
CS152 Discussion Section

Multithreading

Mar 18-22
Spring 2024

Administrivia

● Lab 3 due March 24
● HW4 coming out soon

Multithreading

Superscalar execution is limited by instruction dependencies (available
parallelism) and long-latency operations in a single thread

● Vertical waste: No instructions issued in a cycle
● Horizontal waste: Not all issue slots filled in a cycle

Superscalar Limitations

How is vertical waste
reduced?

How is horizontal waste
reduced?

Limitations / disadvantages
compared to an in-order
superscalar RISC machine?

Out-of-Order Superscalar
Execution

VLIW

Vector

Q1. Comparing Architectures

How is vertical waste
reduced?

How is horizontal waste
reduced?

Limitations / disadvantages
compared to an in-order
superscalar RISC machine?

Out-of-Order Superscalar
Execution

Out-of-order completion and
speculative execution

Issue multiple non-consecutive
instructions simultaneously

More complex/costly structures
to manage control, more
sensitive to misprediction

VLIW Software pipelining, loop
unrolling

Packing multiple operations
into single instruction (Very
Long Word)

Compiler is more complex and
dependent on
microarchitecture, static
scheduling cannot easily
tolerate variable latencies

Vector Deep vector pipeline, chaining,
multi-banked memory

Leveraging multiple vector
lanes with longer vector
lengths

Not all code is vectorizable,
such as complex control flow

Q1. Comparing Architectures

Multithreading

● Interleave execution of multiple threads (improve utilization of core; TLP)
● What is required in hardware to support multithreading?

○ Extra state (PC, GPR, PT base register, Exception-handling)

Multithreading

● Fine-grained multithreading
○ Switch between threads on each clock cycle

● Coarse-grained multithreading
○ Switch threads only on costly stalls

● Simultaneous multithreading
○ Interleave multiple threads in multiple issue slots with no restrictions

Multithreading

Q1. Comparing Architectures

How is vertical waste
reduced?

How is horizontal waste
reduced?

Limitations / disadvantages
compared to an in-order
superscalar RISC machine?

Finegrained/Vertical
Multithreading

Simultaneous Multithreading

Q1. Comparing Architectures

How is vertical waste
reduced?

How is horizontal waste
reduced?

Limitations / disadvantages
compared to an in-order
superscalar RISC machine?

Finegrained/Vertical
Multithreading

Interleaving instructions from
multiple threads

Not reduced compared to
superscalar issue

Low utilization if there are
insufficient threads, more
architectural state, resource
contention, potentially lower
single-thread performance

Simultaneous Multithreading Same as vertical
multithreading

Fetch / issue from multiple
threads in same cycle

Same limitations and
disadvantages as OoO
execution and vertical
multithreading

Q2. Fine-grained Multithreading

In this problem, we would like to investigate the performance of the following C
program on a multithreaded architecture. The arrays A, B, and C contain
double-precision floating-point numbers.

for (int i = 0; i < M; i++) {
 C[i] = A[i] + B[i];
}

loop: fld f1, 0(x1)
 fld f2, 0(x2)
 fadd f3, f1, f2
 fsd f3, 0(x3)
 addi x1, x1, 8
 addi x2, x2, 8
 addi x3, x3, 8
 addi x4, x4, -1
 bnez x4, loop

Q2. Fine-grained Multithreading

We rewrite the loop to split the work across N threads:

Assume:

● Single-issue in-order processor
● 1-cycle integer operations, 3-cycle floating-point arithmetic operations, 2-cycle

memory operations
● Fine-grained multithreading with fixed round-robin scheduling
● Perfect branch prediction.

// TID is the thread ID (0 to N-1)
for (int i = TID; i < M; i += N) {
 C[i] = A[i] + B[i];
}

loop: fld f1, 0(x1)
 fld f2, 0(x2)
 fadd f3, f1, f2
 fsd f3, 0(x3)
 addi x1, x1, 8N
 addi x2, x2, 8N
 addi x3, x3, 8N
 addi x4, x4, -1
 bnez x4, loop

Q2. Fine-grained Multithreading

1. How many threads need to fully utilize the pipeline?

2. Peak performance in FLOPs/cycle?

3. Can peak performance be reached with fewer threads by reordering
instructions in the loop?

Q2. Fine-grained Multithreading

1. How many threads need to fully utilize the pipeline?
The greatest number of cycles between instructions is 3, the time between the fadd instruction and the dependent fsd

instruction. Three threads are therefore needed to achieve full utilization.

2. Peak performance in FLOPs/cycle?
1/9 = 0.11 FLOPs/cycle

3. Can peak performance be reached with fewer threads by reordering

instructions in the loop?
Yes. We can reach peak performance with just a single thread by moving one addi instruction between the second fld

instruction and the fadd instruction and two addi instructions between the fadd and the fsd instruction.

Q3. Simultaneous Multithreading (SMT)

Which resources must be duplicated to support simultaneous multithreading?

Program Counter

Fetch Unit

Rename Table

Physical Register File

Issue Window
Functional Units
Reorder Buffer

Q3. Simultaneous Multithreading (SMT)

Which resources must be duplicated to support simultaneous multithreading?

Program Counter duplicated

Fetch Unit shared

Rename Table duplicated

Physical Register File shared

Issue Window shared

Functional Units shared

Reorder Buffer shared

Q3. Simultaneous Multithreading (SMT)

Icount policy prioritizes fetching from the thread with the least in-flight instructions

Why does this improve throughput?

Q3. Simultaneous Multithreading (SMT)

Icount policy prioritizes fetching from the thread with the least in-flight instructions

Why does this improve throughput?

If a thread has many instructions in flight, it is likely that it is blocked on one of the instructions. Therefore, adding more
instructions for that thread will not make progress because they may also be blocked. It is better to fetch instructions for the
thread with the fewest instructions in flight, since those instructions will be less likely to block.

