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Last Time Lecture 14: Multithreading
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Supercomputer Applications

§ Typical application areas
–  Military research (nuclear weapons, cryptography)
–  Scientific research
–  Weather forecasting
–  Oil exploration
–  Industrial design (car crash simulation)
–  Bioinformatics
–  Cryptography

§ All involve huge computations on large data set

§ Supercomputers: CDC6600, CDC7600, Cray-1, …

§ In 70s-80s, Supercomputer º Vector Machine
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Vector Supercomputers

§ Epitomized by Cray-1, 
1976:

§ Scalar Unit
– Load/Store Architecture

§ Vector Extension
– Vector Registers
– Vector Instructions

§ Implementation
– Hardwired Control
– Highly Pipelined Functional 

Units
– Interleaved Memory System
– No Data Caches
– No Virtual Memory

4[©Cray Research, 1976]



Cray-1 today
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https://www.chrisfenton.com/homebrew-cray-1a/



Vector Programming Model
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Vector Code Example
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# Scalar Code
  li x4, 64
loop:
  fld f1, 0(x1)
  fld f2, 0(x2)
  fadd.d f3,f1,f2
  fsd f3, 0(x3)
  addi x1, x1, 8
  addi x2, x2, 8
  addi x3, x3, 8
  subi x4, x4, 1
  bnez x4, loop

# Vector Code
  li x4, 64
  vsetvl x4
  vld v1, (x1)
  vld v2, (x2)
  vadd v3,v1,v2
  vst v3, (x3)

# C code
for (i=0; i<64; i++)
  C[i] = A[i] + B[i];



Cray-1 (1976)
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Vector Instruction Set Advantages

§ Compact
– one short instruction encodes N operations

§ Expressive, tells hardware that these N 
operations:

– are independent
– use the same functional unit
– access disjoint registers
– access registers in same pattern as previous instructions
– access a contiguous block of memory

 (unit-stride load/store)
– access memory in a known pattern 

(strided load/store) 

§ Scalable
– can run same code on more parallel pipelines (lanes)
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Vector Arithmetic Execution
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• Use deep pipeline (=> fast clock) to 
execute element operations

• Simplifies control of deep pipeline 
because elements in vector are 
independent (=> no hazards!) 
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Six-stage multiply pipeline



Vector Instruction Execution
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Interleaved Vector Memory System

§ Bank busy time: Time before bank ready to accept next request
§ Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
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Vector Unit Structure
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T0 Vector Microprocessor (UCB/ICSI, 1995)
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Vector Instruction Parallelism

§ Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 lanes
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Vector Chaining
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§ Vector version of register bypassing
– introduced with Cray-1
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Vector Chaining Advantage
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• With chaining, can start dependent instruction as soon as first 
result appears
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Mul

AddTime

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction



Vector Startup
§ Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector 

instruction can start down pipeline)
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Dead Time and Short Vectors
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Cray C90, Two lanes
4-cycle dead time
Maximum efficiency 94% with 128-element vectors
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No dead time
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Vector Memory-Memory versus Vector 
Register Machines

§ Vector memory-memory instructions hold all vector 
operands in main memory

§ The first vector machines, CDC Star-100 (‘73) and TI ASC 
(‘71), were memory-memory machines

§ Cray-1 (’76) was first vector register machine
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for (i=0; i<N; i++)
{
  C[i] = A[i] + B[i];
  D[i] = A[i] - B[i];
}

Example Source Code vadd (C),(A),(B)
vsub (D),(A),(B)

Vector Memory-Memory Code

vld V1, (A)
vld V2, (B)
vadd V3, V1, V2
vst V3, (C)
vsub V4, V1, V2
vst V4, (D)

Vector Register Code



Vector Memory-Memory vs. Vector 
Register Machines

§ Vector memory-memory architectures (VMMA) require 
greater main memory bandwidth, why?

– All operands must be read in and out of memory

§ VMMAs make if difficult to overlap execution of multiple 
vector operations, why? 

– Must check dependencies on memory addresses

§ VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100 

elements
– For Cray-1, vector/scalar breakeven point was around 2-4 

elements

§ Apart from CDC follow-ons (Cyber-205, ETA-10) all major 
vector machines since Cray-1 have had vector register 
architectures

§ (we ignore vector memory-memory from now on)
21



Automatic Code Vectorization

24
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Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”
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andi x1, xN, 63 # N mod 64
 vsetvl x1       # Do remainder
loop:
 vld v1, (xA)
 slli x2, x1, 3 # Multiply by 8      
 add xA, xA, x2 # Bump pointer
 vld v2, (xB)
 add xB, xB, x2
 vadd v3, v1, v2
 vst v3, (xC)
 add xC, xC, x2
 sub xN, xN, x1 # Subtract elements
 li x1, 64
 vsetvl x1     # Reset full length
 bgtz xN, loop # Any more to do?

for (i=0; i<N; i++)
    C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder



Vector Conditional Execution
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Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
    if (A[i]>0) then
        A[i] = B[i];
    

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes bubble (“NOP”) at elements 

where mask bit is clear
Code example:

cvm             # Turn on all elements 
vld vA, (xA)    # Load entire A vector
vgt vA, f0      # Set bits in mask register where A>0
vld vA, (xB)    # Load B vector into A under mask
vst vA, (xA)    # Store A back to memory under mask



CS252

Masked Vector Instructions
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Compress/Expand Operations
§ Compress packs non-masked elements from one vector 

register contiguously at start of destination vector register
– population count of mask vector gives packed vector length

§ Expand performs inverse operation
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Used for density-time conditionals and also for general 
selection operations



Vector Reductions
Problem: Loop-carried dependence on reduction variables

sum = 0;
for (i=0; i<N; i++)
    sum += A[i];  # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction
# Rearrange as:
sum[0:VL-1] = 0         # Vector of VL partial sums
for(i=0; i<N; i+=VL)    # Stripmine VL-sized chunks
    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
# Now have VL partial sums in one vector register
do {
    VL = VL/2;           # Halve vector length
    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. partials
} while (VL>1)
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Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
    A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
vld vD, (xD)       # Load indices in D vector
vlx vC, (xC), vD   # Load indexed from xC base
vld vB, (xB)       # Load B vector
vadd vA,vB,vC      # Do add
vst vA, (xA)       # Store result
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Packed SIMD Extensions
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§ Very short vectors added to existing ISAs for microprocessors
§ Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

– Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
– Newer designs have wider registers

• 128b for PowerPC Altivec, Intel SSE2/3/4
• 256b/512b for Intel AVX 

§ Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + +4x16b adds



Packed SIMD versus Vectors

§ Limited instruction set:
– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

§ Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

§ Trend towards fuller vector support in microprocessors
– Better support for misaligned memory accesses
– Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector registers 

(expandable up to 1024b), gather added, scatter to follow
– ARM Scalable Vector Extensions (SVE)
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