

CS152 Computer Architecture and

Engineering

 ISAs, Microprogramming and Pipelining

 SOLUTION

Assigned

01/24/2024
Problem Set #1, Version (1.1)

Due February 7

@ 11:59:59PT

http://inst.eecs.berkeley.edu/~cs152/sp24

The problem sets are intended to help you learn the material, and we encourage you to collaborate

with other students and to ask questions in discussion sections and office hours to understand the

problems. However, each student must turn in their own solution to the problems.

The problem sets also provide essential background material for the exam and the midterms. The

problem sets will be graded primarily on an effort basis, but if you do not work through the problem

sets yourself you are unlikely to succeed on the exam or midterms! We will distribute solutions to

the problem set on the day after the deadline to give you feedback.

Assignments must be submitted through Gradescope by 11:59:59pm PT on the specified due date.

Box all solutions that don’t involving filling in a figure/table. Only boxed solutions and filled in

figures/tables will be considered for grading. See the course website for the policy on slip days

(late submissions).

Name: ___

SID: ___

Collaborators (Name, SID):

__

http://inst.eecs.berkeley.edu/~cs152/sp24
https://www.gradescope.com/courses/703789
https://inst.eecs.berkeley.edu/~cs152/sp24/152_policies/#slip-days

2

Problem 1: CISC, RISC, Accumulator, and Stack: Comparing ISAs

In this problem, your task is to compare four different ISAs: x86 (a CISC architecture with

variable-length instructions), RISC-V (a load-store, RISC architecture with 32-bit instructions in

its base form), a stack-based ISA, and an accumulator-based ISA.

Problem 1.A CISC

Let us begin by considering the following C code, which (inefficiently) rotates the bits in a 32-bit

value by n times.

unsigned int rotate(unsigned int x, unsigned int n) {

 unsigned int msb;

 while (n != 0) {

 msb = x >> 31;

 x = (x << 1) | msb;

 n--;

 }

 return x;

}

Using gcc and objdump on an x86 machine, we see that the above loop compiles to the following

x86 instruction sequence. On entry to this code, register %eax contains x and register %ecx

contains n. Throughout parts (a–d), we will ignore what happens in the done label and return

statement.

loop: test %ecx,%ecx

 jz done

 mov %eax,%ebx

 shr $31,%ebx

 shl $1,%eax

 or %ebx,%eax

 dec %ecx

 jmp loop

 done: ...

The meanings and instruction lengths of the instructions used above are given in the following

table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Instruction Operation Length

mov RSRC, RDEST <RDEST> = <RSRC> 2 bytes

test RSRC1, RSRC2
temp = <RSRC1> & <RSRC2>

Set flags based on value of temp
2 bytes

dec RDEST <RDEST> = <RDEST> - 1 1 byte

 shl $imm8, RDEST <RDEST> = <RDEST> << imm8 2 bytes

 shr $imm8, RDEST <RDEST> = <RDEST> >> imm8 2 bytes

3

 or RSRC, RDEST <RDEST> = <RDEST> | <RSRC> 2 bytes

jmp label jump to the address specified by label 2 bytes

jz label if (ZF == 1), jump to the address specified by label 2 bytes

Notice that the jump instruction jz (jump if zero) depends on ZF, which is a status flag. Status

flags are set by the instruction preceding the jump, based on the result of the computation. Some

instructions, like the test instruction, perform a computation and set status flags such as ZF,

but do not return any result. The meanings of the status flags are given in the following table:

Name Purpose Condition Reported

ZF Zero Result is zero

i) How many bytes is the program?

ii) For the above x86 assembly code, how many bytes of instructions need to be fetched if x =

0x01020304 and n = 5?

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored?

i) Bytes in program = 7 * 2 bytes + 1 byte = 15 bytes

ii) Instruction bytes fetched = 5 * 15 bytes (loop iterations) + 4 bytes (final test and jz) = 79

bytes

iii) Data loaded/stored = 0 bytes

Problem 1.B RISC

Translate each of the x86 instructions in the following table into zero, one or more RISC-V

instructions. Place the loop label where appropriate. You should use the minimum number of

instructions needed to translate each x86 instruction. (You are allowed to replace multiple x86

instructions with a single RISC-V instructions). Assume that x1 contains x upon entry, and x2

should receive n. If needed, use x4 as a condition register, and x6, x7, etc., for temporaries. You

should not need to use any floating-point registers or instructions in your code. A description of

the RISC-V instruction set architecture can be found on the class website resources page.

https://inst.eecs.berkeley.edu/~cs152/sp24/resources/

4

Note: It is possible to replace the loop in 1.A with an O(1) non-loop-based solution. For this

problem, we want you to use the more inefficient O(N) loop-based solution.

x86 instruction Label RISC-V instruction sequence

test %ecx,%ecx loop:

beq x2, x0 done

jz done

mov $eax,%ebx

srli x6, x1, 31

shr $31,%ebx slli x1, x1, 1

shl $1,%eax or x1, x6, x1

or %ebx,%eax addi x2, x2, -1

dec %ecx jal x0, loop

jmp loop

… done: …

i) How many bytes is the RISC-V program using your direct translation?

ii) How many bytes of RISC-V instructions need to be fetched for x = 0x01020304 and n =

5 with your direct translation?

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored?

The answer for this question may be slightly different, depending on how exactly students

translated their programs.

i) Bytes in program = 6 * 4 bytes = 24 bytes

ii) Instruction bytes fetched = 5 * 24 bytes (loop iterations) + 4 bytes (final beq) = 124 bytes

iii) Bytes loaded/stored = 0 bytes

5

Problem 1.C Stack

In a stack architecture, all operations occur on top of the stack. Only push and pop access memory,

and all other instructions remove their operands from the stack and replace them with the result.

The hardware implementation we will assume for this problem set uses stack registers for the

topmost two entries; accesses that involve deeper stack positions (e.g., pushing or popping

something when the stack has more than two entries) use an extra memory reference. Assume each

instruction occupies three bytes if it takes an address or label; other instructions occupy one byte.

Instruction Definition

PUSH addr load value at addr; push value onto stack

POP addr pop stack; store value to addr

OR pop two values from the stack; OR them; push result onto stack

SHL pop value from top of stack; shift left by 1; push result onto stack

SIGN pop value from top of stack; shift right by 31; push result onto stack

DEC pop value from top of stack; decrement value by 1; push result onto stack

BEQZ label pop value from stack; if it’s zero, branch to label;

else, continue with next instruction

BNEZ label pop value from stack; if it’s not zero, branch to label;

else, continue with next instruction

JUMP label continue execution at location label

Translate the rotate loop to the stack ISA. You are permitted to change the sequence of

instructions from 1.A and 1.B. Assume that when we reach the loop, n is at the top of the stack

and x is underneath it. At the end of the loop, the stack should contain only x at the top. Assume

that byte-addressable memory starting at address 0x8000 is available to use as temporary storage.

Assume that data values are 32-bits wide.

i) How many bytes is your program?

ii) How many bytes of instructions need to be fetched for x = 0x01020304 and n = 5 with

your translation?

iii) How many bytes of data memory need to be loaded? Stored? Remember accesses that involve

deeper stack positions (e.g., pushing or popping something when the stack has more than two

entries) use an extra memory reference.

iv) Would the number of bytes loaded and stored change if the stack could fit 8 entries in registers?

Answers may be slightly different depending on how students translated their programs.

loop: pop 0x8000 # [n,x]; n is at 0x8000

push 0x8000 # [x]

beqz done #[n,x]

 pop 0x8004 # [x]; x is at 0x8004

 push 0x8004 # []

6

 shl # [x]

 push 0x8004 # [x<<1]

 sign # [x, x<<1]

 or # [msb(x), x<<1]

 push 0x8000 # [x’]

 dec # [n,x’]

 jump loop # [n-1,x’]

done: …

i) Bytes in program = 8 * 3 bytes (instructions with addresses/labels) + 4 * 1 byte (instructions

without addresses/labels) = 28 bytes

ii) Instruction bytes fetched = 5 * 28 bytes (loop iterations) + 3 * 3 bytes (final beqz) = 149

bytes

iii) Bytes loaded = 5 * 4 pushes * 4 bytes (loop iterations) + 1 push * 4 bytes (final beqz) = 84

bytes

Bytes stored = 5 * 2 pops * 4 bytes (loop iterations) + 1 pop * 4 bytes (final beqz) = 44

bytes

iv) The solution above doesn't use more than two stack entries, so there would be no change if

more stack entries were added. But if your solution does use more than two stack entries,

then adding more registers may eliminate implicit loads.

7

Problem 1.D Accumulator

In an accumulator ISA, one operand is implicitly a specific register (the same for all instructions),

called the accumulator. To make programming easier, we will consider a modified architecture

that has a secondary accumulator to hold an additional value. Assume each instruction occupies

three bytes if it takes an address or label; other instructions occupy one byte.

Instruction Definition

LOAD addr load value at addr into the primary accumulator

STORE addr store the primary accumulator’s value to addr

OR addr OR the value at addr with the value in the primary accumulator

SHL left-shift the value in the primary accumulator by one bit

SIGN logical right-shift the value in the primary accumulator by 31 bits

INC increment the primary accumulator by 1

DEC decrement the primary accumulator by 1

SWAP swap the values in the primary and secondary accumulators

ZERO zero the value in the primary accumulator

BEQZ label branch to label if the primary accumulator holds a zero value

BNEZ label branch to label if the primary accumulator holds a non-zero value

JUMP label continue execution at location label

Notice that all instructions operate on the primary accumulator. Also note that there are no register

specifiers in this architecture; addr and label represent memory addresses. Translate the rotate

loop to use this ISA. Assume that x initially held at address 0x8000, and n is initially held at

address 0x8004. You are permitted to write temporary variables to any addresses above 0x8000.

You should return x in the primary accumulator.

i) How many bytes is your program?

ii) How many bytes of instructions need to be fetched for x = 0x01020304 and n = 5 with

your translation?

iii) Assuming 32-bit data values, how many bytes of data memory need to be loaded? Stored?

 LOAD 0x8000 # (p: ?, s: ?) 1

 SWAP # (p: x, s: ?)

 LOAD 0x8004 # (p: ?, s: x) 2

loop: BEQZ inner_done # (p: n, s: x) 3

 DEC # (p: n, s: x)

 SWAP # (p: n', s: x)

 SHL # (p: x, s: n-1)

 STORE 0x8008 # (p: x<<1, s: n') 4

8

 LOAD 0x8000 # (p: x<<1, s: n') 5

 SIGN # (p: x, s: n-1)

 OR 0x8008 # (p: msb(x), s: n') 6

 STORE 0x8000 # (p: x', s: n') 7

 SWAP # (p: x', s: n)

 JUMP loop # (p: n', s: x') 8

inner_done:

done:

SWAP # (p: n, s: x)

…

`inner_done` is used to ensure we don’t modify the original `done` label in the Q

adding a `SWAP` instruction to the `done` label is an equivalent solution, as long

as the SWAP instruction is accounted for in following sub parts.

i) Bytes in program = 8 * 3 bytes (instructions with addresses/labels) + 7 * 1 byte (instructions

without addresses/labels) = 31 bytes

ii) Instruction bytes fetched = 7 bytes (prologue) + 5 * 23 bytes (loop iterations) + 3 bytes (final

BEQZ) + 1 byte (epilogue) = 126 bytes

iii) Data bytes loaded = 2 * 4 bytes (prologue) + 5 * 2 * 4 bytes (loop iterations) = 48 bytes

Data bytes stored = 5 * 2 * 4 (loop iterations) = 40 bytes

9

Problem 1.E Conclusions

In just a few sentences, compare the four ISAs you have studied with respect to code size, number

of instructions fetched, and data memory traffic. Which one would you choose if you were to build

a specialized processor to execute the code in this program, and why?

● Static code size: CISC < RISC < (Stack ~= Accumulator)
● Dynamic code size: CISC < (RISC ~= Stack ~= Accumulator)
● Data memory traffic: (CISC == RISC) < Accumulator < Stack

o If your code is not well-matched for a stack machine, even accumulator

machines can be more efficient
● We would choose CISC if we wanted to minimize bandwidth and memory storage

requirements
o Another ISA choice is also acceptable if the student provides a reasonable

explanation

Problem 1.F Optimization

To get more practice with RISC-V, optimize the code from 1.B so that fewer dynamic instructions

are executed on average and the number of jumps and taken branches is minimized. There are

solutions more efficient than simply translating each individual x86 instruction as you did in part

(b). Your solution should contain commented assembly code, a brief explanation of your

optimizations, and a short analysis of the savings you obtained.

Note: It is possible to replace the loop in 1.A with an O(1) non-loop-based solution. For this

problem, we want you to use the more inefficient O(N) loop-based solution.

Common optimizations may include:

● Loop unrolling
o Reduces the loop overhead

● Loop inversion: translating the while loop to a do-while loop
o Eliminates the unconditional jump

10

Problem 2: Microprogramming and Bus-based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based

implementation of the RISC-V machine described in Handout #1 (Bus-Based RISC-V

Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1. Make sure

that you understand how different types of data and control transfers are achieved by setting the

appropriate control signals before attempting this problem.

The final solution should be as elegant and efficient as possible with respect to the number of

microinstructions used.

Problem 2.A Implementing MODULOM

For this problem, you are to implement a new kind of arithmetic instruction, MODULOM. The

new instruction has the following format:

MODULOM rd, rs1, rs2

MODULOM performs the following operation: The memory word at the address in rs1 is divided

by the memory work at the address in rs2, and the remainder is stored in address in the memory

word at the address in rd.

M[rd] ← M[rs1] % M[rs2]

Your CPU's ALU does not have support for a remainder or a division operation. Fortunately, the

modulo operation can also be implemented as a loop, as illustrated below:

unsigned int modulo(unsigned int x, unsigned int y) {

 while (x >= y) x -= y;

 return x;

}

This loop is realizable with the microcode of your CPU.

Fill in Worksheet 2.A with the microcode for MODULOM. Use don’t cares (*) for fields where it

is safe to use don’t cares. Study the hardware description well, and make sure all your

microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space provided,

or if you have additional comments, you may write in the margins so long as you do it neatly. Your

code should exhibit “clean” behavior and not modify rd, rs1, rs2, or other general-purpose

architectural registers while executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch to

FETCH0 as discussed above) once the result has been saved to M[rd].

You may want to consult the microcode found in the micro-coded processor provided in Lab 1,

which can be viewed at chipyard/generators/riscv-sodor/src/main/scala/

11

sodor/rv32_ucode/microcode.scala for guidance. Warning: While that microcode

passes all provided assembly tests and benchmarks, no guarantees to the optimality of that code

are assured, and there may still be bugs in the provided implementation.

We will accept any reasonable solution, even if it is different from the one on the next page.

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

Br Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

 IR <- Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S *

 PC <- A+4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * 0 0 * * * 0 * 0 0 * 0 J FETCH0

MODULOM
0:

MA <- R[rs1] 0 rs1 0 1 * * * 0 1 0 0 * 0 N *

 A<-Mem 0 * 0 0 1 * * 0 0 0 1 * 0 S

 MA <- R[rs2] 0 rs2 0 1 0 * * 0 1 0 0 * 0 N *

 B<-Mem 0 * 0 0 0 1 * 0 0 0 1 * 0 S

LOOP: if (A < B) goto
DONE

MA <- R[rd]

0 rd 0 1 0 0 SLTU 0 1 0 0 * 0 NZ DONE

 A<-A–B

goto LOOP

0 * 0 0 1 0 SUB 1 * 0 0 * 0 J LOOP

DONE: Mem<-A * * 0 0 0 * COPY_A 1 0 1 0 * 0 S

 goto FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0

Worksheet 2.A

Problem 2.B Implementing Character Count

In this question we ask you to implement a useful vector instruction to find the smallest number in

a vector of unsigned integers. This instruction has the same format as other arithmetic (R-type)

instructions in RISC-V:

MINV rd, rs1, rs2

The MINV instruction takes a pointer to the beginning of a vector in memory (rs1) and a pointer

to the end of a vector in memory (rs2), and it returns in register rd the smallest number in that

vector. Your code is permitted to modify register rs1 and rd during the execution of this instruction.

For this problem, each vector element will be a 32-bit unsigned number. You can assume that the

address in rs2 is larger than the address in rs1 and that rs2 is not included in the vector.

Your task is to fill out Worksheet 2.B for the MINV instruction. You should try to optimize your

implementation for the minimal number of cycles necessary and for which signals can be set to

don’t-cares.

We will accept any reasonable solution, even if it is different from the one on the next page.

A simple alternative is starting with the first element of the vector as the minimum as we’re

guaranteeing rs2 > rs1.

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

Br Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

 IR <- Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S *

 PC <- A+4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * 0 0 * * * 0 * 0 0 * 0 J FETCH0

MINV0: A <- B 0 * 0 0 1 0 COPY_B 1 * 0 0 * 0 N

 A <- A-B 0 * 0 0 1 0 SUB 1 * 0 0 * 0 N

 R[rd] <- A–1
(== MAX)

0 rd 1 0 * * DEC_A_1 1 * 0 0 * 0 N

LOOP: A, MA <- R[rs1] 0 rs1 0 1 1 * * 0 1 0 0 * 0 N

 B <- R[rs2] 0 rs2 0 1 0 1 * 0 0 0 0 * 0 N

 If NOT (A < B)

 goto FETCH0

B <- R[rd]

0 rd 0 1 0 1 SLTU 0 0 0 0 * 0 EZ FETCH0

 R[rs1]<-A+4 0 rs1 1 0 * 0 INC_A_4 1 0 0 0 * 0 N

 A<-MEM 0 * 0 0 1 0 * 0 0 0 1 * 0 S

 If NOT (A < B)
 goto LOOP

0 * 0 0 0 0 SLTU 0 * 0 0 * 0 EZ LOOP

 R[rd] <- A

goto LOOP

0 rd 1 0 * * * 0 * 0 0 * 0 J LOOP

Worksheet 2.B

15

Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions on the microcoded RISC-V

implementation? Use the states and control signals from Handout #1 (or Lab 1, in
chipyard/generators/riscv-

sodor/src/main/scala/sodor/rv32_ucode/microcode.scala).

For ease of calculation, assume that memory can assert its busy signal but does not.

Remember to account for instruction fetch cycles.

Instruction Cycles

SUB x3,x2,x1

ANDI x2,x1,#4

LW x1,12(x2)

BNE x1,x2,label #(x1 == x2)

BNE x1,x2,label #(x1 != x2)

BEQ x1,x2,label #(x1 != x2)

BEQ x1,x2,label #(x1 == x2)

J label

JAL x1,label

JALR x1,12(x2)

AUIPC x1, #128

Instruction Cycles Summary (not including fetch and dispatch)

SUB x3,x2,x1 3+3=6 1) A←R[x2]; 2) B←R[x1]; 3) R[x3]←A-B

ANDI x2,x1,#4 3+3=6 1) A←R[x1]; 2) B←Imm;3)R[x2]←A & B

LW x1,12(x2) 3+5=8 1) A←R[x2]; 2) B←Imm; 3) MA←A+B;
4) R[x1] ← Mem; 5) μBr J FETCH01

BNE x1,x2,label #(x1 == x2) 3+3=6 1) A←R[x1]; 2) B←R[x2];
3) A - B; μBr EZ FETCH0; B ← Imm3

BNE x1,x2,label #(x1 != x2) 3+6=9 4) A←PC; 5) A←A-4; 6) PC←A+B

BEQ x1,x2,label #(x1 != x2) 3+3=6 1) A←R[x1]; 2) B←R[x2];
3) A - B; μBr NZ FETCH0; B ← Imm3

BEQ x1,x2,label #(x1 == x2) 3+6=9 4) A←PC; 5) A←A-4; 6) PC←A+B

J label 3+3=6 or

3+2=5
1) R[rd]4 ←PC; 2) B←Imm; 3) PC←A2 +B

JAL x1,label 3+3=6 Same as above

16

JALR x1,12(x2) 3+4=7 1) R[rd]←PC; 2) A←R[x1]; 3) B←Imm; 4) PC ← A
+ B

AUIPC x1, #128 3+2=5 1) B←Imm; 2) R[x1]←A2 + B

The answers below are derived from the microcoded processor from the handout, but are not

optimal.
Instruction Cycles Summary (not including fetch and dispatch)

SUB x3,x2,x1 3+3=6 1) A←R[x2]; 2) B←R[x1]; 3) R[x3]←A-B

ANDI x2,x1,#4 3+3=6 1) A←R[x1]; 2) B←Imm;3)R[x2]←A & B

LW x1,0(x2) 3+5=8 1) A←R[x2]; 2) B←Imm; 3) MA←A+B;
4) R[x1] ← Mem; 5) μBr J FETCH01

BNE x1,x2,label #(x1 == x2) 3+4=7 1) A←R[x1]; 2) B←R[x2];
3) A - B; μBr NZ BZ_TAKEN; 4) μBr J FETCH0

BNE x1,x2,label #(x1 != x2) 3 + 3 + 4 = 10 4) A←PC; 5) A←A-4; 6) B←Imm;
7) PC←A+B; μBr J FETCH0

BEQ x1,x2,label #(x1 != x2) 3+4=7 1) A←R[x1]; 2) B←R[x2];
3) A - B; μBr EZ BZ_TAKEN; 4) μBr J FETCH0

BEQ x1,x2,label #(x1 == x2) 3 + 3 + 4 = 10 4) A←PC; 5) A←A-4; 6) B←Imm;
7) PC←A+B; μBr J FETCH0

J label 3+6=9 1) A←PC; 2) B←Imm; 3) A←A+B;

4) B←PC; 5) PC←A-4 6) R[rd]4 ←B;
JAL label 3+6=9 Same as above

JALR x1 3+6=9 1) A←R[x1]; 2) B←Imm; 3) A ← A + B
4) B←PC; 5) PC←A 6) R[rd] ←B;

AUIPC x1, #128 3+4=7 1) A←PC; 2) PC←A-4; 3) B←Imm; 4) R[x1]←A+B

0 Terminal microinstructions are assumed to have a μBr J back to FETCH0 unless stated

otherwise.
1 The wording of the question is clear that you can exclude stall cycles for purposes of cycle

accounting, however the busy signal can be asserted. Thus, the μBr and the memory op must be

separated. (Had this been a guaranteed single cycle memory, the μBr and the memory op

could’ve occurred in the same cycle.)
2 The A register contains PC after fetch, whereas PC is speculatively set to PC+4. Thus, we reuse

A to speed up AUIPC and JAL instructions, eliding the need to load the PC into A and

decrement it by 4. (Conversely, this cannot be avoided in taken conditional branches.)
3 Speculatively load the branch offset into B to shave a cycle off a taken conditional branch. This

will just be discarded in fetch if the branch is not taken.
4 J is a pseudo-instruction encoded as JAL with rd=x0 in the RISC-V spec. However, in case one

treats it as a separate instruction and ignores the write to x0, the operation should take 3+2=5.

17

Which instruction takes the most cycles to execute?

Most cycles: Taken branch (BEQ, BNE)

Which instruction takes the fewest cycles to execute?

Fewest cycles: AUIPC

Answers may be different if students do not use the most optimal micro-coded versions of these

instructions.

18

Problem 3: 6-Stage Pipeline

In this problem, we consider a modification to the fully bypassed 5-stage RISC-V processor

pipeline originally presented in Lecture 3 and further expanded on in Handout #1 (RV32I 5-Stage

Pipeline Diagram). Our new processor has a data cache with a two-cycle latency. To accommodate

this cache, the memory stage is pipelined into two stages, M1 and M2, as shown in Figure 1-A.

Additional bypasses are added to keep the pipeline fully bypassed.

Suppose we are implementing this 6-stage pipeline in a technology in which register file ports are

inexpensive, but bypasses are costly. We wish to reduce cost by removing some of the bypass

paths, but without increasing CPI. The proposal is for all integer arithmetic instructions to write

their results to the register file at the end of the Execute stage, rather than waiting until the

Writeback stage. A second register file write port is added for this purpose. Remember that register

file writes occur on each rising clock edge, and values can be read in the next clock cycle. The

proposed change is shown in Figure 1-B.

In this problem, assume that the only exceptions that can occur in this pipeline are illegal opcodes

(detected in the Decode stage) and invalid memory address (detected at the start of the M2 stage).

Additionally, assume that the control logic is optimized to stall only when necessary. You may

ignore branch and jump instructions in this problem.

Figure 1-A. 6-stage pipeline. For clarity, bypass paths are not shown. Handout #1 (RV32I 5-

Stage Pipeline Diagram) shows the full pipeline diagram.

Figure 1-B. 6-stage pipeline with proposed additional write port.

19

Problem 3.A Hazards: Second Write Port

The second write port allows some bypass paths to be removed without adding stalls in the decode

stage. Explain how the second write port improves performance by eliminating such stalls and give

a short code sequence that would have required an interlock to execute correctly with only a single

write port and with the same bypass paths removed.

The second write port improves performance by resolving some RAW hazards earlier than they

would be if ALU operations had to wait until writeback to provide their results to subsequent

dependent instructions. It would help with the following instruction sequence:
add x1, x2, x3

add x4, x5, x6

add x7, x1, x9

The important insight is that the second write port cannot resolve data hazards for immediately

back-to-back instructions. An arithmetic instruction in the EX stage writes back as it leaves the

EX stage; therefore, the bypass path is necessary if the next instruction has a RAW dependency

and is allowed to leave the ID stage.

Problem 3.B Hazards: Bypasses Removed and New Hazards

After the second write port is added, which bypass paths can be removed in this new pipeline

without introducing additional stalls? List each removed bypass individually. Are any new hazards

added to the pipeline due to the earlier writeback of arithmetic instructions?

The bypass path from the end of M1 to the end of ID can be removed. (Credit was also given for

the bypass path from the beginning of M2 to the beginning of EX, since these are equivalent.)

Additionally, ALU results no longer must be bypassed from the end of M2 or the end of WB, but

these bypass paths are still used to forward load results to earlier stages.

There are multiple potential WAW hazards that must be appropriately addressed by the control

logic. The two instructions writing at the same time must be appropriately prioritized. Also, if an

arithmetic instruction is in M1 and a load with the same destination register is in M2, the write of

the earlier load can clobber the result of the older instruction, leading to an incorrect architectural

state. The control logic needs to be modified to handle these situations by suppressing the writes

of older instructions when they conflict with the writes of newer instructions.

20

Problem 3.C Precise Exceptions

Without further modifications, this pipeline may not support precise exceptions. Briefly explain

why and provide a minimal code sequence that will result in an imprecise exception.

Illegal address exceptions are not detected until the start of the M2 stage. Since writebacks can

occur at the end of the EX stage, it is possible for an arithmetic instruction following a memory

access to an illegal address to have written its value back before the exception is detected,

resulting in an imprecise exception. For example:
lw x1, -1(x0) # address -1 is misaligned

add x2, x3, x4 # x2 will be overwritten, but last instruction

has faulted!

Problem 3.D Precise Exceptions: Implemented using an Interlock

Describe how precise exceptions can be implemented by adding a new interlock. Provide a

minimal code sequence that would engage this interlock. Qualitatively, what is the performance

impact of this solution?

Stall any ALU op in the ID stage if the instruction in the EX stage is a load or a store. The

instruction sequence above engages this interlock. Loads and stores account for about 1/3 of

dynamic instructions. Assuming that the instruction following a load or store is an arithmetic

instruction 2/3 of the time, and ignoring the existing load-use delay, this solution will increase

the CPI by (1/3)*(2/3) = 2/9. However, only a qualitative explanation was necessary for credit.

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port

Suppose you are additionally given the budget to add a new register file read port. Propose an

alternative solution to implement precise exceptions in this pipeline without requiring any new

interlocks.

In addition to writing an arithmetic instruction’s destination register in the EX stage, also read its

previous value and carry it down the pipeline. If an early writeback occurs before a preceding

exception was detected, then the old value of rd is preserved in the M1 pipeline register and can

be restored to the register file, maintaining precise state.

Note: It is better to read the previous value as late as possible, otherwise this read of rd might

need an extra bypass path for the following instruction sequence:
ld x1, 0(x8)

ld x2, -1(x8) # misaligned

addi x1, x1, 4

This also depends on the interlocks used to resolve the WAW hazard mentioned in 3.B.

21

Problem 4: CISC vs RISC

For each of the following questions, select either CISC or RISC, depending on which ISA you feel

would be best suited for the situation described. Also, briefly explain your reasoning.

Problem 4.A Lack of Good Compilers I

Assume that compiler technology is poor, and therefore your users are far more apt to write all

their code in assembly. A _____ ISA would be best appreciated by these programmers.

CISC RISC

CISC ISAs provided more complex, higher-level instructions such as string manipulation

instructions and special addressing modes convenient for indexing tables (say for your

company’s payroll application). Two example CISC instructions: “DBcc: Test Condition,

Decrement, and Branch” and “CMP2: Compare Register against Upper and Lower Bounds”.

This made life easy if you stared at assembly all day and could not hide behind convenient

software abstractions/subroutines!

OR

CISC RISC

A streamlined RISC ISA is far simpler for an assembly programmer to fully understand and

reason about than all the idiosyncrasies that CISC ISAs tend to have, such as the variety of

complex instructions for narrow use cases and the myriad addressing modes.

Problem 4.B Lack of Good Compilers II

You desire to make compilers better at targeting your yet-to-be-designed machine. Therefore,

you choose a _____ ISA, as it would be easiest for a compiler to target, thus allowing your users

to write code in higher-level languages like C and Fortran and raise their productivity.

CISC RISC

Compilers had difficulty targeting CISC ISAs in part because the complicated instructions have

many difficult and hard to analyze side-effects. A load-store/register-register RISC ISA which

limits side-effects to a single register or memory location per instruction is relatively easy for a

compiler to understand, analyze, and schedule code for.

22

Problem 4.C Fast Logic, Slow Memory

Assume that CPU logic is fast, very fast, while instruction fetch accesses are at least 10x slower

(suppose you are the lead architect of the “709”). Which ISA style do you choose as a best match

for the hardware’s limitations?

CISC RISC

When instruction fetch takes 10x longer than a CPU logic operation, you are going to want to

push as much compute as you can into each instruction! Certain especially complex CISC

instructions can encode tens, even hundreds of equivalent RISC instructions. For example, a

CISC instruction which performs a single expensive, multi-cycle string routine in hardware

would be considerably faster than even an optimized RISC implementation that would need a

loop with a series of loads, stores, and arithmetic instructions in the loop body.

Problem 4.D Higher Performance(?)

Starting with a clean slate in the year 2024 (area/logic/memory is cheap), you think that a _____

ISA that would lend itself best to a very high-performance processor (e.g., high frequency,

highly pipelined).

CISC RISC

Because RISC instructions tend to have simple, easy to analyze side-effects, they lend

themselves more readily to pipelined micro-architectures which dynamically check for

dependencies between instructions and interlock or bypass when dependencies arise. And

because little work needs to be performed in each stage, the pipeline can be clocked at very high

frequencies.

This advantage is evident in modern micro-architectures of old CISC ISAs: The frontend of the

processor typically has a decoder which translates CISC instructions (e.g., x86 instructions) into

RISC “micro-ops”, which a high-performance pipeline can then dynamically schedule for

maximum performance.

For these CISC architectures such as x86 and IBM S/360, they are still around for legacy

reasons. But if you had a chance at a clean slate, you would probably prefer a clean RISC

implementation with a direct translation to the micro-architecture instead of using area and

power on a CISC decoder front-end (not to mention the additional complexity forced on your

memory system to handle the odd CISC addressing modes).

23

Problem 5: Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to increase,

decrease, or whether the modification will have no effect. Explain your reasoning within the box

provided. Please state any reasonable assumptions you might make.

For the final column “Overall Performance”, mark whether the following modifications increase,

decrease, have no effect, or whether the modification will have an ambiguous effect. Explain

your reasoning. If the modification has an ambiguous effect, describe the tradeoff in which it

would be a beneficial modification or in which it would a detrimental modification (i.e., as an

engineer would you suggest using the modification or not and why?).

 Instructions /

Program

Cycles /

Instruction

Seconds / Cycle Overall

Performance

a)

Adding a branch

delay slot

Increase: NOPs

must be inserted

when the branch

delay slot cannot

be usefully filled

Decrease: Some

control hazards are

eliminated; also,

additional NOPs

execute quickly

because they have

no data hazards.

No effect: will not

meaningfully

change the

pipeline.

ALSO ACCEPT:

Decrease because

no branch kill

Ambiguous:

Depends on the

program and how

often the delay slot

can be filled with

useful work

b)

Adding a

complex

instruction

Decrease: if the

added instruction

can replace a

sequence of

instructions.

Increase:

implementing the

instruction can

mean adding

stages or making

stages have more

complex control

logic.

Increase: more

control logic and

interlocks will

often increase the

critical path.

ALSO ACCEPT:

No effect

Ambiguous: if the

program can take

advantage of the

new instruction, it

can be worth the

cost. This is a hard

decision for an ISA

designer to make!

c)

Reduce number

of registers in

the ISA

Increase: Values

will more

frequently be

spilled to the

stack, increasing

number of loads

and stores

Increase: more

loads followed by

dependent

instructions will

cause more stalls.

Memory latency is

hard to schedule

around.

Decrease: fewer

registers lead to

shorter register file

access time

Ambiguous: if the

program uses few

registers and thus

spills rarely to

memory, the faster

reg. access times

may win out. Also,

your instructions

may be able to be

shorter, improving

amongst other

things code density

d)

Improving

memory access

speed

No effect: since

instructions make

no assumption

about memory

speed.

Decrease:

programs will

spend less time

stalled waiting for

memory

Decrease: if

memory access is

on the critical path

or memory was 1

cycle.

ALSO ACCEPT:

No effect: if

memory is

pipelined and just

takes less cycles.

Improve:

improving memory

access time will

increase

performance of the

whole system.

24

e)

Adding 16-bit

versions of the

most common

instructions in

RISC-V

(normally 32

bits in length) to

the ISA (i.e.,

make RISC-V a

variable-length

ISA)

No effect: The

actual number of

instructions is

unchanged.

Decrease: since

code size has

shrunk, there will

be fewer

instruction cache

(I$) misses and

less time spent

waiting to fetch

Increase: decode

becomes more

complex with

more formats, and

instruction fetch

must deal with

misalignment.

Ambiguous: the

main advantage is

smaller code size,

which can improve

I$ hit rates and save

on fetch energy (get

more instructions

per fetch).

However, the more

complex decode

can offset these

gains.

f)

For a given

CISC ISA,

changing the

implementation

of the micro-

architecture

from a bus-

based datapath

with a

microcode

engine (similar

to Problem 2) to

a pipelined

RISC datapath

with a CISC-to-

RISC decoder

on the frontend.

The CISC-to-

RISC translation

results in each

CISC instruction

being translated

to 1 or more

coarser RISCV-

like instructions

v. much finer

ops.

No effect: Since

the ISA is not

changing, the

binary does not

change, and thus

there is no change

to Inst/Program.

Decrease:

Microcoded

machines take

several clock

cycles to execute

an instruction,

while the RISC

pipeline should

have a CPI near 1

(thanks to

pipelining and

translation to much

coarser RISCV-

like instructions).

No effect: the

amount of work

done in one

pipeline stage and

one microcode

cycle are about the

same.

ALSO ACCEPT:

Increase: the RISC

pipeline introduces

longer control

paths and adds

bypasses, which

are likely to be on

the critical path.

Improve:

The decrease in CPI

from the RISC

pipeline far

outweighs any

critical path

overhead of

hardwired control

logic.

