*512  ~ 400K (3*3*512)*512 = 2,359,296
POOL [14x14x512] 14*14*512  ~ 100K 0
CONV (512) [14x14x512] 14*14*512  ~ 100K (3*3*512)*512 = 2,359,296
CONV (512) [14x14x512] 14*14*512  ~ 100K (3*3*512)*512 = 2,359,296
CONV (512) [14x14x512] 14*14*512  ~ 100K (3*3*512)*512 = 2,359,296
POOL [7X7x512] 7*7*512 ~ 25K 0
FC [1x1x4096] 4096 7*7*512*4096 = 102,760,448
FC [1x1x4096] VG Giet = 138 M P> 4096 4096*4096 = 16,777,216
FC [1x1x1000] ot 1221 1000 4096*1000 = 4,096,000
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GoogLeNet

To address this, in GooglLeNet, 1x1xF convolutional layers are added, that

reduce the number of feature maps to substantially reduce the number of
operations.

Question: Say F = 64. Where should we put these convolutional layers?
28x28x480

Concatenate

28x28x192 _____28x28x1 92 T'* 28x28x96 —— 28x28x64

—

128, 1x1 192, 3x3 96, 5x5 64, 1x1
28x28x64 T 28x28x64 T 28x28x256 T
64, 1x1 64, 1x1 3x3 pool

Tﬂ'

28x28x256
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GoogLeNet
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ResNet

28.2

Revolution of depth

ILSVRC'15| ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11l ILSVRC'10
ResNet GoogleNet VGG AlexNet

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

152 layers

} 22 layers 19 layers
‘6.7 7.3

3.57
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ResNet

|dea so far:

AlexNet and ZFNet were 8 layers.
VGG Net was 16-19 layers.
GooglLeNet was 22 layers?
Why not just keep adding layers?

Vaw'lla CNNs

20r 20r
% e 56-layer
o N’
b
5 . S 20-layer
& 56-layer 2
R 3
m N
& 20-layer
e 1 2 3 4 5 6 % 1 2 R 4 5 6
iter. (1e4) iter. (1e4)
He et al., 2016
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ResNet

This result is non-intuitive. (Why?) W‘“j ghould a 56‘la1cr NN MNM’:

do o} least ac well ag a 20-ln'w NN ?

Por « sb lw.'cv NN,
| Low\gl co?'] Ha \x.vw lf a 20 hA,W MM

omd  then sd’"’“"‘"“‘”‘“’“‘"‘j“”h’
iur\m;w:d' e \'clwd-\'h] ‘a&
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ResNet

The degradation problem suggests that the solvers might have difficulties in

approximating identity mappings by multiple nonlinear layers. With the
residual learning re-formulation, if identity mappings are optimal, the solvers
may simply drive the weights of the multiple nonlinear layers toward zero to

approach identity mappings.

~Heetal., 2016 Tiwa aca.\ (s 1o CW e NN archudecture  so ot
e 3 wm,] o lazwm e ‘\‘L’“’\H"y W‘”‘ff“"?

¥ZL
Stoundoad . {"i-ﬂ - N\AACMN{_\O 3 W e w ZW
fuk(—%/g
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ResNet

In real cases, it is unlikely that identity mappings are optimal, but our
reformulation may help to precondition the problem. If the optimal function is
closer to an identity mapping than to a zero mapping, it should be easier for
the solver to find the perturbations with reference to an identity mapping, than
to learn the function as a new one.

-He et al., 2016
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ResNet

The main idea of the ResNet architecture is to facilitate the network training by
causing each layer to learn a residual to add to the input.

Normal architecture ResNet architecture

X X

\4 v
Convolution Convolution

relu relu
\ 4 A 4

Convolution Convolution

F(x)

\4

H(x)

xr + F(x)
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ResNet

The main idea of the ResNet architecture is to facilitate the network training by
causing each layer to learn a residual to add to the input.

Normal architecture ResNet architecture

X X

\4 v
Convolution Convolution

relu relu
\ 4 A 4

Convolution Convolution

F(x)

H(x)

xr + F(x)

Residual layers are used to fit F(x) = H(x) — x
To make dimensions work out, sometimes a linear mapping is used: W x

Feature maps are added by doing 1x1 convolutions or padding.
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ResNet

“We hypothesize that it is easier to optimize the residual mapping than to
optimize the original, unreferenced mapping.”

“To the extreme, if an identity mapping were optimal, it would be easier to
push the residual to zero than to fit an identity mapping by a stack of nonlinear
layers.”

(He et al., 2016)
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ResNet

Network architecture:

- They follow the design rules of VGG Net.
- All conv layers are 3x3 filters with the same number of filters.
- If the feature map size is halved, the number of filters is doubled so that
the computational complexity in each layer is the same.

- The output ends with average pooling and then a FC 1000 layer to a
Softmax.

- Conv layers are residual network layers.

Other notes:

- They performed data augmentation (image scaling, different crops)

- SGD with momentum 0.9, with mini batch size 256.

- L2 regularization with weight 0.0001

- Learning rate starts off at 0.1 and is decreased by an order of magnitude
when the error plateaus.

- No dropouit.
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ResNet
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ResNet

Vovlllw ¢

RecNet- NN

60

W
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error (%)
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\ A 34-layer
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plain-18 ResNet-18 AMAAAAA,
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He et al., 2016

For deeper networks, use an idea similar to inception

64-d

256-d

A4
[ 1x1, 64
l relu
[ 3x3, 64 ]
l relu
[ 1x1, 256

He et al., 2016
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ResNet

CIFAR-10 performance:

Vo [la  CNNS

W-g———————————————— === == W —————===== =
ResNet-20 = residual-110
ResNet-32 = residual-1202
~—ResNet-44
——ResNet-56
=——ResNet-110
5 10— — — Wi a V= VNN — — — — — — — 53— — - 5 w--———— == - = = =
E E
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Figure 6. Training on CIFAR- 10 Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error

of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers

He et al., 2016
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Fractal Nets

“...thereby demonstrating that residual representations may not be
fundamental to the success of extremely deep convolutional neural
networks. Rather, the key may be the ability to transition, during training,
from effectively shallow to deep.”

Larsson et al., 2017

Regarding ResNet:

First, the objective changes to learning residual outputs, rather than
unreferenced absolute mappings. Second, these networks exhibit a type of
deep supervision (Lee et al., 2014), as near-identity layers effectively reduce
distance to the loss. He et al. (2016a) speculate that the former, the residual
formulation itself, is crucial.

Larsson et al., 2017
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Fractal Nets

Fractal Expansion Rule
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Fractal Nets
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An overall view of architectures
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Canziani et al., 2017
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Inception-v4

' Relu activation

+
1x1 Conv
(256 Linear)
/ 3x3 Conv
(32)
1x1 Conv ’ T
2 3x3 Conv 3x3 Conv
(32) (32)
f I
1x1 Conv 1x1 Conv
(32) (32)

; Relu activation

Szegedy et al., 2017
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An overall view of architectures
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Canziani et al., 2017
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Take home points

For convolutional neural networks:
- Architecture can play a key role in the performance of the network.

- There is evidence that deeper and wider (i.e., more feature maps) result in
better performance.

- Going deeper helps to a point; beyond that, new architectures have to be
considered (like the ResNet).

It appears that what is key about these different architectures is that they
reduce the effective depth of the network, i.e., they shorten the longest path
from the output loss to the network input. This helps to avoid the
fundamental problem of deep learning.
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Recurrent neural networks

In this lecture, we'll talk about recurrent neural networks. In particular:

- Why RNNs?
- The basic RNN structure.

Backpropagation through time.
LSTMs

- GRUs
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Why recurrent neural networks?

A key missing feature of FC and convolutional neural networks is that they lack
recurrent connectivity, and hence have no dynamics.

D\O/O

® D/O

Y
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A motivating thought experiment

Say we're training a neural network to do character prediction (or word
prediction, e.g., when you type on your phone and it suggests a next vyomrd).

2 . ~(o.(]
In the case of character prediction, we have done the following: :;’ N
L E_N-» o> ] 2bP
1) Downloaded every NY Times article ever written. o | 0 4”
2) Trained a CNN to do the following: R
1) Take as input one character, e.g., the letter “t” t /L :) Lo‘w\J

2) Output a distribution over the next character, e.g., softmax ~ _~

probabilities on the 26 letters in the alphabet.
3) From here, take the character with the highest probability, e.g., we
may find it's the letter “h” because in the English language, h

commonly follows t.
3) Question for you. Consider the next character to be output following

these two strings:
Sawme ?&TM“(B N — Hre Sl

1) “th” § |
2) “though” 2 goprMAX sty

4) If you trained a CNN with all the bells and whistles to make it as good
as possible in prediction, what ought the output look like?
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A motivating thought experiment

This gets to the problem of state.

The CNN will always produce the same output given the same input,
irrespective of what happened in the past.

In some cases, this is a totally fine thing, e.qg., classifying images that don't
have temporal structure.

But what if we wanted to classify videos? What if we wanted to generate text?
What if what happened in the past matters?

At this point, we need a new construction.
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A motivating thought experiment

What is state?

State captures — usually in a succinct manner — what has happened in the
past.
St

For example, say we want to infer some output z; from some inputs xi1,Xa,...,X¢
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A motivating thought experiment

There are a few ways you could think of doing this. One way is to define a
function that takes all of the history and produces an output.

Zy :f<X17X27°"7Xt)

Then this () could be, e.g., a CNN or a FC net!

So haven'’t we solved the problem?
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5{, = Ag-l;—\

¢!
A motivating thought experiment  s.¢®* O
§ >
A D__
M2z 1.3
The other way is to introduce a variable called state. St s 6 ] $¢-110
759

The state is influenced by its past value(s), as well as by the current input.

Usually, we also make what is called the Markov assumption, which states that
all information about my past inputs is stored in my current state.

C Aed ovtoins  ALL  the re le vanh—
lovdmve ALL  Welovwnd” K /? stede vow
\\V\fb apout Xy, Koy oo Xg-) Ao
n\.’ﬁb 0\100\&*‘ K\ 3y ) Xt
Fevfovw\ W\'a f“f‘#
Here, “s” denotes the state, and critically, s:—1 contains all the information we
need to know about xi,X2,...,X¢_1 .

St = f(st—laXt)

With this more compact representation of the history, we can infer:
Zy = g(St—laxt)

In short, we encapsulate all the history into this state variable.
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Why recurrent neural networks?

Motivation for recurrent neural networks

Recurrent neural networks are neural networks that, in addition to feedforward
connections, have feedback connections.

e A network that is purely feedforward has no internal dynamics. Such a
network always produces the same output y: = f(x:) no matter the time.

* In a recurrent neural network (RNN), the feedback connections cause
input activations to persist for some amount of time. Because artificial
units provide inputs to each other with feedback, an input provided to the
network will, after one time step, still propagate within the network
through its recurrent connectivity.

e In this manner, RNNs have internal dynamics, so that the output at any
given time is also a function of the activation of the hidden units at that

time, i.e., Zy = f(xt7ht—l)-
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Why recurrent neural networks?

Connection to biology

In biology, neurons are known to be recurrently connected. Evidence suggests
that while earlier areas of sensorimotor processing have more to do with
encoding external stimuli, later areas such as the motor cortex are inherently
dynamical. In such dynamical circuits, neurons, through their recurrent
connectivity, drive themselves in lawful ways through time.

In a similar way, recurrent neural networks have recurrent connectivity that

define a dynamical system that governs how it evolves through time. Note that
a CNN does not capture these features of neural activity.
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Some cool results

target chars: ‘e’ 7 “” i
1.0 0.5 0.1 02
22 0.3 05 -1.5
output layer I 1.0 1.9 -0.1
4.1 1.2 -1.1 2.2
W h
S‘ T Se T q T Sy I =
0.3 1.0 01 | nn[-03
hidden layer | -0.1 » 0.3 > -0.5 — 0.9
0.9 0:1 -0.3 0.7
[ 1 we
0 0 0
1 0 0
0 1 1
0 0 0
e” “I” “I“

O Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

”TMWA/WWW;%@@"W

“f 2NN
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Learning Shakespeare

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

100 iters
| train more
“Tmont thithey" fomesscerliund

300 .t Keushey. Thom here
Iners sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

700 iters her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more
"Why do what that day," replied Natasha, and wishing to himself the fact the
2000 iters princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Learning Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Learning Shakespeare

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Generating Wikipedia

Naturalism and decision for the majority of Arab countries' capitalide was grounded

by the Irish language by |[[[John Clair]], [[An Imperial Japanese Revolt]],| associated

with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Faked algebraic geometry

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}S$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak g$ be an abelian sheaf on $X$.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}S$.
Let $\mathcal{F}$ be a coherent $\mathcal{O} X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.

\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{O} X$-module.

\end{lemma}

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Faked algebraic geometry

For @, . Where £,,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S=Spec(R)=U xx U xx U

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schfppy and U — U is the fibre category of S in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U,‘ X8, U,'
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € §’ such that Ox ,» — O, _, is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z/S")

and we win.

To prove study we see that F|y is a covering of A”, and 7; is an object of Fx/s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M*=1° ®spec(k) Os.s —ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) ¢, (Sch/S) fpps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces,étale Which gives an open subspace of X and T equal to Sza,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically

regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X, O,\'_ox).
When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a

closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, ., Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that F,, = F,, =

}-.\’ ..... 0-

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fx;s. Set T =
Ji1 C7I),. Since I™ CI™ are nonzero over ig < p is a subset of T, o o Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?7 we see that
D(Ox+) = Ox(D)

where K is an F-algebra where 4,4, is a scheme over S. O

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Faked algebraic geometry

Proof. Omitted. 0

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = 0x(L)

Proof. This is an algebraic space with the composition of sheaves F on X, we
have

Ox(F) = {morphy xoy (G, F)}
where G defines an isomorphism F — F of O-modules. 0

Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??. 0

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: XY a9Y Y3 Y xxY o X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and z € G the diagram

S——s

|

§

Ox

[

gory

Spec(Ky) Morsets  d(Oxy,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. (m]

Proof. This is clear that G is a finite presentation, see Lemmas ??.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz— Fz -1(Ox,,) — O%.0x,(0%,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. (]

If F is a finite direct sum Ox, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Learning long term dependencies

Cell that turns on inside quotes:

_
_

Cell that is sensitive to the depth of an expression:
#ifdef CONFIG_AUDITSYSCALL
statlc inline int audit_match_class_bits(int

! 1 < AUDIT_BITMASK_SIZE; i++)

F-
b

clliarsis U2t nrarsiky)

Source: Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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\ ok AL
Vawilla  RNN architecture sk

¥
Iy = relu (V\‘m%-. + Wy Xy + la)
At a high-level, the RNN can be diagrammed as follows:

D
\\ /A fh, ¢IR V ¢
Wn Wout &\{Z'ZL D
X o —> 2= Wauy by t by
—>
—>

The RNN has three major components:

e Win: An input at time ¢, denoted x¢, is transformed via Wi, onto
artificial neurons, whose activations are h;.

e W,..: Each artificial neuron is the network is denoted by an orange circle,
and these artificial neurons have recurrent connections. recurrent
connections are defined by the matrix Wc.

e Wyut: Finally, the artificial neuron activations are mapped linearly to the
output z; through the matrix Wy¢.
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Vanilla RNN

Wrec
Win Wout
_> _>
Xt — 3 :: zy
— .

h; = f(Wrecht—l + brec + Winxt)

Note, this is the vanilla RNN formulation used in Goodfellow (equations 10.8
and 10.9).
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Output of the RNN is based on its state

RNN output

The output of the RNN is typically a linear mapping of the RNN's activations.
Z+ — Woutht ‘|‘ bout

This can be used e.g., for regression, or the linear outputs could e.g., be passed
to a softmax classifier if the goal is to classify each time point. For example,
the probability of class ¢ at time ¢ can be denoted via:

Ut = softmax;(z¢)
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Loss functions are usually accumulated through time

RNN cost function

Loss functions are straightforward:

e In the case of regression, loss functions include the mean-square error,
where 1; = z; and the cost function is to minimize the sum of residuals

Z |ye — yt“2

t

across all time (modulo some scaling constant).

e |n the case of classification, loss functions include those derived from
maximum-likelihood. If £; is the softmax loss at time ¢, then the cost
function can be to minimize the sum of losses

SO chan — RUN — I clar.

S

across all time (modulo some scaling constant).

e Sometimes, we only care about the output after some time 7. Maybe we'll
even just care about the last output at the horizon of the data, 7'. In
these scenarios, the loss would be

g
Zﬁt 30“@

t>29
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What do we need to train an RNN?

W’rec
Wzn Wout
—
>
>

Let’s take stock of what we know:
- We know the RNN equations, and we can define a loss function.
- So we know how to do a forward pass and calculate a loss.

- In general, we know how to do optimization (i.e., with SGD and your
favorite optimizer on top of that, e.g., Adam or RMSprop).

- Do we know how to take gradients of the weight matrices?

- Is there any problem in applying backpropagation as in feedforward
networks (e.g., CNNs, FC nets) to RNNs?
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What do we need to train an RNN?

Training an RNN is not immediately as straightforward as a feedforward neural
network. This is because the RNN has recurrent connections with loops, and
backpropagation is not straightforward.

Wree
Wz'n Wout
—
>
Xt —>» Zy
>

The upstream gradients at any given time come from units who are themselves
potentially receiving inputs (directly or indirectly) from the node we're trying to
calculate the gradient of. Further, the activations at any given node for an
input depends on time; for even an input x; that is static across time, the
activations h; will not be static across time.
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M\Alﬁvh‘co«h\/\( RNN , Wi ()
Key insight: unroll the computational graph

RNN training (cont.) g = velw (“Wc by + W g )

To get around this confound, we consider the RNN as a computational graph
through time.

9996

=1 -2 t=5

Ewie

! Bodepuopogptnd Huowl due B PTT
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