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Agenda

● Snoopy Cache Coherence Protocol
● Directory-based Protocol



Review: Cache Coherence Basics



Cache Coherence vs Memory Consistency

● Informally, a memory system is coherent if any read of a given memory 
location returns the most recently written value

● Coherence: What values can be returned for a read
○ Ordering of operations to the same memory location

● Consistency: When a written value will be returned by a read
○ Ordering of operations to different memory locations



Coherence Invariant #1

Preservation of program order:

A read by a processor P from location X that follows a write by P to X, with no 
intervening writes to X occurring between the write and read by P, always 
return the value written by P



Coherence Invariant #2

Eventuality:

A read by a processor from location X that follows a write by another 
processor to X returns the written value if

1. The read and write are “sufficiently” separated in time
2. No other writes to X occur between the read and write



Coherence Invariant #3

Write serialization:

Two writes to the same location by any two processors are seen in the same 
order by all processors



Snoopy vs Directory Protocols
MSI



Cache Coherence Protocols

● Snooping: Each cache tracks the status of a cached line by monitoring a 
broadcast medium (e.g., bus) for transactions

● Directory-based: Status of cache line is kept at one site (directory); 
communicate only with nodes that have copies of the line
○ Centralized: Typical for Symmetric Multiprocessors (SMP)
○ Distributed: Common in distributed shared-memory systems (e.g., SGI 

Origin)
● Snooping and directories can be combined in multi-level memory hierarchies



MSI Protocol

● If line is in M state, no other 
cache can have the line; 
multiple differing copies 
cannot exist

● MESI adds exclusive (E) 
state: line is resident in one 
cache still but clean

(Local processor actions 
shown in black; bus 
activities shown in gray)



Snooping

Q:  A snooping cache coherence protocol requires cores to communicate on a 
single physical bus.  True/false?

A:  False.  Snooping requires a totally ordered broadcast network, but the 
functionality can be implemented without a single shared-wire bus. 

(e.g. having parallel interleaved buses (data, snoopy broadcast) with multiple tag 
banks)

Sorin et al.  A Primer on Memory Consistency and Cache Coherence (2011)



Snooping

Q:  In an MSI snooping protocol, a cache line may be in only one of three 
coherence states.  True/false?

A:  True.  But if atomicity of requests and transactions is not guaranteed, transient 
states are needed.

Sorin et al.  A Primer on Memory Consistency and Cache Coherence (2011)



MOESI Protocol (Q1)

Extends MESI with a fifth “Owned” state

● Allows caches to hold dirty data without invalidating sharers
● Only one cache can be in the “Owned” state while the other caches are in 

“Shared”
● Owner is responsible for sending data to other caches requesting the line and 

must write back the data when it downgrades



MOESI Protocol (Q1)



For each of the following new state transitions, indicate whether it is a valid transition. If it is a valid 
transition, explain what triggers it, what conditions must be true (i.e. do other sharers exist?), and what 
actions must be taken during the transition.

Trigger Condition Action

I → O

O → I

S → O

O → S

E → O

O → E

M → O

O → M



Trigger Condition Action

I → O Not possible under snooping; local cache is 
not aware of presence of other sharers 
(write miss would result in I → M instead)

O → I

S → O Local cache writes to line Other sharers exist Broadcast modified value if requested

O → S

E → O Not allowed.  While in E, no other cache has 
a copy, so transition to M instead.

O → E

M → O Another cache reads the line None Broadcast up-to-date value

O → M



Trigger Condition Action

I → O Not possible under snooping; local cache is 
not aware of presence of other sharers 
(write miss would result in I → M instead)

O → I Local cache evicts the line (voluntary 
writeback or invalidation)

None Write back to memory

S → O Local cache writes to line
(S -> M -> O)

Other sharers exist Broadcast modified value

O → S Another cache writes to line
(O -> I -> S)

Other sharers exist; some other sharer is 
writing

None

E → O Not allowed.  While in E, no other cache has 
a copy, so transition to M instead.

O → E Not allowed.  A cache can only be in E if no 
other cache shares it, but if that is the case, 
there is no need to write back dirty data.

M → O Another cache reads the line None Broadcast up-to-date value

O → M Local cache writes to line (write hit) None Invalidate other sharers



Directory Cache Coherence + Unicast (vs Broadcast)
- Extra bits for each memory line

Scalable, but how to manage 
concurrent transactions?



Example Directory 
Protocol
● Cache side
● Requests from local 

processor shown in black
● Requests from home 

directory shown in grey



Example Directory 
Protocol
● Directory side
● Actions taken by directory 

shown in bold



Full Bit Vector Scheme (Q2)

In the simplest design, each directory entry contains the state of the cache line and a bit 
vector with one sharer bit per processor.  Assume the directory lines have four states.

How many directory bits are needed per cache line?

1. For 128 cores with private caches:

2. For 1024 cores with private caches:



Full Bit Vector Scheme (Q2)

In the simplest design, each directory entry contains the state of the cache line and a bit 
vector with one sharer bit per processor.  Assume the directory lines have four states.

How many directory bits are needed per cache line?

1. For 128 cores with private caches: 

log(4) = 2 bits for state; 128 bits in bit vector; 2 + 128 = 130

2. For 1024 cores with private caches:
2 + 1024 = 1026



Hierarchical Bit Vector Scheme (Q2)

● Storing one bit for each sharer per line not be practical for massively multicore systems
○ For a 1024-core system with 64B lines, twice as much memory is used for the sharer bits 

alone than for actual data storage
● Aggregate cores into groups and represent each group as a single bit in the bit vector

○ Invalidations must now be sent to all cores in a group if that group’s bit is set

For a 1024-core system with 64-byte cache lines, how many cores must be in each group to 
reduce the amount of directory state to 10% the amount of physical memory?



Hierarchical Bit Vector Scheme (Q2)

● Storing one bit for each sharer per line not be practical for massively multicore systems
○ For a 1024-core system with 64B lines, twice as much memory is used for the sharer bits 

alone than for actual data storage
● Aggregate cores into groups and represent each group as a single bit in the bit vector

○ Invalidations must now be sent to all cores in a group if that group’s bit is set

For a 1024-core system with 64-byte cache lines, how many cores must be in each group to 
reduce the amount of directory state to 10% the amount of total physical memory?

2 +  1024 / N <= 64*8 / 10

2 +  1024 / N <= 512 / 10

N ≥ 21

So there must be at least 21 cores per directory group.



Reducing Storage Overhead (Q2)

One inefficiency of this system is that you must store directory bits for every line in 
memory, no matter if it is cached or not. How could you reduce this inefficiency?



Reducing Storage Overhead (Q2)

One inefficiency of this system is that you must store directory bits for every line in 
memory, no matter if it is cached or not. How could you reduce this inefficiency?

● Add a shared last-level cache inclusive of all other private caches;
then directory only needs to contain directory entries for lines held in the 
last-level cache, not all lines in memory

● Hierarchical directory structure


