
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

 Lecture 15 – Vectors

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

https://cwfletcher.github.io/
http://inst.eecs.berkeley.edu/~cs152

Last Time Lecture 14: Multithreading

2

Tim
e (

pr
oc

es
so

r c
yc

le) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Supercomputer Applications

§ Typical application areas
– Military research (nuclear weapons, cryptography)
– Scientific research
– Weather forecasting
– Oil exploration
– Industrial design (car crash simulation)
– Bioinformatics
– Cryptography

§ All involve huge computations on large data set

§ Supercomputers: CDC6600, CDC7600, Cray-1, …

§ In 70s-80s, Supercomputer º Vector Machine

3

Vector Supercomputers

§ Epitomized by Cray-1,
1976:

§ Scalar Unit
– Load/Store Architecture

§ Vector Extension
– Vector Registers
– Vector Instructions

§ Implementation
– Hardwired Control
– Highly Pipelined Functional

Units
– Interleaved Memory System
– No Data Caches
– No Virtual Memory

4[©Cray Research, 1976]

Cray-1 today

5

https://www.chrisfenton.com/homebrew-cray-1a/

Vector Programming Model

6

+ + + + + +

[0] [1] [vl-1]

Vector Arithmetic
Instructions
vadd v3,v1,v2 v3

v2
v1

Scalar Registers

x0

x31
Vector Registers

v0

v31

[0] [1] [2] [VLMAX-1]

vlVector Length Register

v1
Vector Load and Store
Instructions
vls v1,(x1),x2

Base, x1 Stride, x2
Memory

Vector Register

Vector Code Example

7

Scalar Code
 li x4, 64
loop:
 fld f1, 0(x1)
 fld f2, 0(x2)
 fadd.d f3,f1,f2
 fsd f3, 0(x3)
 addi x1, x1, 8
 addi x2, x2, 8
 addi x3, x3, 8
 subi x4, x4, 1
 bnez x4, loop

Vector Code
 li x4, 64
 vsetvl x4
 vld v1, (x1)
 vld v2, (x2)
 vadd v3,v1,v2
 vst v3, (x3)

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

Cray-1 (1976)

8

Single-Port
Memory

16 banks of 64-bit
words
+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si
Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element Vector
Registers

Vector Instruction Set Advantages

§ Compact
– one short instruction encodes N operations

§ Expressive, tells hardware that these N
operations:

– are independent
– use the same functional unit
– access disjoint registers
– access registers in same pattern as previous instructions
– access a contiguous block of memory

 (unit-stride load/store)
– access memory in a known pattern

(strided load/store)

§ Scalable
– can run same code on more parallel pipelines (lanes)

9

Vector Arithmetic Execution

10

• Use deep pipeline (=> fast clock) to
execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

v
1

v
2

v
3

v3 <- v1 * v2

Six-stage multiply pipeline

Vector Instruction Execution

11

vadd vc, va, vb

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined

functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined

functional units

Interleaved Vector Memory System

§ Bank busy time: Time before bank ready to accept next request
§ Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

12

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Vector Unit Structure

13

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10,
…

Elements
3, 7, 11,
…

T0 Vector Microprocessor (UCB/ICSI, 1995)

14

LaneVector register
elements striped
over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Vector Instruction Parallelism

§ Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and 8 lanes

15

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

Vector Chaining

16

§ Vector version of register bypassing
– introduced with Cray-1

Memory

V1

Load
Unit Mult.

V2 V3

Chain

Add

V4 V5

Chain

vld v1
vmul v3,v1,v2
vadd v5, v3,v4

Vector Chaining Advantage

17

• With chaining, can start dependent instruction as soon as first
result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

Vector Startup
§ Two components of vector startup penalty

– functional unit latency (time through pipeline)
– dead time or recovery time (time before another vector

instruction can start down pipeline)

18

R X X X W
R X X X W

R X X X W
R X X X W

R X X X W
R X X X W

R X X X W

R X X X W
R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector
Instruction

Second
Vector
Instruction

Dead Time

Dead Time and Short Vectors

19

Cray C90, Two lanes
4-cycle dead time
Maximum efficiency 94% with 128-element vectors

4 cycles
dead time T0, Eight lanes

No dead time
100% efficiency with 8-element vectors

No dead time

64 cycles
active

Vector Memory-Memory versus Vector
Register Machines

§ Vector memory-memory instructions hold all vector
operands in main memory

§ The first vector machines, CDC Star-100 (‘73) and TI ASC
(‘71), were memory-memory machines

§ Cray-1 (’76) was first vector register machine

20

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code vadd (C),(A),(B)
vsub (D),(A),(B)

Vector Memory-Memory Code

vld V1, (A)
vld V2, (B)
vadd V3, V1, V2
vst V3, (C)
vsub V4, V1, V2
vst V4, (D)

Vector Register Code

Vector Memory-Memory vs. Vector
Register Machines

§ Vector memory-memory architectures (VMMA) require
greater main memory bandwidth, why?

– All operands must be read in and out of memory

§ VMMAs make if difficult to overlap execution of multiple
vector operations, why?

– Must check dependencies on memory addresses

§ VMMAs incur greater startup latency
– Scalar code was faster on CDC Star-100 for vectors < 100

elements
– For Cray-1, vector/scalar breakeven point was around 2-4

elements

§ Apart from CDC follow-ons (Cyber-205, ETA-10) all major
vector machines since Cray-1 have had vector register
architectures

§ (we ignore vector memory-memory from now on)
21

Automatic Code Vectorization

24

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load
load

add

store

load
load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time reordering
of operation sequencing
Þ requires extensive loop-dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e

Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”

25

andi x1, xN, 63 # N mod 64
 vsetvl x1 # Do remainder
loop:
 vld v1, (xA)
 slli x2, x1, 3 # Multiply by 8
 add xA, xA, x2 # Bump pointer
 vld v2, (xB)
 add xB, xB, x2
 vadd v3, v1, v2
 vst v3, (xC)
 add xC, xC, x2
 sub xN, xN, x1 # Subtract elements
 li x1, 64
 vsetvl x1 # Reset full length
 bgtz xN, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

Vector Conditional Execution

26

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
 if (A[i]>0) then
 A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes bubble (“NOP”) at elements

where mask bit is clear
Code example:

cvm # Turn on all elements
vld vA, (xA) # Load entire A vector
vgt vA, f0 # Set bits in mask register where A>0
vld vA, (xB) # Load B vector into A under mask
vst vA, (xA) # Store A back to memory under mask

CS252

Masked Vector Instructions

27

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off

result writeback according to mask

CS252

Compress/Expand Operations
§ Compress packs non-masked elements from one vector

register contiguously at start of destination vector register
– population count of mask vector gives packed vector length

§ Expand performs inverse operation

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0
M[4]=1
M[5]=1
M[6]=0

M[2]=0
M[1]=1
M[0]=0

M[7]=1

B[3]
A[4]
A[5]
B[6]
A[7]

B[0]
A[1]
B[2]

Expand

A[7]

A[1]
A[4]
A[5]

Compress

A[7]

A[1]

A[4]

A[5]

Used for density-time conditionals and also for general
selection operations

Vector Reductions
Problem: Loop-carried dependence on reduction variables

sum = 0;
for (i=0; i<N; i++)
 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
 VL = VL/2; # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. partials
} while (VL>1)

29

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
vld vD, (xD) # Load indices in D vector
vlx vC, (xC), vD # Load indexed from xC base
vld vB, (xB) # Load B vector
vadd vA,vB,vC # Do add
vst vA, (xA) # Store result

30

Packed SIMD Extensions

33

§ Very short vectors added to existing ISAs for microprocessors
§ Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

– Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
– Newer designs have wider registers

• 128b for PowerPC Altivec, Intel SSE2/3/4
• 256b/512b for Intel AVX

§ Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + +4x16b adds

Packed SIMD versus Vectors

§ Limited instruction set:
– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be aligned to 64/128-bit boundary

§ Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

§ Trend towards fuller vector support in microprocessors
– Better support for misaligned memory accesses
– Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector registers

(expandable up to 1024b), gather added, scatter to follow
– ARM Scalable Vector Extensions (SVE)

34

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Krste Asanovic (UCB)
– Sophia Shao (UCB)

35

