Lecture 9: Regularization and optimization

Announcements:

Fride
« HW #3 is due &eﬁ»gﬁt To submit your Jupyter Notebook, print the notebook to a pdf
with your solutions and plots filled in. You must also submit your .py files as pdfs.

 Midterm is in 2 weeks on Feb 21, 2024. Past exams are uploaded to Bruin Learn
(under “Modules” —> “past exams”). This year, we will allow 4 cheat sheets (8.5 x
11” paper) that can be filled front and back (8 sides total). The exam is otherwise

closed book and closed notes.
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What is regularization?

Regularizations

Regularizations are used to improve model generalization. Goodfellow, Bengio,
and Courville define regularization in the following way (Deep Learning, p.
221):

[Regularization is|] any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its training
error.

In this manner, regularization is used to improve the generalizability of the
model. Other intuitions:

o Regularization tends to increase the estimator bias while reducing the
estimator variance.

* Regularization can be seen as a way to prevent overfitting.

e A common problem is in picking the model size and complexity. It may be
appropriate to simply choose a large model that is regularized
appropriately.
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A simple example of regularization -,

i S\ ‘., -
. i v
A simple example: stopping early '

One straightforward (and popular) way to regularize is to constantly evaluate # e\,og\u
the training and validation loss on each training iteration, and return the model
with the lowest validation error.

e Requires caching the lowest validation error model.

e Training will stop when after a pre-specified number of iterations, no
model has decreased the validation error.

e The number of training steps can be thought of as another
hyperparameter.

e Validation set error can be evaluated in parallel to training.
e |t doesn't require changing the model or cost function.

o The following is beyond the scope of the class — but in case curious, early
stopping can be seen as a form of L” regularization (to be discussed in the
next slides). See Goodfellow et al., Deep Learning, p. 242-5 for an indepth
discussion.
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A regularization familiar to you all: parameter norm penalties

You guys have already implemented some regularization on the HWs through
parameter norm penalties.

These are not specific to neural networks. These are commonly used, e.g.,

even in linear regression, where specific penalty norms have their own names
(e.g., Tikhonov regularization / ridge regression).

ol |\NI\F
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Parameter norm penalties

Regularization via parameter norm penalties

A common (and simple to implement) type of regularization is to modify the
cost function with a parameter norm penalty. This penalty is typically denoted
as €2(6) and results in a new cost function of the form:

i J(0; X,y) + af2(0)

with a > 0. A few things to note:

e « is a hyperparameter that weights the contribution of the norm penalty.
When a = 0, there is no regularization. When a — o0, the cost function
is irrelevant and the model will set the parameters to minimize 2(6).

e The choice of o can strongly affect generalization performance.
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L2 regularization

L? regularization

A common form of parameter norm regularization is to penalize the size of the
weights (L? regularization). This is also commonly called “ridge regression” or
“Tikhonov regularization.” This promotes models with parameters that are

closer to 0 (and hence, colloquially speaking, “simpler”). If w are the model
parameters to be regularized, then L? regularization sets: \ 2

1 7 v = (
Q(G):§W W= | wl|

Intuitively, to prevent Q(0) from getting large, L? regularization will cause the
weights w to have small norm.

\ 2 L(6) W
0.\ 0% — =
oW
(O %03
i = [bO~><m _”IOO'XU)
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L2 regularization

L? regularization (cont)

More formally, when using L? regularization, the new cost function is:

~ o e puns v peaslhy

Jw;X,y) =J(w: X, y) + gw'w ‘

with corresponding gradient:
VwlJ(w; X, y) =aw + VwJ(w; X, y) — ~
W e— W- & Vy J

w 4—w_;,<vwil' +ocvd>

The gradient step is:

W(—(l—GOé)W—eva(WaX7Y) W & (lff(&)w'-i’vwa—

This formalizes the intuition that L* regularization will shrink the weights, w,
before performing the usual gradient update.

Prof J.C. Kao, UCLA ECE



Other places you may have seen L2 regularization (NOT tested)

Other equivalent statements of L? regularization
While we won't discuss these at length in class, it may be worthwhile to work
out these equivalences:

o [? regularization is equivalent to maximum a-posteriori inference, where
the prior on the parameters has a unit Gaussian distribution, i.e.,

1

e When performing L? regularization, the component of w aligned with the
1th eigenvector of the Hessian is rescaled by a factor

i
i +

e In linear regression, the least squares solution w = (X' X)) 'X"y
becomes:
w=(X"X+aol) X"y

scaling the variance of each input feature. The dimensions of X’ X that
are large (i.e., high variance) aren't affected as much, while those

dimensions where X7 X is small are.
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L2 regularization

W

Other related forms of regularization include:

e Instead of a soft constraint that w be small, one may have prior knowledge
that w is close to some value, b. Then, the regularizer may take the form:

A
Q(0) = |lw = bl

e One may have prior knowledge that two parameters, w'*) and w'?, ought
be close to each other. Then, the regularizer may take the form:

2
Q(0) = Hw(l) —w?

2
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L1 regulangation

L' regularization

L' regularization defines the parameter norm penalty 3

Q) = lwl; w

Intuitively, this penalty also causes the weights to be small. However, because
the subgradient of ||w||, is sign(w), the gradient is the same regardless of the
size of w. (Contrast this to L? regularization, where the size of w matters.)
Empirically, this typically results in sparse solutions where w; = 0 for several +.
e This may be used for feature selection, where features corresponding to
zero weights may be discarded.

o L' regularization is equivalent to maximum a-posteriori inference where
the prior on the parameters has an isotropic Laplace distribution, i.e.,

w; ~ Laplace (O, l)
«

Prof J.C. Kao, UCLA ECE



L1 regularization on the units

Sparse representations

Instead of having sparse parameters (i.e., elements of w being sparse), it may
be appropriate to have sparse representations. Imagine a hidden layer of
activity, h'”. To achieve a sparse representation, one may set:

Q(h®) = Hhm

1
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Dataset augmentation

Original image:
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Dataset augmentation

Original image: Flipped image:
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Dataset augmentation

Original image: Flipped image: Cropped image:
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Dataset augmentation

Original image: Flipped image: Cropped image:

Adjust brightness
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Dataset augmentation

Original image: Flipped image: Cropped image:

Adjust brightness Lens correction
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Dataset augmentation

Original image: Flipped image: Cropped image:

Adjust brightness Lens correction Rotate
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Dataset augmentation Goojl-tl\‘d' 2014

2012 :~ 167/,
There are various heuristics to keeping the input size the same.

2004 - ~ 1.

You can be creative for dataset augmentation.

2. During testing, we adopted a more aggressive cropping [ Number Number Cost Top-5 compared
approach than that of Krizhevsky et al. [9]. Specif- of models | of Crops error to base
ically, we resized the image to 4 scales where the
shorter dimension (height or width) is 256, 288, 320 ! ! ! 10.07% | base
and 352 respectively, take the left, center and right 1 10 10 9.15% -0.92%
square of these resized images (in the case of portrait 1 144 144 7.89% 2 18%
images, we take the top, center and bottom squares). K I Sn—
For each square, we then take the 4 corners and the 7 1 T 8.09% -1.98%
center 224 x224 crop as well as the square resized to 7 10 70 7.62% 2.45%
224 x224, and their mirrored versions. This leads to
4x3x6x2 = 144 crops per image. A similar ap- 7 144 1008 6.67% -3.45%

Szegedy et al., CVPR 2015
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Dataset augmentation

Example from brain-machine interfaces:

G
(conventional state-of-the-art) 00:00

Success Rate Py Success Rate

0.0% 0.0%
D

FIT Sameday MRNN

3 electrodes dropped 3 electrodes dropped

(back-to-back comparisons during the same experiment)

Prof J.C. Kao, UCLA ECE




Dataset augmentation

Example from brain-machine interfaces:
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Dataset augmentation

Owne Wt~ U\M%
SWoo
Other types of dataset augmentation: NY“B“W"‘*‘W - Vj
0.0\
. L o.
- Inject noise into the network \ oy — |
. (N o) K= 9 0.0
- Label smoothing \ ]
0 Q .
OJ ‘ LV o\\)
Top-1 | Top-5 Cost Cc \/
Network Error | Error | Bn Ops () Z_ lO
GoogLeNet [20] | 29% | 92% | 15 Z = ~" VA
BN-GoogLeNet | 26.8% - 1.5 e\
BN-Inception [7] , 7.8 2.0 0w~ b

- 3.8

- /
63 | 38 | L v w

Inception-v2
Inception-v2

RMSProp
Inception-v2 o
Label Smoothirl 6.1 38 /
Inception-v2 / + (dj - )
Factorized 7 x 7 | 21.6% 5.8 4.8
ion- _ L
Inception-v2 21.2% | 5.6% | 48 NLL o
BN-auxiliary
(‘/Y/\,L Lwe d‘
Szegedy et al., arXiv 2015 Llﬂ\%
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Multitask learning

Multitask learning

Another way to improve generalization is by having the model be trianed to
perform multiple tasks. This represents the prior belief that multiple tasks
share common factors to explain variations in the data.
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Multitask learning

. - (3 | Semantic
| Semantic | Task 1 |
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Input Image .
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| {Bepth 4 Task {- ;
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\%WMS ww Kendall et al., arXiv 2017
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Multitask learning

e The entire model need not be shared across different tasks.

o Here, h*"#™*4 captures common features that are then used by
task-specific layers to predict y*) and y?).

e h® could represent a feature for unsupervised learning.
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Transfer learning

Transfer learning

We'll discuss this more in the convolutional neural networks lecture, but a

related idea is to take neural networks trained in one context and use them in
another with little additional training.

e The idea is that if the tasks are similar enough, then the features at later
layers of the network ought to be good features for this new task.

o |f little training data is available to you, but the tasks are similar, all you

may need to do is train a new linear layer at the output of the pre-trained
network.

e |f more data is available, it may still be a good idea to use transfer
learning, and tune more of the layers.
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Ensemble methods

One way to get a boost in performance for very little cognitive work is to use
ensemble methods.

The approach is:

1. Train multiple different models
2. Average their results together at test time.

This almost always increases performance by substantial amounts (e.g., a few
percentage improvement in testing).

Prof J.C. Kao, UCLA ECE



Ensemble methods

e The basic intuition between ensemble methods is that if models are
independent, they will usually not all make the same errors on the test set.

e With £ independent models, the average model error will decrease by a
factor % Denoting €; to be the error of model 7 on an example, and
assuming [Ee; = 0 as well as that the statistics of this error is the same

across all models, E (& 233 - gla]e(s) f ey
|k 2 |k
- 2
1
e |f the models are not independent, it can be shown that:
b ocoage
1, k1 W oVE |
EE@; + TE[G%GJ] b = &

which is equal to Ee? only when the models are perfectly correlated.
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L2 2 Y
Ensemble methods 1 wodes

4+ 12 V|

2 4312 o | /i‘Z:QML.Tw/
One implementation of ensemble methods is via bagging. WI}M

Baggingg\‘ e N QXW oAl

Bagging stands for bootstrap aggregating. It is an ensemble method for
regularization. The procedure is as follows: I

o Construct k datasets using the bootstrap (i.e., set a data size, IV, and
draw with replacement from the original dataset to get /N samples; do this
k times).

e Train k different models using these k datasets.

A few notes:

1 ”{(\{E‘ Wh') Pt on N exmflao

* |In practice, neural networks reach a wide variety of solutions given
different initializations, hyperparameters, etc., and so in practice even if
they are trained from the same dataset, they tend to produce partially
independent errors.

e While model averaging is powerful, it is expensive for neural networks,
since the time to train models can be very large.

Prof J.C. Kao, UCLA ECE



Ensemble methods

Ways to get around computational expense?

You could take snapshots of the model at different local minima and average
them together. See Huang, Li et al., ICLR 2017.

Cifar10 (L=100,k=24, B=300 epochs)

10!
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# of snapshots # of snapshots # of snapshots # of snapshots
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Dropout

| A VUV M & [
Dropout A 1 jzt""‘f‘“"w

Dropout is a computationally inexpensive yet effective method for /
generalization. It can be viewed as approximating the bagging procedure for
exponentially many models, while only optimizing a single set of parameters.
The following steps describe the dropout regularizer:

e On a given training iteration, sample a binary mask (i.e., each element is 0
or 1) for all input and hidden units in the network.

* The Bernoulli parameter I meter.
» Typical values are that|p = 0.8 for input units/and p = 0.5 for hidden units.
o Apply (i.e., multiply) the mask to all units. Then perform the forward pass
and backwards pass, and parameter update.

e In prediction, multiply each hidden unit by the parameter of its Bernoulli

mask, p. - \) T
4 jv
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0
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Dropout

Hidden layers of network to be trained
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Dropout

Dropout in code.

p = 0.5 # probability of dropping out
relu = lambda x: x * (x > 0)

def forward(X):
H1l = relu(np.dot(Wl, X) + bl) # First hidden layer activations
M1l = np.random.rand(*Hl.shape) < p # Sample random mask
H1 *= M1 # Dropout on first hidden layer

H2 relu(np.dot (W2, H1) + b2) # Second hidden layer activations
M2 = np.random.rand(*H2.shape) < p # Sample random mask
H2 *= M2 # Dropout on first hidden layer

Z = np.dot(W3, H2) + b3
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Dropout

How about during test time”? What configuration do you use?

W
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Dropout

How about during test time”? What configuration do you use?

We call this approach the weight scaling inference rule. There is not yet any
theoretical argument for the accuracy of this approximate inference rule in
deep nonlinear networks, but empirically it performs very well.

In this class, instead of scaling the weights, we'll scale the activations.
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Dropout

p = 0.5 # probability of dropping out
relu = lambda x: x * (x > 0)

def test(X):
H1l relu(np.dot(Wl, X) + bl) * p
H2 relu(np.dot(Wl, H1l) + bl) * p
Z = np.dot(W3, H2) + b3

Note: an additional pro of dropout is that in testing time, there is no additional

complexity. With m ensemble models, our test time evaluation would scale
O(m).
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Inverted dropout

A common way to implement dropout is inverted dropout where the scaling by
1/pis done in training. This causes the output to have the same expected
value as if dropout was never been performed.

Thus, testing looks the same irrespective of if we use dropout or not. See
code below: M
h =~ 1

p = 0.5 # probability of dropping out M
relu = lambda x: X * (x > 0)

def train forward(X):
Hl = relu(np.dot(Wl, X) + bl) # First hidden layer activations

Ml = (np.random.rand(*Hl.shape) < p) / p # Sample random mask AND normalization by p
H1 *= M1 # Dropout on first hidden layer

H2 = relu(np.dot(W2, H1l) + b2) # Second hidden layer activations

M2 = (np.random.rand(*H2.shape) < p) / p # Sample random mask AND normalization by p

H2 *= M2 # Dropout on first hidden layer
Z = np.dot (W3, H2) + b3

def test(X):
Hl = relu(np.dot(Wl, X) + bl)
H2 relu(np.dot(Wl, H1) + bl)
Z = np.dot (W3, H2) + b3
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Dropout

How is this a good idea? Gosdftllow
g e ft
1) Dropout approximates bagging, since each mask is like a different
model. For a model with N hidden units, there are 2N different model
configurations.

Each of these configurations must be good at predicting the output.

2) You can think of of dropout as regularizing each hidden unit to work
well in many different contexts.
O omagks”
3) Dropout may cause units to encode redundant features (e.g., to detect
a cat, there are many things we look for, e.g., it's furry, it has pointy
ears, it has a tail, a long body, etc.).
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Lecture summary

Here, we've covered tricks that we can do in initialization, regularization, and
data augmentation to improve the performance of neural networks.

But what about the optimizer, stochastic gradient descent? Can we improve
this for deep learning?

That's the topic of our next lecture.
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