CS152 Discussion Section

Memory Consistency

April 23
Spring 2024

Agenda

e Memory consistency models
o Much of this material is taken from: Adve and Gharachorloo.
o Shared Memory Consistency Models: A Tutorial (1995)

e [ab 5 due Wednesday May 1

e PS5 due Monday Apr 29

Memory Consistency: Other half of the ISA

e The instruction set and architectural state do not completely define the
behavior of the ISA

e Sequential ISA only specifies that each processor observes its own memory
operations in program order

e Need a memory consistency model, which defines the legal set of values that
loads can return across multiple hardware threads

Memory Consistency vs Cache Coherence

e C(Coherence describes the legal values that a single memory address could
return
e C(Consistency describes properties across all memory address

Coherence alone does not imply any particular memory consistency model!

Memory Consistency and Caches

Q: Do memory consistency models apply only to systems with caches?

A: No — consider a cache-less system with multiple memory banks

P1 P2
Read Data t3
General Interconnect Read Head t2
Write Head Write Data
t1 t4
Head: 0 Data: 0

Memory

P1 P2
Data = 2000 while (Head == 0) {;}
Head =1 ... = Data

Sequential Consistency: Intuitive Starting Point

Definition: [A multiprocessor system is sequentially consistent if] the result of any execution
is the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the order
specified by its program.

Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs (1979)

MEMORY

Worksheet Q1

Consider the following two threads executing on two different cores.
Memory locations A, B, and C are initialized to zero.

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

We are interested in the final values of P1.x2, P1.x3, and P2.x2.

Sequential Consistency (Q1.1)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all possible sets of values of P1.x2, P1.x3, and P2.x2 under sequential consistency.

Operation Order P1.x2 P1.x3 P2.x2

Sequential Consistency (Q1.1)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all possible sets of values of P1.x2, P1.x3, and P2.x2 under sequential consistency.

Operation Order P1.x2 P1.x3 P2.x2
111213 J1 J2 J3 0 0 1
J1J2J3 111213 2 2 0
J1111213J2 J3 0 2 1
11J1J21213 J3 0 2 0

Relaxing Memory Consistency Models

Strictness of SC suggests two major targets for relaxation:

1. Program order requirement. When can one thread’s memory operations be
reordered with respect to one another

2. Write atomicity requirement. When can a processor see the effect of a write
relative to other processors in the system

Relaxing Program Order Requirement

Four types of ordering constraints:

Write — Read
Write — Write
Read — Write
4. Read — Read

W=

Q: Can you think of a microarchitectural optimization made possible by relaxed
ordering?

Relaxing Program Order Requirement

Four types of ordering constraints:

1. Write — Read
2. Write — Write
3. Read — Write
4. Read — Read
Q

: Can you think of a microarchitectural optimization made possible by relaxed
ordering?

A: Out-of-order execution of loads before stores in program order

Relaxing Write Atomicity

Two flavors:

1. Can a processor see its own write before others?
2. Can processor A see some other processor B'’s writes before they are made

visible to the rest of the memory system?

Q: Can you think of a microarchitectural optimization that would make (1) true?
What about (2)?

Relaxing Write Atomicity

Two flavors:

1. Can a processor see its own write before others?
2. Can processor A see some other processor B'’s writes before they are made

visible to the rest of the memory system?

Q: Can you think of a microarchitectural optimization that would make (1) true?
What about (2)?

A:

1. Load bypassing from a store queue or write buffer
2. Multithreading

Worksheet Q1.2

Weak Versus Strong Memory Consistency Models
In general, what is the difference between a weak and a strong memory
consistency model? Give an example of each.

Worksheet Q1.2

Weak Versus Strong Memory Consistency Models
In general, what is the difference between a weak and a strong memory
consistency model?

Weak memory models relax some combination of the program-order and/or write-atomicity
constraints imposed by stronger memory models.

Advantage of a strong memory model:

- More intuitive memory semantics make it easier to write and debug concurrent code

- Similarly, easier to write correct compilers for high-level languages

Advantage of a weak memory model:

- Easier to build simple implementations (more design flexibility, many simple
optimizations would violate a strong MCM without considerably more complexity)

- Easier to build high-performance implementations, as the implementation can
aggressively reorder memory ops without needing to speculate on the MCM

Categorizing Relaxed Models

Relaxation W—-R | W—W | R—RW | ReadOthers’ | Read Own || Safety net
Order Order Order Write Early | Write Early
SC [16] Vv
IBM 370 [14] Vv serialization instructions
TSO [20] vV vV RMW
PC[13,12] v Vv Vv RMW
PSO [20] v vV vV RMW, STBAR
WO [5] V Vv vV v/ synchronization
RCsc[13, 12] Vv Vv Vv Vv release, acquire, nsync,
RMW
RCpc[13, 12] V4 Vv v Vv v release, acquire, nsync,
RMW
Alpha [19] v vV v/ Vv MB, WMB
RMO [21] v vV vV Vv various MEMBAR'’s
PowerPC [17, 4] v/ v/ v/ Vv Vv SYNC

RISC-V Memory Models

RISC-V currently has two:

1. Default: Weak memory ordering (RVWMO)
2. Optional extension: Total store order (RVTSO)

Relaxing Program Order Requirement

Four types of ordering constraints:

Write — Read
Write — Write
Read — Write
Read — Read

e

W—R Relaxation (Q1.3)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Write — Read ordering and the instruction
orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2

W—R Relaxation (Q1.3)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Write — Read ordering and the instruction
orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2

1113 J2 12 J1 J3 0 0 0

W—W Relaxation (Q1.4)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Write — Write ordering and the instruction
orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2

W—W Relaxation (Q1.4)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Write — Write ordering and the instruction
orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2

J2J3 111213 J1 2 0 0

R—R and R—W Relaxation (Q1.5)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Read — Read and Read — Write ordering
constraints and the instruction orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2

R—R and R—W Relaxation (Q1.5)

P1: P2:

11 x1, 1 11 x1, 2
Il 1w x2, A Jl sw x1, B
I2 sw x1, C J2 1lw x2, C
I3 1w x3, B J3 sw x1, A

Give all new possible sets of values if we relax Read — Read and Read — Write ordering
constraints and the instruction orderings that caused them.

Operation Order P1.x2 P1.x3 P2.x2
J3 111213 J1J2 2 0 1

12 J1J3 1113 J2 2 2 1

Using Fences to Constrain Memory Ordering

The RISC-V FENCE instruction comes in several fine-grained variants:

1. Write —» Read FENCE w,r
2. Write — Write FENCE w,w
3. Read — Write FENCE r,w
4. Read — Read FENCE r,r
Can combine constraints: FENCE r,rw == FENCE r,r; FENCE r,w

FENCE without parameters is a full barrier: FENCE rw, rw

Multi-Copy Atomicity

CPU CPU
Buffer Buffer
o o e e e —— Point of global visibility

Shared Memory

Multi-copy atomic -> once one processor’s write becomes visible to another
processor, it becomes visible to all processors

Non-Multi-Copy Atomic

CPU CPU CPU CPU
Intermediate Intermediate
Buffer Buffer

\

Shared Memory

A system where a write by one processor becomes visible to a subset of other
processors before it becomes visible to all processors

Example: Hierarchical shared buffers

Worksheet Q2

Q2: True/False
Indicate whether the following statements are true or false:

1. Sequential consistency is guaranteed if all processors have in-order pipelines.

2. Ahigh-level language with a sequentially consistent memory model can be
implemented on a ISA with a weaker memory model if fence instructions are provided.

Worksheet Q2

Q2: True/False

Indicate whether the following statements are true or false:
1. Sequential consistency is guaranteed if all processors have in-order pipelines.

False — The memory system is also responsible for enforcing sequential consistency, not
only the core pipelines. Even with in-order issue and cache coherence, reordering of
memory operations can arise from write buffers with bypassing, write-through and non-
blocking caches, and a non-shared-bus interconnect fabric to separate memory banks.

Worksheet Q2

Q2: True/False

Indicate whether the following statements are true or false:
2. Ahigh-level language with a sequentially consistent memory model can be
implemented on a ISA with a weaker memory model if fence instructions are provided.

True — In the extreme case, the compiler can conservatively insert full fences between all
memory operations to enforce strict program order within each thread. A more practical
approach is to emit fences only as necessary or create locks implicitly around accesses to
variables that the programmer identifies as being shared, typically with a keyword or
another language feature. This guarantees SC executions for certain programs classified
as data-race-free (all accesses to shared locations are properly synchronized).

Alternatively, false — It could be argued that local fences are not sufficient without
assuming multi-copy atomicity. Whether SC can be implemented on top of a non-multi-
copy-atomic memory model depends on the ISA providing global barriers to enforce
ordering with respect to accesses in threads other than the thread issuing the barrier.

Worksheet Q2

Q2: True/False
Indicate whether the following statements are true or false:

3. Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular
hardware implementation provides sequential consistency. Will software written for this
ISA execute correctly on this machine?

Worksheet Q2

Q2: True/False
Indicate whether the following statements are true or false:

3. Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular

hardware implementation provides sequential consistency. Will software written for this
ISA execute correctly on this machine?

Yes/True — As sequential consistency mandates multi-copy atomicity and is therefore a
stronger form of memory consistency, SC executions are a proper subset of the execution
outcomes permitted by the less restrictive non-multi-copy-atomic model. Software that is
correctly written with the proper fences necessary to avoid data races under the weaker
model would continue to execute correctly on this hardware implementation. The
hardware implicitly enforces the same ordering constraints that fences would; the fence
instructions would be treated by this implementation as NOPs.

