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Problem 1: CISC, RISC, Accumulator, and Stack: Comparing ISAs 

 

In this problem, your task is to compare four different ISAs: x86 (a CISC architecture with 

variable-length instructions), RISC-V (a load-store, RISC architecture with 32-bit instructions in 

its base form), a stack-based ISA, and an accumulator-based ISA. 

 

Problem 1.A CISC 

 

Let us begin by considering the following C code, which (inefficiently) rotates the bits in a 32-bit 

value by n times. 

 
unsigned int rotate(unsigned int x, unsigned int n) { 

   unsigned int msb; 

 

   while (n != 0) { 

       msb = x >> 31; 

       x = (x << 1) | msb; 

       n--; 

   } 

   return x; 

} 

 

Using gcc and objdump on an x86 machine, we see that the above loop compiles to the following 

x86 instruction sequence. On entry to this code, register %eax contains x and register %ecx 

contains n. Throughout parts (a–d), we will ignore what happens in the done label and return 

statement. 
 
loop:  test %ecx,%ecx 

   jz  done 

  mov %eax,%ebx 

  shr $31,%ebx 

  shl $1,%eax 

  or  %ebx,%eax 

  dec %ecx 

   jmp loop  

 done: ... 
 

The meanings and instruction lengths of the instructions used above are given in the following 

table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>. 
 

Instruction Operation Length 

mov RSRC, RDEST <RDEST> = <RSRC> 2 bytes 

test RSRC1, RSRC2 
temp = <RSRC1> & <RSRC2> 

Set flags based on value of temp 
2 bytes 

dec RDEST <RDEST> = <RDEST> - 1 1 byte 

 shl $imm8, RDEST <RDEST> = <RDEST> << imm8 2 bytes 

 shr $imm8, RDEST <RDEST> = <RDEST> >> imm8 2 bytes 
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 or RSRC, RDEST <RDEST> = <RDEST> | <RSRC> 2 bytes 

jmp label jump to the address specified by label 2 bytes 

jz label if (ZF == 1), jump to the address specified by label 2 bytes 

  

Notice that the jump instruction jz (jump if zero) depends on ZF, which is a status flag. Status 

flags are set by the instruction preceding the jump, based on the result of the computation. Some 

instructions, like the test instruction, perform a computation and set status flags such as ZF, 

but do not return any result. The meanings of the status flags are given in the following table: 

 

Name Purpose Condition Reported 

ZF Zero Result is zero 

 

i) How many bytes is the program?  

ii) For the above x86 assembly code, how many bytes of instructions need to be fetched if x = 

0x01020304 and n = 5?  

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored? 

 

 

i) Bytes in program = 7 * 2 bytes + 1 byte = 15 bytes 

  

ii) Instruction bytes fetched = 5 * 15 bytes (loop iterations) + 4 bytes (final test and jz) = 79 

bytes 

  

iii) Data loaded/stored = 0 bytes  

 

 

 

 

 

 

 

 

 

 

 

Problem 1.B RISC 

 

Translate each of the x86 instructions in the following table into zero, one or more RISC-V 

instructions. Place the loop label where appropriate. You should use the minimum number of 

instructions needed to translate each x86 instruction. (You are allowed to replace multiple x86 

instructions with a single RISC-V instructions). Assume that x1 contains x upon entry, and x2 

should receive n. If needed, use x4 as a condition register, and x6, x7, etc., for temporaries. You 

should not need to use any floating-point registers or instructions in your code. A description of 

the RISC-V instruction set architecture can be found on the class website resources page. 

https://inst.eecs.berkeley.edu/~cs152/sp24/resources/
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Note: It is possible to replace the loop in 1.A with an O(1) non-loop-based solution. For this 

problem, we want you to use the more inefficient O(N) loop-based solution. 

 

x86 instruction Label RISC-V instruction sequence 

test %ecx,%ecx    loop: 

 

beq x2, x0 done 

 

jz  done  
 

 

mov $eax,%ebx  

 

srli x6, x1, 31 

 

shr $31,%ebx  slli x1, x1, 1  

shl $1,%eax  or x1, x6, x1 

or  %ebx,%eax  addi x2, x2, -1 

dec %ecx  jal x0, loop  

jmp loop  

 

 

 

… done: … 

 

 

i) How many bytes is the RISC-V program using your direct translation?  

ii) How many bytes of RISC-V instructions need to be fetched for x = 0x01020304 and n = 

5 with your direct translation?  

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored? 

 

 

The answer for this question may be slightly different, depending on how exactly students 

translated their programs.  

 

i) Bytes in program = 6 * 4 bytes = 24 bytes 

 

ii) Instruction bytes fetched = 5 * 24 bytes (loop iterations) + 4 bytes (final beq) = 124 bytes 

 

iii) Bytes loaded/stored = 0 bytes  
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Problem 1.C Stack 

 

In a stack architecture, all operations occur on top of the stack. Only push and pop access memory, 

and all other instructions remove their operands from the stack and replace them with the result. 

The hardware implementation we will assume for this problem set uses stack registers for the 

topmost two entries; accesses that involve deeper stack positions (e.g., pushing or popping 

something when the stack has more than two entries) use an extra memory reference. Assume each 

instruction occupies three bytes if it takes an address or label; other instructions occupy one byte. 

 

Instruction Definition 

PUSH addr load value at addr; push value onto stack 

POP addr pop stack; store value to addr 

OR pop two values from the stack; OR them; push result onto stack 

SHL pop value from top of stack; shift left by 1; push result onto stack 

SIGN pop value from top of stack; shift right by 31; push result onto stack 

DEC pop value from top of stack; decrement value by 1; push result onto stack 

BEQZ label pop value from stack; if it’s zero, branch to label; 

else, continue with next instruction 

BNEZ label pop value from stack; if it’s not zero, branch to label; 

else, continue with next instruction 

JUMP label continue execution at location label 

 

Translate the rotate loop to the stack ISA. You are permitted to change the sequence of 

instructions from 1.A and 1.B. Assume that when we reach the loop, n is at the top of the stack 

and x is underneath it. At the end of the loop, the stack should contain only x at the top. Assume 

that byte-addressable memory starting at address 0x8000 is available to use as temporary storage. 

Assume that data values are 32-bits wide. 

 

i) How many bytes is your program?  

ii) How many bytes of instructions need to be fetched for x = 0x01020304 and n = 5 with 

your translation?  

iii) How many bytes of data memory need to be loaded? Stored? Remember accesses that involve 

deeper stack positions (e.g., pushing or popping something when the stack has more than two 

entries) use an extra memory reference.   

iv) Would the number of bytes loaded and stored change if the stack could fit 8 entries in registers? 

 

Answers may be slightly different depending on how students translated their programs. 

  

 

loop:  pop 0x8000 # [n,x]; n is at 0x8000 

push 0x8000 # [x] 

beqz done #[n,x] 

 pop 0x8004 # [x]; x is at 0x8004 

 push 0x8004 # [] 
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 shl # [x] 

 push 0x8004 # [x<<1] 

 sign # [x, x<<1]  

  

 or # [msb(x), x<<1]  

  

 push 0x8000 # [x’] 

 dec # [n,x’] 

 jump loop # [n-1,x’] 

done: … 

 

 

  

  

  

i) Bytes in program = 8 * 3 bytes (instructions with addresses/labels) + 4 * 1 byte (instructions 

without addresses/labels) = 28 bytes 

 

ii) Instruction bytes fetched = 5 * 28 bytes (loop iterations) + 3 * 3 bytes (final beqz) = 149 

bytes 

 

iii) Bytes loaded = 5 * 4 pushes * 4 bytes (loop iterations) + 1 push * 4 bytes (final beqz) = 84 

bytes 

Bytes stored = 5 * 2 pops * 4 bytes (loop iterations) + 1 pop * 4 bytes (final beqz) = 44 

bytes  

 

iv) The solution above doesn't use more than two stack entries, so there would be no change if 

more stack entries were added. But if your solution does use more than two stack entries, 

then adding more registers may eliminate implicit loads.  
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Problem 1.D Accumulator 

 

In an accumulator ISA, one operand is implicitly a specific register (the same for all instructions), 

called the accumulator. To make programming easier, we will consider a modified architecture 

that has a secondary accumulator to hold an additional value. Assume each instruction occupies 

three bytes if it takes an address or label; other instructions occupy one byte. 

 

Instruction Definition 

LOAD addr load value at addr into the primary accumulator 

STORE addr store the primary accumulator’s value to addr 

OR addr OR the value at addr with the value in the primary accumulator 

SHL left-shift the value in the primary accumulator by one bit 

SIGN logical right-shift the value in the primary accumulator by 31 bits 

INC increment the primary accumulator by 1 

DEC decrement the primary accumulator by 1 

SWAP swap the values in the primary and secondary accumulators 

ZERO zero the value in the primary accumulator 

BEQZ label branch to label if the primary accumulator holds a zero value 

BNEZ label branch to label if the primary accumulator holds a non-zero value 

JUMP label continue execution at location label 

 

Notice that all instructions operate on the primary accumulator. Also note that there are no register 

specifiers in this architecture; addr and label represent memory addresses. Translate the rotate 

loop to use this ISA. Assume that x initially held at address 0x8000, and n is initially held at 

address 0x8004. You are permitted to write temporary variables to any addresses above 0x8000. 

You should return x in the primary accumulator. 

 

i) How many bytes is your program?  

ii) How many bytes of instructions need to be fetched for x = 0x01020304 and n = 5 with 

your translation?  

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored? 

 

 

 LOAD 0x8000 # (p: ?, s: ?) 1 

 SWAP # (p: x, s: ?) 

 LOAD 0x8004 # (p: ?, s: x) 2 

  

loop: BEQZ inner_done # (p: n, s: x) 3 

 DEC # (p: n, s: x) 

 SWAP # (p: n', s: x) 

  

 SHL # (p: x, s: n-1) 

 STORE 0x8008 # (p: x<<1, s: n') 4  
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 LOAD 0x8000 # (p: x<<1, s: n') 5  

 SIGN # (p: x, s: n-1)  

  

 OR 0x8008 # (p: msb(x), s: n') 6  

 STORE 0x8000 # (p: x', s: n') 7  

  

 SWAP # (p: x', s: n)  

 JUMP loop # (p: n', s: x') 8  

  

inner_done: 

done: 

SWAP # (p: n, s: x) 

… 

 

# `inner_done` is used to ensure we don’t modify the original `done` label in the Q 

#  adding a `SWAP` instruction to the `done` label is an equivalent solution, as long 

as the SWAP instruction is accounted for in following sub parts. 

 

 

i) Bytes in program = 8 * 3 bytes (instructions with addresses/labels) + 7 * 1 byte (instructions 

without addresses/labels) = 31 bytes 

 

ii) Instruction bytes fetched = 7 bytes (prologue) + 5 * 23 bytes (loop iterations) + 3 bytes (final 

BEQZ) + 1 byte (epilogue) = 126 bytes 

 

iii) Data bytes loaded = 2 * 4 bytes (prologue) + 5 * 2 * 4 bytes (loop iterations) = 48 bytes  

Data bytes stored = 5 * 2 * 4 (loop iterations) = 40 bytes  

 

 

 

 

 

 

 

 

 

 

  



 

9 

Problem 1.E Conclusions 

 

In just a few sentences, compare the four ISAs you have studied with respect to code size, number 

of instructions fetched, and data memory traffic. Which one would you choose if you were to build 

a specialized processor to execute the code in this program, and why? 

 

● Static code size: CISC < RISC < (Stack ~= Accumulator)  
● Dynamic code size: CISC < (RISC ~= Stack ~= Accumulator)  
● Data memory traffic: (CISC == RISC) < Accumulator < Stack  

o If your code is not well-matched for a stack machine, even accumulator 

machines can be more efficient  
● We would choose CISC if we wanted to minimize bandwidth and memory storage 

requirements  
o Another ISA choice is also acceptable if the student provides a reasonable 

explanation  
 

 

 

 

Problem 1.F Optimization 

 

To get more practice with RISC-V, optimize the code from 1.B so that fewer dynamic instructions 

are executed on average and the number of jumps and taken branches is minimized. There are 

solutions more efficient than simply translating each individual x86 instruction as you did in part 

(b). Your solution should contain commented assembly code, a brief explanation of your 

optimizations, and a short analysis of the savings you obtained. 

 

Note: It is possible to replace the loop in 1.A with an O(1) non-loop-based solution. For this 

problem, we want you to use the more inefficient O(N) loop-based solution. 

 

Common optimizations may include:  

● Loop unrolling  
o Reduces the loop overhead  

● Loop inversion: translating the while loop to a do-while loop  
o Eliminates the unconditional jump  
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Problem 2: Microprogramming and Bus-based Architectures  

 

In this problem, we explore microprogramming by writing microcode for the bus-based 

implementation of the RISC-V machine described in Handout #1 (Bus-Based RISC-V 

Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1. Make sure 

that you understand how different types of data and control transfers are achieved by setting the 

appropriate control signals before attempting this problem. 

 

The final solution should be as elegant and efficient as possible with respect to the number of 

microinstructions used. 

 

Problem 2.A Implementing MODULOM 

 

For this problem, you are to implement a new kind of arithmetic instruction, MODULOM. The 

new instruction has the following format: 

MODULOM rd, rs1, rs2 

MODULOM performs the following operation: The memory word at the address in rs1 is divided 

by the memory work at the address in rs2, and the remainder is stored in address in the memory 

word at the address in rd. 

M[rd] ← M[rs1] % M[rs2] 

Your CPU's ALU does not have support for a remainder or a division operation. Fortunately, the 

modulo operation can also be implemented as a loop, as illustrated below: 

unsigned int modulo(unsigned int x, unsigned int y) { 

   while (x >= y) x -= y; 

   return x; 

} 

This loop is realizable with the microcode of your CPU. 

Fill in Worksheet 2.A with the microcode for MODULOM. Use don’t cares (*) for fields where it 

is safe to use don’t cares. Study the hardware description well, and make sure all your 

microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space provided, 

or if you have additional comments, you may write in the margins so long as you do it neatly. Your 

code should exhibit “clean” behavior and not modify rd, rs1, rs2, or other general-purpose 

architectural registers while executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch to 

FETCH0 as discussed above) once the result has been saved to M[rd]. 

You may want to consult the microcode found in the micro-coded processor provided in Lab 1, 

which can be viewed at chipyard/generators/riscv-sodor/src/main/scala/ 
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sodor/rv32_ucode/microcode.scala for guidance. Warning: While that microcode 

passes all provided assembly tests and benchmarks, no guarantees to the optimality of that code 

are assured, and there may still be bugs in the provided implementation. 

 

We will accept any reasonable solution, even if it is different from the one on the next page. 



 

 

 

State Pseudocode IR 
Ld 

Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

Br Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 0 0 * 0 N * 

 IR <- Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S * 

 PC <- A+4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * 0 0 * * * 0 * 0 0 * 0 J FETCH0 

MODULOM
0: 

MA <- R[rs1] 0 rs1 0 1 * * * 0 1 0 0 * 0 N * 

 A<-Mem 0 * 0 0 1 * * 0 0 0 1 * 0 S  

 MA <- R[rs2] 0 rs2 0 1 0 * * 0 1 0 0 * 0 N * 

 B<-Mem 0 * 0 0 0 1 * 0 0 0 1 * 0 S  

LOOP: if (A < B) goto 
DONE 

MA <- R[rd] 

0 rd 0 1 0 0 SLTU 0 1 0 0 * 0 NZ DONE 

 A<-A–B 

goto LOOP 

0 * 0 0 1 0 SUB 1 * 0 0 * 0 J LOOP 

DONE:  Mem<-A * * 0 0 0 * COPY_A 1 0 1 0 * 0 S  

 goto FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0 

                 

                 

                 

Worksheet 2.A 



 

 

 

Problem 2.B Implementing Character Count 

 

In this question we ask you to implement a useful vector instruction to find the smallest number in 

a vector of unsigned integers. This instruction has the same format as other arithmetic (R-type) 

instructions in RISC-V: 

 

MINV rd, rs1, rs2 

The MINV instruction takes a pointer to the beginning of a vector in memory (rs1) and a pointer 

to the end of a vector in memory (rs2), and it returns in register rd the smallest number in that 

vector. Your code is permitted to modify register rs1 and rd during the execution of this instruction. 

For this problem, each vector element will be a 32-bit unsigned number. You can assume that the 

address in rs2 is larger than the address in rs1 and that rs2 is not included in the vector. 

Your task is to fill out Worksheet 2.B for the MINV instruction. You should try to optimize your 

implementation for the minimal number of cycles necessary and for which signals can be set to 

don’t-cares. 

 

We will accept any reasonable solution, even if it is different from the one on the next page.  

 

A simple alternative is starting with the first element of the vector as the minimum as we’re 

guaranteeing rs2 > rs1.



 

 

 

State Pseudocode IR 
Ld 

Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

Br Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 0 0 * 0 N * 

 IR <- Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S * 

 PC <- A+4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * 0 0 * * * 0 * 0 0 * 0 J FETCH0 

MINV0: A <- B  0 * 0 0 1 0 COPY_B 1 * 0 0 * 0 N  

 A <- A-B 0 * 0 0 1 0 SUB 1 * 0 0 * 0 N  

 R[rd] <- A–1  
(== MAX) 

0 rd 1 0 * * DEC_A_1 1 * 0 0 * 0 N  

LOOP: A, MA <- R[rs1]  0 rs1 0 1 1 * * 0 1 0 0 * 0 N  

 B <- R[rs2]  0 rs2 0 1 0 1 * 0 0 0 0 * 0 N  

 If NOT (A < B) 

  goto FETCH0 
  
B <- R[rd]  

0 rd 0 1 0 1 SLTU 0 0 0 0 * 0 EZ FETCH0 

 R[rs1]<-A+4  0 rs1 1 0 * 0 INC_A_4 1 0 0 0 * 0 N  

 A<-MEM  0 * 0 0 1 0 * 0 0 0 1 * 0 S  

 If NOT (A < B) 
  goto LOOP 

0 * 0 0 0 0 SLTU 0 * 0 0 * 0 EZ LOOP 

 R[rd] <- A 
 
goto LOOP  

0 rd 1 0 * * * 0 * 0 0 * 0 J LOOP 

                 

                 

Worksheet 2.B 



 

15 

 

Problem 2.C Instruction Execution Times 

 

 

How many cycles does it take to execute the following instructions on the microcoded RISC-V 

implementation? Use the states and control signals from Handout #1 (or Lab 1, in 
chipyard/generators/riscv- 

sodor/src/main/scala/sodor/rv32_ucode/microcode.scala). 

 

For ease of calculation, assume that memory can assert its busy signal but does not. 

Remember to account for instruction fetch cycles. 

 

Instruction Cycles 

SUB x3,x2,x1  

ANDI x2,x1,#4  

LW x1,12(x2)  

BNE x1,x2,label #(x1 == x2)  

BNE x1,x2,label #(x1 != x2)  

BEQ x1,x2,label #(x1 != x2)  

BEQ x1,x2,label #(x1 == x2)  

J label  

JAL x1,label  

JALR x1,12(x2)  

AUIPC x1, #128   

 

 
Instruction Cycles Summary (not including fetch and dispatch) 

SUB x3,x2,x1 3+3=6  1) A←R[x2]; 2) B←R[x1]; 3) R[x3]←A-B  

ANDI x2,x1,#4 3+3=6  1) A←R[x1]; 2) B←Imm;3)R[x2]←A & B  

LW x1,12(x2) 3+5=8  1) A←R[x2]; 2) B←Imm; 3) MA←A+B;  
4) R[x1] ← Mem; 5) μBr J FETCH01  

BNE x1,x2,label #(x1 == x2) 3+3=6 1) A←R[x1]; 2) B←R[x2];  
3) A - B; μBr EZ FETCH0; B ← Imm3  

BNE x1,x2,label #(x1 != x2) 3+6=9  4) A←PC; 5) A←A-4; 6) PC←A+B  

BEQ x1,x2,label #(x1 != x2) 3+3=6  1) A←R[x1]; 2) B←R[x2]; 
3) A - B; μBr NZ FETCH0; B ← Imm3  

BEQ x1,x2,label #(x1 == x2) 3+6=9  4) A←PC; 5) A←A-4; 6) PC←A+B  

J label 3+3=6 or 

3+2=5 
1) R[rd]4 ←PC; 2) B←Imm; 3) PC←A2 +B  

JAL x1,label 3+3=6  Same as above  
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JALR x1,12(x2) 3+4=7  1) R[rd]←PC; 2) A←R[x1]; 3) B←Imm; 4) PC ← A 
+ B  

AUIPC x1, #128  3+2=5 1) B←Imm; 2) R[x1]←A2 + B  

 

The answers below are derived from the microcoded processor from the handout, but are not 

optimal.  
Instruction Cycles Summary (not including fetch and dispatch) 

SUB x3,x2,x1 3+3=6  1) A←R[x2]; 2) B←R[x1]; 3) R[x3]←A-B  

ANDI x2,x1,#4 3+3=6  1) A←R[x1]; 2) B←Imm;3)R[x2]←A & B  

LW x1,0(x2) 3+5=8  1) A←R[x2]; 2) B←Imm; 3) MA←A+B;  
4) R[x1] ← Mem; 5) μBr J FETCH01  

BNE x1,x2,label #(x1 == x2) 3+4=7 1) A←R[x1]; 2) B←R[x2];  
3) A - B; μBr NZ BZ_TAKEN; 4) μBr J FETCH0 

BNE x1,x2,label #(x1 != x2) 3 + 3 + 4 = 10  4) A←PC; 5) A←A-4; 6) B←Imm; 
7) PC←A+B; μBr J FETCH0 

BEQ x1,x2,label #(x1 != x2) 3+4=7  1) A←R[x1]; 2) B←R[x2];  
3) A - B; μBr EZ BZ_TAKEN; 4) μBr J FETCH0 

BEQ x1,x2,label #(x1 == x2) 3 + 3 + 4 = 10  4) A←PC; 5) A←A-4; 6) B←Imm; 
7) PC←A+B; μBr J FETCH0 

J label 3+6=9  1) A←PC; 2) B←Imm; 3) A←A+B; 

4) B←PC; 5) PC←A-4 6) R[rd]4 ←B;  
JAL label 3+6=9  Same as above  

JALR x1 3+6=9  1) A←R[x1]; 2) B←Imm; 3) A ← A + B  
4) B←PC; 5) PC←A 6) R[rd] ←B; 

AUIPC x1, #128  3+4=7  1) A←PC; 2) PC←A-4; 3) B←Imm; 4) R[x1]←A+B  

 

 
0 Terminal microinstructions are assumed to have a μBr J back to FETCH0 unless stated 

otherwise.  
1 The wording of the question is clear that you can exclude stall cycles for purposes of cycle 

accounting, however the busy signal can be asserted. Thus, the μBr and the memory op must be 

separated. (Had this been a guaranteed single cycle memory, the μBr and the memory op 

could’ve occurred in the same cycle.) 
2 The A register contains PC after fetch, whereas PC is speculatively set to PC+4. Thus, we reuse 

A to speed up AUIPC and JAL instructions, eliding the need to load the PC into A and 

decrement it by 4. (Conversely, this cannot be avoided in taken conditional branches.) 
3 Speculatively load the branch offset into B to shave a cycle off a taken conditional branch. This 

will just be discarded in fetch if the branch is not taken.  
4 J is a pseudo-instruction encoded as JAL with rd=x0 in the RISC-V spec. However, in case one 

treats it as a separate instruction and ignores the write to x0, the operation should take 3+2=5. 
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Which instruction takes the most cycles to execute?  

 

 

Most cycles: Taken branch (BEQ, BNE) 

 

 

Which instruction takes the fewest cycles to execute? 

 

Fewest cycles: AUIPC 

 

Answers may be different if students do not use the most optimal micro-coded versions of these 

instructions. 
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Problem 3: 6-Stage Pipeline 

 
In this problem, we consider a modification to the fully bypassed 5-stage RISC-V processor 

pipeline originally presented in Lecture 3 and further expanded on in Handout #1 (RV32I 5-Stage 

Pipeline Diagram). Our new processor has a data cache with a two-cycle latency. To accommodate 

this cache, the memory stage is pipelined into two stages, M1 and M2, as shown in Figure 1-A. 

Additional bypasses are added to keep the pipeline fully bypassed. 

 

Suppose we are implementing this 6-stage pipeline in a technology in which register file ports are 

inexpensive, but bypasses are costly. We wish to reduce cost by removing some of the bypass 

paths, but without increasing CPI. The proposal is for all integer arithmetic instructions to write 

their results to the register file at the end of the Execute stage, rather than waiting until the 

Writeback stage. A second register file write port is added for this purpose. Remember that register 

file writes occur on each rising clock edge, and values can be read in the next clock cycle. The 

proposed change is shown in Figure 1-B. 

 

In this problem, assume that the only exceptions that can occur in this pipeline are illegal opcodes 

(detected in the Decode stage) and invalid memory address (detected at the start of the M2 stage). 

Additionally, assume that the control logic is optimized to stall only when necessary. You may 

ignore branch and jump instructions in this problem. 

 

 
Figure 1-A. 6-stage pipeline. For clarity, bypass paths are not shown. Handout #1 (RV32I 5-

Stage Pipeline Diagram) shows the full pipeline diagram. 

 

 
Figure 1-B. 6-stage pipeline with proposed additional write port. 

 



 

19 

 
Problem 3.A Hazards: Second Write Port 

 

The second write port allows some bypass paths to be removed without adding stalls in the decode 

stage. Explain how the second write port improves performance by eliminating such stalls and give 

a short code sequence that would have required an interlock to execute correctly with only a single 

write port and with the same bypass paths removed. 

 

The second write port improves performance by resolving some RAW hazards earlier than they 

would be if ALU operations had to wait until writeback to provide their results to subsequent 

dependent instructions. It would help with the following instruction sequence:  
add x1, x2, x3 

add x4, x5, x6 

add x7, x1, x9 

The important insight is that the second write port cannot resolve data hazards for immediately 

back-to-back instructions. An arithmetic instruction in the EX stage writes back as it leaves the 

EX stage; therefore, the bypass path is necessary if the next instruction has a RAW dependency 

and is allowed to leave the ID stage.  

 

 

 

 

 

 

 

Problem 3.B Hazards: Bypasses Removed and New Hazards 

 

After the second write port is added, which bypass paths can be removed in this new pipeline 

without introducing additional stalls? List each removed bypass individually. Are any new hazards 

added to the pipeline due to the earlier writeback of arithmetic instructions? 

 

 

The bypass path from the end of M1 to the end of ID can be removed. (Credit was also given for 

the bypass path from the beginning of M2 to the beginning of EX, since these are equivalent.)  

Additionally, ALU results no longer must be bypassed from the end of M2 or the end of WB, but 

these bypass paths are still used to forward load results to earlier stages.  

There are multiple potential WAW hazards that must be appropriately addressed by the control 

logic. The two instructions writing at the same time must be appropriately prioritized. Also, if an 

arithmetic instruction is in M1 and a load with the same destination register is in M2, the write of 

the earlier load can clobber the result of the older instruction, leading to an incorrect architectural 

state. The control logic needs to be modified to handle these situations by suppressing the writes 

of older instructions when they conflict with the writes of newer instructions.  
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Problem 3.C Precise Exceptions 

 

Without further modifications, this pipeline may not support precise exceptions. Briefly explain 

why and provide a minimal code sequence that will result in an imprecise exception.  

 

Illegal address exceptions are not detected until the start of the M2 stage. Since writebacks can 

occur at the end of the EX stage, it is possible for an arithmetic instruction following a memory 

access to an illegal address to have written its value back before the exception is detected, 

resulting in an imprecise exception. For example:  
lw x1, -1(x0) # address -1 is misaligned 

add x2, x3, x4 # x2 will be overwritten, but last instruction 

has faulted! 

  

 

Problem 3.D Precise Exceptions: Implemented using an Interlock 

 

Describe how precise exceptions can be implemented by adding a new interlock. Provide a 

minimal code sequence that would engage this interlock. Qualitatively, what is the performance 

impact of this solution? 

 

Stall any ALU op in the ID stage if the instruction in the EX stage is a load or a store. The 

instruction sequence above engages this interlock. Loads and stores account for about 1/3 of 

dynamic instructions. Assuming that the instruction following a load or store is an arithmetic 

instruction 2/3 of the time, and ignoring the existing load-use delay, this solution will increase 

the CPI by (1/3)*(2/3) = 2/9. However, only a qualitative explanation was necessary for credit.  

 

 

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port 

 

Suppose you are additionally given the budget to add a new register file read port. Propose an 

alternative solution to implement precise exceptions in this pipeline without requiring any new 

interlocks. 

 

In addition to writing an arithmetic instruction’s destination register in the EX stage, also read its 

previous value and carry it down the pipeline. If an early writeback occurs before a preceding 

exception was detected, then the old value of rd is preserved in the M1 pipeline register and can 

be restored to the register file, maintaining precise state.  

Note: It is better to read the previous value as late as possible, otherwise this read of rd might 

need an extra bypass path for the following instruction sequence:  
ld x1, 0(x8) 

ld x2, -1(x8) # misaligned 

addi x1, x1, 4 

This also depends on the interlocks used to resolve the WAW hazard mentioned in 3.B.  
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Problem 4: CISC vs RISC 

 
For each of the following questions, select either CISC or RISC, depending on which ISA you feel 

would be best suited for the situation described. Also, briefly explain your reasoning.  

 

 

Problem 4.A Lack of Good Compilers I 

 

Assume that compiler technology is poor, and therefore your users are far more apt to write all 

their code in assembly. A _____ ISA would be best appreciated by these programmers. 

 

CISC           RISC 

 

CISC ISAs provided more complex, higher-level instructions such as string manipulation 

instructions and special addressing modes convenient for indexing tables (say for your 

company’s payroll application). Two example CISC instructions: “DBcc: Test Condition, 

Decrement, and Branch” and “CMP2: Compare Register against Upper and Lower Bounds”. 

This made life easy if you stared at assembly all day and could not hide behind convenient 

software abstractions/subroutines!  

 

OR 

 
 

CISC           RISC 

 

A streamlined RISC ISA is far simpler for an assembly programmer to fully understand and 

reason about than all the idiosyncrasies that CISC ISAs tend to have, such as the variety of 

complex instructions for narrow use cases and the myriad addressing modes.  

 

 

Problem 4.B Lack of Good Compilers II 

 

You desire to make compilers better at targeting your yet-to-be-designed machine. Therefore, 

you choose a _____ ISA, as it would be easiest for a compiler to target, thus allowing your users 

to write code in higher-level languages like C and Fortran and raise their productivity. 

 

CISC           RISC 

 

Compilers had difficulty targeting CISC ISAs in part because the complicated instructions have 

many difficult and hard to analyze side-effects. A load-store/register-register RISC ISA which 

limits side-effects to a single register or memory location per instruction is relatively easy for a 

compiler to understand, analyze, and schedule code for.  
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Problem 4.C Fast Logic, Slow Memory 

 

Assume that CPU logic is fast, very fast, while instruction fetch accesses are at least 10x slower 

(suppose you are the lead architect of the “709”). Which ISA style do you choose as a best match 

for the hardware’s limitations? 

 

CISC           RISC 

 

When instruction fetch takes 10x longer than a CPU logic operation, you are going to want to 

push as much compute as you can into each instruction! Certain especially complex CISC 

instructions can encode tens, even hundreds of equivalent RISC instructions. For example, a 

CISC instruction which performs a single expensive, multi-cycle string routine in hardware 

would be considerably faster than even an optimized RISC implementation that would need a 

loop with a series of loads, stores, and arithmetic instructions in the loop body.  

 

 

 

 

Problem 4.D Higher Performance(?) 

 

Starting with a clean slate in the year 2024 (area/logic/memory is cheap), you think that a _____ 

ISA that would lend itself best to a very high-performance processor (e.g., high frequency, 

highly pipelined). 

 

CISC           RISC 

 
Because RISC instructions tend to have simple, easy to analyze side-effects, they lend 

themselves more readily to pipelined micro-architectures which dynamically check for 

dependencies between instructions and interlock or bypass when dependencies arise. And 

because little work needs to be performed in each stage, the pipeline can be clocked at very high 

frequencies.  

This advantage is evident in modern micro-architectures of old CISC ISAs: The frontend of the 

processor typically has a decoder which translates CISC instructions (e.g., x86 instructions) into 

RISC “micro-ops”, which a high-performance pipeline can then dynamically schedule for 

maximum performance.  

For these CISC architectures such as x86 and IBM S/360, they are still around for legacy 

reasons. But if you had a chance at a clean slate, you would probably prefer a clean RISC 

implementation with a direct translation to the micro-architecture instead of using area and 

power on a CISC decoder front-end (not to mention the additional complexity forced on your 

memory system to handle the odd CISC addressing modes). 
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Problem 5: Iron Law of Processor Performance 

 
Mark whether the following modifications will cause each of the first three categories to increase, 

decrease, or whether the modification will have no effect. Explain your reasoning within the box 

provided. Please state any reasonable assumptions you might make. 

 

For the final column “Overall Performance”, mark whether the following modifications increase, 

decrease, have no effect, or whether the modification will have an ambiguous effect. Explain 

your reasoning. If the modification has an ambiguous effect, describe the tradeoff in which it 

would be a beneficial modification or in which it would a detrimental modification (i.e., as an 

engineer would you suggest using the modification or not and why?). 

 

  Instructions / 

Program 

Cycles / 

Instruction 

Seconds / Cycle Overall 

Performance 

a) 

 

 

Adding a branch 

delay slot 

 

 

Increase: NOPs 

must be inserted 

when the branch 

delay slot cannot 

be usefully filled  

Decrease: Some 

control hazards are 

eliminated; also, 

additional NOPs 

execute quickly 

because they have 

no data hazards.  

 

No effect: will not 

meaningfully 

change the 

pipeline.  

ALSO ACCEPT: 

Decrease because 

no branch kill  

 

Ambiguous: 

Depends on the 

program and how 

often the delay slot 

can be filled with 

useful work  

 

b) 

 

 

 

Adding a 

complex 

instruction 

 

 

Decrease: if the 

added instruction 

can replace a 

sequence of 

instructions.  

 

Increase: 

implementing the 

instruction can 

mean adding 

stages or making 

stages have more 

complex control 

logic. 

Increase: more 

control logic and 

interlocks will 

often increase the 

critical path.  

ALSO ACCEPT: 

No effect  

 

Ambiguous: if the 

program can take 

advantage of the 

new instruction, it 

can be worth the 

cost. This is a hard 

decision for an ISA 

designer to make!  

c) 

 

 

Reduce number 

of registers in 

the ISA 

 

 

Increase: Values 

will more 

frequently be 

spilled to the 

stack, increasing 

number of loads 

and stores  

 

Increase: more 

loads followed by 

dependent 

instructions will 

cause more stalls. 

Memory latency is 

hard to schedule 

around.  

 

Decrease: fewer 

registers lead to 

shorter register file 

access time  

 

Ambiguous: if the 

program uses few 

registers and thus 

spills rarely to 

memory, the faster 

reg. access times 

may win out. Also, 

your instructions 

may be able to be 

shorter, improving 

amongst other 

things code density  

d) 

 

 

Improving 

memory access 

speed 

 

No effect: since 

instructions make 

no assumption 

about memory 

speed.  

 

Decrease: 

programs will 

spend less time 

stalled waiting for 

memory  

 

Decrease: if 

memory access is 

on the critical path 

or memory was 1 

cycle.  

ALSO ACCEPT: 

No effect: if 

memory is 

pipelined and just 

takes less cycles.  

Improve: 

improving memory 

access time will 

increase 

performance of the 

whole system.  
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e) 

Adding 16-bit 

versions of the 

most common 

instructions in 

RISC-V 

(normally 32 

bits in length) to 

the ISA (i.e., 

make RISC-V a 

variable-length 

ISA) 

 

No effect: The 

actual number of 

instructions is 

unchanged.  

 

Decrease: since 

code size has 

shrunk, there will 

be fewer 

instruction cache 

(I$) misses and 

less time spent 

waiting to fetch  

 

Increase: decode 

becomes more 

complex with 

more formats, and 

instruction fetch 

must deal with 

misalignment.  

 

Ambiguous: the 

main advantage is 

smaller code size, 

which can improve 

I$ hit rates and save 

on fetch energy (get 

more instructions 

per fetch). 

However, the more 

complex decode 

can offset these 

gains.  

f) 

For a given 

CISC ISA, 

changing the 

implementation 

of the micro-

architecture 

from a bus-

based datapath 

with a 

microcode 

engine (similar 

to Problem 2) to 

a pipelined 

RISC datapath 

with a CISC-to-

RISC decoder 

on the frontend.  

 

The CISC-to-

RISC translation 

results in each 

CISC instruction 

being translated 

to 1 or more 

coarser RISCV-

like instructions 

v. much finer 

ops. 

No effect: Since 

the ISA is not 

changing, the 

binary does not 

change, and thus 

there is no change 

to Inst/Program.  

 

Decrease: 

Microcoded 

machines take 

several clock 

cycles to execute 

an instruction, 

while the RISC 

pipeline should 

have a CPI near 1 

(thanks to 

pipelining and 

translation to much 

coarser RISCV-

like instructions).  

 

No effect: the 

amount of work 

done in one 

pipeline stage and 

one microcode 

cycle are about the 

same.  

ALSO ACCEPT: 

Increase: the RISC 

pipeline introduces 

longer control 

paths and adds 

bypasses, which 

are likely to be on 

the critical path.  

Improve: 

The decrease in CPI 

from the RISC 

pipeline far 

outweighs any 

critical path 

overhead of 

hardwired control 

logic.  

 


