
CS 152 Computer Architecture and Engineering

CS252 Graduate Computer Architecture

Lecture 4 – Pipelining Part II

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

https://cwfletcher.github.io/

http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 3

▪ Iron law of performance:
– time/program = insts/program * cycles/inst * time/cycle

▪ Classic 5-stage RISC pipeline

▪ Structural, data, and control hazards

▪ Structural hazards handled with interlock or more hardware

▪ Data hazards include RAW, WAR, WAW
– Handle data hazards with interlock, bypass, or speculation

▪ Control hazards (branches, interrupts) most difficult as
change which is next instruction

– Branch prediction commonly used

▪ Precise traps: stop cleanly on one instruction, all previous
instructions completed, no following instructions have
changed architectural state

2

Asynchronous Interrupts

▪ An I/O device requests attention by asserting one of the
prioritized interrupt request lines

▪ When the processor decides to process the interrupt

– It stops the current program at instruction Ii , completing all the
instructions up to Ii-1 (precise interrupt)

– It saves the PC of instruction Ii in a special register (EPC)

• EPC = Exception Program Counter, but also used for traps cause
by interrupts

– Saves reason for interrupt in special Cause register, so handler can
determine what to do

– Disables interrupts and transfers control to a designated interrupt
handler running in supervisor mode

3

Trap:

altering the normal flow of control

4

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

Trap Handler

▪ Saves EPC before enabling interrupts to allow
nested interrupts

– need an instruction to move EPC into GPRs

– need a way to mask further interrupts at least until EPC can be
saved

▪ Needs to read the Cause register that indicates
the reason for the trap

▪ Uses a special indirect jump instruction ERET
(return-from-environment) which

– enables interrupts

– restores the processor to the user mode

– restores hardware status and control state

– sets PC to the EPC value, and resumes execution

5

Synchronous Trap

▪ A synchronous trap is caused by an exception on
a particular instruction

▪ In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

– May require undoing the effect of one or more
partially executed instructions in microarchitecture

▪ In the case of a system call trap, the instruction is
considered to have been completed

– In RISC-V, a special ECALL instruction causes a trap into
a higher-privilege mode

6

Exception Handling 5-Stage Pipeline

7

▪ How to handle multiple simultaneous exceptions in
different pipeline stages?

▪ How and where to handle external asynchronous
interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

Exception Handling 5-Stage Pipeline

8

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

Exception Handling 5-Stage Pipeline

▪ Hold exception flags in pipeline until commit
point (M stage)

▪ Exceptions in earlier pipe stages override later
exceptions for a given instruction

▪ Inject external interrupts at commit point
(override others)

▪ If trap at commit: update Cause and EPC registers,
kill all stages, inject handler PC into fetch stage

9

Speculating on Exceptions

▪ Prediction mechanism
– Exceptions are rare, so simply predicting no exceptions is very

accurate!

▪ Check prediction mechanism
– Exceptions detected at end of instruction execution pipeline,

special hardware for various exception types

▪ Recovery mechanism
– Only write architectural state at commit point, so can throw away

partially executed instructions after exception

– Launch exception handler after flushing pipeline

▪ Bypassing allows use of uncommitted instruction
results by following instructions

10

Deeper Pipelines: MIPS R4000

11

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined

instruction and data caches. The pipe stages are labeled and their detailed

function is described in the text. The vertical dashed lines represent the stage

boundaries as well as the location of pipeline latches. The instruction is actually

available at the end of IS, but the tag check is done in RF, while the registers are

fetched. Thus, we show the instruction memory as operating through RF. The TC

stage is needed for data memory access, because we cannot write the data into

the register until we know whether the cache access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I$ allows use of

instruction before tag check complete

R4000 Load-Use Delay

12

Figure C.37 The structure of the R4000 integer pipeline leads to a x1 load

delay. A x1 delay is possible because the data value is available at the end of

DS and can be bypassed. If the tag check in TC indicates a miss, the pipeline is

backed up a cycle, when the correct data are available.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D$ allows use of

data before tag check complete

R4000 Branches

13

Figure C.39 The basic branch delay is three cycles, because the

condition evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.

Simple vector-vector add code example

for(i=0; i<N; i++)

A[i] = B[i]+C[i];

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1, x1, 8// Bump pointer

addi x2, x2, 8// Bump pointer

addi x3, x3, 8// Bump pointer

bne x1, x4, loop // x4 holds end

14

Simple Pipeline Scheduling

Can reschedule code to try to reduce pipeline hazards

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

addi x3, x3, 8// Bump pointer

addi x2, x2, 8// Bump pointer

fadd.d f2, f0, f1

addi x1, x1, 8// Bump pointer

fsd f2, -8(x1) // x1 points to A

bne x1, x4, loop // x4 holds end

Long latency loads and floating-point operations limit
parallelism within a single loop iteration

15

One way to reduce hazards: Loop Unrolling
Can unroll to expose more parallelism, reduce dynamic instruction count

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fld f10, 8(x2)

fld f11, 8(x3)

addi x3,x3,16 // Bump pointer

addi x2,x2,16 // Bump pointer

fadd.d f2, f0, f1

fadd.d f12, f10, f11

addi x1,x1,16 // Bump pointer

fsd f2, -16(x1) // x1 points to A

fsd f12, -8(x1)

bne x1, x4, loop // x4 holds end

▪ Unrolling limited by number of architectural registers

▪ Unrolling increases instruction cache footprint

▪ More complex code generation for compiler, has to understand pointers

▪ Can also software pipeline, but has similar concerns
16

CS252

Alternative Approach: Decoupling
(lookahead, runahead) in µarchitecture

Can separate control and memory address operations from
data computations:

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1,x1,8 // Bump pointer

addi x2,x2,8 // Bump pointer

addi x3,x3,8 // Bump pointer

bne x1, x4, loop // x4 holds end

The control and address operations do not depend on the data
computations, so can be computed early relative to the data
computations, which can be delayed until later.

17

CS252

Simple Decoupled Machine

18

F D X M W

X1 X2 X3 W

µOp Queue

R

Load Data Queue

Store Address
Queue

Store Data
Queue

Integer Pipeline

Floating-Point
Pipeline

Load Address

Check

Load
Data

{Load Data Writeback µOp}

{Compute µOp}

{Store Data Read µOp}

CS252

Decoupled Execution

19

fld f0

fld f1

Send load to memory, queue up write to f0

Send load to memory, queue up write to f1
fadd.d Queue up fadd.d
fsd f2 Queue up store address, wait for store data
addi x1 Bump pointer
addi x2 Bump pointer
addi x3 Bump pointer
bne Take branch

fld f0

fld f1

Send load to memory, queue up write to f0

Send load to memory, queue up write to f1
fadd.d Queue up fadd.d
fsd f2 Queue up store address, wait for store data

…

Check load
address against
queued pending
store addresses

Many writes to f0
can be in queue at
same time

CS252

Simple Decoupled Machine

20

F D X M W

X1 X2 X3 W

µOp Queue

R

Load Data Queue

Store Address
Queue

Store Data
Queue

Integer Pipeline

Floating-Point
Pipeline

Load Address

Check

Load
Data

{Load Data Writeback µOp}

{Compute µOp}

{Store Data Read µOp}

CS152 Administrivia

▪ PS 1 due 11:59PM on Monday Feb 8

▪ Lab 1 due 11:59PM Wed Feb 17

21

CS252

CS252 Administrivia

▪ Project proposals due 11:59PM Wed Feb 26th

▪ Use Krste’s office hours Tue 10-11am to get feedback on
ideas

– email for link

▪ Readings discussion will be Thursdays 5-6pm
– zoom link on Piazza

– Questions on Piazza

22

CS252

▪ Original goal was to use new
transistor technology to give
100x performance of tube-based
IBM 704.

▪ Design based around 4 stages of
“lookahead” pipelining

▪ More than just pipelining, a
simple form of decoupled
execution with indexing and
branch operations performed
speculatively ahead of data
operations

▪ Also had a simple store buffer

23

IBM 7030 “Stretch” (1954-1961)

• Very complex design for the time, difficult to explain to users
performance of pipelined machine

• When finally delivered in 1961, was benchmarked at only 30x 704 and
embarrassed IBM, causing price to drop from $13.5M to $7.8M, and
withdrawal after initial deliveries

• But technologies lived on in later IBM computers, 360 and POWER

© IBM

Supercomputers
Definitions of a supercomputer:

▪ Fastest machine in world at given task

▪ A device to turn a compute-bound problem into an I/O
bound problem

▪ Any machine costing $30M+

▪ Any machine designed by Seymour Cray

▪ CDC6600 (Cray, 1964) regarded as first supercomputer

24

CDC 6600 Seymour Cray, 1964

▪ A fast pipelined machine with 60-bit words

– 128 Kword main memory capacity, 32 banks

▪ Ten functional units (parallel, unpipelined)

– Floating Point: adder, 2 multipliers, divider

– Integer: adder, 2 incrementers, ...

▪ Hardwired control (no microcoding)

▪ Scoreboard for dynamic scheduling of instructions

▪ Ten Peripheral Processors for Input/Output

– a fast multi-threaded 12-bit integer ALU

▪ Very fast clock, 10 MHz (FP add in 4 clocks)

▪ >400,000 transistors, 750 sq. ft., 5 tons, 150 kW,
novel freon-based technology for cooling

▪ Fastest machine in world for 5 years (until 7600)

– over 100 sold ($7-10M each)

25
3/10/2009

CDC 6600:
A Load/Store Architecture

26

• Separate instructions to manipulate three types of reg.
• 8x60-bit data registers (X)
• 8x18-bit address registers (A)
• 8x18-bit index registers (B)

• All arithmetic and logic instructions are register-to-register

•Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

opcode i j k Ri Rj op Rk

opcode i j disp Ri M[Rj + disp]

6 3 3 3

6 3 3 18

CDC 6600: Datapath

27

Address Regs Index Regs
 8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory
128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr

CDC6600: Vector Addition

28

B0 ← - n
loop: JZE B0, exit

A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1
A6 ← B0 + c0 store X6
B0 ← B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

CDC6600 ISA designed to simplify
high-performance implementation

▪ Use of three-address, register-register ALU instructions
simplifies pipelined implementation

– Only 3-bit register-specifier fields checked for dependencies

– No implicit dependencies between inputs and outputs

▪ Decoupling setting of address register (Ar) from retrieving
value from data register (Xr) simplifies providing multiple
outstanding memory accesses

– Address update instruction also issues implicit memory operation

– Software can schedule load of address register before use of value

– Can interleave independent instructions inbetween

▪ CDC6600 has multiple parallel unpipelined functional units
– E.g., 2 separate multipliers

▪ Follow-on machine CDC7600 used pipelined functional units
– Foreshadows later RISC designs

29

30
[© IBM]

IBM Memo on CDC6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the 6600 system. I understand
that in the laboratory developing the system there are only 34 people
including the janitor. Of these, 14 are engineers and 4 are programmers...
Contrasting this modest effort with our vast development activities, I fail
to understand why we have lost our industry leadership position by
letting someone else offer the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has
answered his own question.”

31

Computer Architecture Terminology

Latency (in seconds or cycles): Time taken for a single
operation from start to finish (initiation to useable result)

Bandwidth (in operations/second or operations/cycle): Rate
of which operations can be performed

Occupancy (in seconds or cycles): Time during which the
unit is blocked on an operation (structural hazard)

Note, for a single functional unit:

▪ Occupancy can be much less than latency (how?)

▪ Occupancy can be greater than latency (how?)

▪ Bandwidth can be greater than 1/latency (how?)

▪ Bandwidth can be less than 1/latency (how?)

32

Issues in Complex Pipeline Control

33

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

CDC6600 Scoreboard

▪ Instructions dispatched in-order to functional units
provided no structural hazard or WAW

– Stall on structural hazard, no functional units available

– Only one pending write to any register

▪ Instructions wait for input operands (RAW hazards) before
execution

– Can execute out-of-order

▪ Instructions wait for output register to be read by
preceding instructions (WAR)

– Result held in functional unit until register free

34

More Complex In-Order Pipeline

35

▪ Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed
(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

– Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations? Bypassing

In-Order Superscalar Pipeline

36

▪ Fetch two instructions per cycle; issue both
simultaneously if one is integer/memory
and other is floating point

▪ Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

▪ Same idea can be extended to wider issue
by duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile ports
and bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

In-Order Pipeline with two ALU stages

37[© Motorola 1994]

Address calculate

before memory

access

Integer ALU after

memory access

MC68060 Dynamic ALU Scheduling

38

EA MEM ALU

EA MEM ALU

EA MEM ALU

EA MEM ALU

add x1,x1,24(x2)

lw x4, 16(x5)

x2+24 x1+M[x2+24]

Using RISC-V style assembly code for MC68060

EA MEM ALU

add x3,x1,x6
x1+x6

addi x5,x2,12

x2+12

x5+16

lw x8, 16(x3)

x3+16

Common trick used in modern in-order RISC pipeline designs, even without
reg-mem operations

N
o
t

a
 r

e
a
l
R

IS
C

-V
 i
n
s
tr

u
c
ti
o
n
!

Acknowledgements

▪ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

– Sophia Shao (UCB)

39

	Slide 1: CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 4 – Pipelining Part II
	Slide 2: Last Time in Lecture 3
	Slide 3: Asynchronous Interrupts
	Slide 4: Trap: altering the normal flow of control
	Slide 5: Trap Handler
	Slide 6: Synchronous Trap
	Slide 7: Exception Handling 5-Stage Pipeline
	Slide 8: Exception Handling 5-Stage Pipeline
	Slide 9: Exception Handling 5-Stage Pipeline
	Slide 10: Speculating on Exceptions
	Slide 11: Deeper Pipelines: MIPS R4000
	Slide 12: R4000 Load-Use Delay
	Slide 13: R4000 Branches
	Slide 14: Simple vector-vector add code example
	Slide 15: Simple Pipeline Scheduling
	Slide 16: One way to reduce hazards: Loop Unrolling
	Slide 17: Alternative Approach: Decoupling (lookahead, runahead) in µarchitecture
	Slide 18: Simple Decoupled Machine
	Slide 19: Decoupled Execution
	Slide 20: Simple Decoupled Machine
	Slide 21: CS152 Administrivia
	Slide 22: CS252 Administrivia
	Slide 23: IBM 7030 “Stretch” (1954-1961)
	Slide 24: Supercomputers
	Slide 25: CDC 6600 Seymour Cray, 1964
	Slide 26: CDC 6600: A Load/Store Architecture
	Slide 27: CDC 6600: Datapath
	Slide 28: CDC6600: Vector Addition
	Slide 29: CDC6600 ISA designed to simplify high-performance implementation
	Slide 30
	Slide 31: IBM Memo on CDC6600
	Slide 32: Computer Architecture Terminology
	Slide 33: Issues in Complex Pipeline Control
	Slide 34: CDC6600 Scoreboard
	Slide 35: More Complex In-Order Pipeline
	Slide 36: In-Order Superscalar Pipeline
	Slide 37: In-Order Pipeline with two ALU stages
	Slide 38: MC68060 Dynamic ALU Scheduling
	Slide 39: Acknowledgements

