CS152: Section 1

Q1. Architecture vs Microarchitecture

True or false: The following is architecturally visible (exposed by the architecture)?
1. Register file entries in a classical RISC pipeline
2. The stack in a stack architecture
3. Pipeline registers
4. Branch-delay / load-delay slots
5. NOPs
6. Pipeline bubbles
7. Condition codes, status flags
8. Memory address width

9. Instruction/data caches

Q2. Microcoded vs Pipelined

1. How does a microcoded machine differ from a classic RISC pipeline?

2. Why is a simpler microarchitecture generally possible with microcoding?

Q3. Microprogramming

Implement a conditional memory-to-memory move instruction in microcode for the single-bus
RISC-V machine described in Handout #1. The instruction has the following format:

CMOVM (rd), (rsl), rs2

CMOVM performs the following operation: If the value in rs2 is true (non-zero), then the
memory word loaded from the address in rs1 is stored to the address in rd.

if R[rs2] =0
M[rd] := M[rsl]

Fill in the following table with the microinstructions and control signals. Optimize your
microprogram to minimize the number of cycles and to set entries to don’t-cares (*) wherever
possible.

‘ONAOIND

0HO134 r 0 . 0 0 . 0 . . « 0 0 . . 0HO134 034grl [0dON
. a 0 " 0 0 " I ¥ ¥V ONI " 0 0 | Od | 0 ¥ +V=0d
" S 0 " L 0 0 0 " " 0 0 0 . L Wwa =: |
od =V
. N 0 . 0 0 L 0 . . | | 0 | od | « '*0d = VW | 0HOL134
wwl | 8BS | WAN | JM [VN | NV Bay | 4Mm | 19S
ajeygIxaN |4grl | us | wwy | us | waN | PpI us doniv gapl | vpl | ua | Bay | Bay [yIpI [@podopnasd ajelg

