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Last Time in Lecture 3

▪ Iron law of performance:
– time/program = insts/program * cycles/inst * time/cycle

▪ Classic 5-stage RISC pipeline

▪ Structural, data, and control hazards

▪ Structural hazards handled with interlock or more hardware

▪ Data hazards include RAW, WAR, WAW
– Handle data hazards with interlock, bypass, or speculation

▪ Control hazards (branches, interrupts) most difficult as 
change which is next instruction

– Branch prediction commonly used

▪ Precise traps: stop cleanly on one instruction, all previous 
instructions completed, no following instructions have 
changed architectural state
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Asynchronous Interrupts

▪ An I/O device requests attention by asserting one of the 
prioritized interrupt request lines

▪ When the processor decides to process the interrupt 

– It stops the current program at instruction Ii , completing all the 
instructions up to Ii-1  (precise interrupt)

– It saves the PC of instruction Ii in a special register (EPC)

• EPC = Exception Program Counter, but also used for traps cause 
by interrupts

– Saves reason for interrupt in special Cause register, so handler can 
determine what to do

– Disables interrupts and transfers control to a designated interrupt 
handler running in supervisor mode
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Trap:

altering the normal flow of control
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An external or internal event  that needs to be processed by another (system) 
program. The event is usually unexpected or rare from program’s point of view. 



Trap Handler

▪ Saves EPC before enabling interrupts to allow 
nested interrupts 

– need an instruction to move EPC into GPRs 

– need a way to mask further interrupts at least until EPC can be 
saved

▪ Needs to read the Cause register that indicates 
the reason for the trap

▪ Uses a special indirect jump instruction ERET
(return-from-environment) which

– enables interrupts

– restores the processor to the user mode

– restores hardware status and control state

– sets PC to the EPC value, and resumes execution
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Synchronous Trap

▪ A synchronous trap is caused by an exception on 
a particular instruction

▪ In general, the instruction cannot be completed 
and needs to be restarted after the exception has 
been handled

– May require undoing the effect of one or more 
partially executed instructions in microarchitecture

▪ In the case of a system call trap, the instruction is 
considered to have been completed  

– In RISC-V, a special ECALL instruction causes a trap into 
a higher-privilege mode
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Exception Handling 5-Stage Pipeline
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▪ How to handle multiple simultaneous exceptions in 
different pipeline stages?

▪ How and where to handle external asynchronous 
interrupts?
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Exception Handling 5-Stage Pipeline
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Exception Handling 5-Stage Pipeline

▪ Hold exception flags in pipeline until commit 
point (M stage)

▪ Exceptions in earlier pipe stages override later 
exceptions for a given instruction

▪ Inject external interrupts at commit point 
(override others)

▪ If trap at commit: update Cause and EPC registers, 
kill all stages, inject handler PC into fetch stage
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Speculating on Exceptions

▪ Prediction mechanism
– Exceptions are rare, so simply predicting no exceptions is very 

accurate!

▪ Check prediction mechanism
– Exceptions detected at end of instruction execution pipeline, 

special hardware for various exception types

▪ Recovery mechanism
– Only write architectural state at commit point, so can throw away 

partially executed instructions after exception

– Launch exception handler after flushing pipeline

▪ Bypassing allows use of uncommitted instruction 
results by following instructions
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Deeper Pipelines: MIPS R4000
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Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined 

instruction and data caches. The pipe stages are labeled and their detailed 

function is described in the text. The vertical dashed lines represent the stage 

boundaries as well as the location of pipeline latches. The instruction is actually 

available at the end of IS, but the tag check is done in RF, while the registers are 

fetched. Thus, we show the instruction memory as operating through RF. The TC 

stage is needed for data memory access, because we cannot write the data into 

the register until we know whether the cache access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I$ allows use of 

instruction before tag check complete



R4000 Load-Use Delay
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Figure C.37 The structure of the R4000 integer pipeline leads to a x1 load 

delay. A x1 delay is possible because the data value is available at the end of 

DS and can be bypassed. If the tag check in TC indicates a miss, the pipeline is 

backed up a cycle, when the correct data are available.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D$ allows use of 

data before tag check complete



R4000 Branches
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Figure C.39 The basic branch delay is three cycles, because the 

condition evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.



Simple vector-vector add code example

# for(i=0; i<N; i++)

# A[i] = B[i]+C[i];

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1, x1, 8// Bump pointer

addi x2, x2, 8// Bump pointer

addi x3, x3, 8// Bump pointer

bne x1, x4, loop // x4 holds end
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Simple Pipeline Scheduling

Can reschedule code to try to reduce pipeline hazards

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

addi x3, x3, 8// Bump pointer

addi x2, x2, 8// Bump pointer

fadd.d f2, f0, f1

addi x1, x1, 8// Bump pointer

fsd f2, -8(x1) // x1 points to A

bne x1, x4, loop // x4 holds end

Long latency loads and floating-point operations limit 
parallelism within a single loop iteration
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One way to reduce hazards: Loop Unrolling
Can unroll to expose more parallelism, reduce dynamic instruction count

loop:  fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fld f10, 8(x2)

fld f11, 8(x3)

addi x3,x3,16 // Bump pointer

addi x2,x2,16 // Bump pointer

fadd.d f2, f0, f1

fadd.d f12, f10, f11

addi x1,x1,16 // Bump pointer

fsd f2, -16(x1) // x1 points to A

fsd f12, -8(x1)

bne x1, x4, loop // x4 holds end

▪ Unrolling limited by number of architectural registers

▪ Unrolling increases instruction cache footprint

▪ More complex code generation for compiler, has to understand pointers

▪ Can also software pipeline, but has similar concerns
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CS252

Alternative Approach: Decoupling 
(lookahead, runahead) in µarchitecture

Can separate control and memory address operations from 
data computations:

loop: fld f0, 0(x2) // x2 points to B

fld f1, 0(x3) // x3 points to C

fadd.d f2, f0, f1

fsd f2, 0(x1) // x1 points to A

addi x1,x1,8 // Bump pointer

addi x2,x2,8 // Bump pointer

addi x3,x3,8 // Bump pointer

bne x1, x4, loop // x4 holds end

The control and address operations do not depend on the data 
computations, so can be computed early relative to the data 
computations, which can be delayed until later.
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CS252

Simple Decoupled Machine
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CS252

Decoupled Execution
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fld f0

fld f1

Send load to memory, queue up write to f0

Send load to memory, queue up write to f1
fadd.d Queue up fadd.d
fsd f2 Queue up store address, wait for store data
addi x1 Bump pointer
addi x2 Bump pointer
addi x3 Bump pointer
bne Take branch

fld f0

fld f1

Send load to memory, queue up write to f0

Send load to memory, queue up write to f1
fadd.d Queue up fadd.d
fsd f2 Queue up store address, wait for store data

…

Check load 
address against 
queued pending 
store addresses

Many writes to f0 
can be in queue at 
same time



CS252

Simple Decoupled Machine
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CS152 Administrivia

▪ PS 1 due 11:59PM on Monday Feb 8

▪ Lab 1 due 11:59PM Wed Feb 17
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CS252

CS252 Administrivia

▪ Project proposals due 11:59PM Wed Feb 26th

▪ Use Krste’s office hours Tue 10-11am to get feedback on 
ideas

– email for link

▪ Readings discussion will be Thursdays 5-6pm
– zoom link on Piazza

– Questions on Piazza
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CS252

▪ Original goal was to use new 
transistor technology to give 
100x performance of tube-based 
IBM 704.

▪ Design based around 4 stages of 
“lookahead” pipelining

▪ More than just pipelining, a 
simple form of decoupled 
execution with indexing and 
branch operations performed 
speculatively ahead of data 
operations

▪ Also had a simple store buffer
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IBM 7030 “Stretch” (1954-1961)

• Very complex design for the time, difficult to explain to users 
performance of pipelined machine

• When finally delivered in 1961, was benchmarked at only 30x 704 and 
embarrassed IBM, causing price to drop from $13.5M to $7.8M, and 
withdrawal after initial deliveries

• But technologies lived on in later IBM computers, 360 and POWER

© IBM



Supercomputers
Definitions of a supercomputer:

▪ Fastest machine in world at given task

▪ A device to turn a compute-bound problem into an I/O 
bound problem 

▪ Any machine costing $30M+

▪ Any machine designed by Seymour Cray

▪ CDC6600 (Cray, 1964) regarded as first supercomputer
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CDC 6600 Seymour Cray, 1964

▪ A fast pipelined machine with 60-bit words

– 128 Kword main memory capacity, 32 banks

▪ Ten functional units (parallel, unpipelined)

– Floating Point: adder, 2 multipliers, divider

– Integer: adder, 2 incrementers, ...

▪ Hardwired control (no microcoding)

▪ Scoreboard for dynamic scheduling of instructions 

▪ Ten Peripheral Processors for Input/Output

– a fast multi-threaded 12-bit integer ALU

▪ Very fast clock, 10 MHz (FP add in 4 clocks)

▪ >400,000 transistors,  750 sq. ft., 5 tons, 150 kW, 
novel freon-based technology for cooling

▪ Fastest machine in world for 5 years (until 7600)

– over 100 sold ($7-10M each)

25
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CDC 6600: 
A Load/Store Architecture
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• Separate instructions to manipulate three types of reg.
• 8x60-bit data registers (X)
• 8x18-bit address registers (A)
•  8x18-bit index registers (B)

• All arithmetic and logic instructions are register-to-register 

•Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load  
            6 to 7 initiates a store 

 - very useful for vector operations

opcode   i      j      k    Ri  Rj op Rk

opcode   i     j                disp                   Ri  M[Rj + disp]

6 3 3 3

6 3 3 18



CDC 6600: Datapath
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CDC6600: Vector Addition
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B0  ←  - n
loop: JZE   B0, exit

A0 ←  B0 + a0  load X0
A1 ←  B0 + b0  load X1
X6 ←  X0 + X1
A6 ←  B0 + c0  store X6
B0 ←  B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register



CDC6600 ISA designed to simplify 
high-performance implementation

▪ Use of three-address, register-register ALU instructions 
simplifies pipelined implementation

– Only 3-bit register-specifier fields checked for dependencies

– No implicit dependencies between inputs and outputs

▪ Decoupling setting of address register (Ar) from retrieving 
value from data register (Xr) simplifies providing multiple 
outstanding memory accesses

– Address update instruction also issues implicit memory operation

– Software can schedule load of address register before use of value

– Can interleave independent instructions inbetween

▪ CDC6600 has multiple parallel unpipelined functional units
– E.g., 2 separate multipliers

▪ Follow-on machine CDC7600 used pipelined functional units
– Foreshadows later RISC designs
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IBM Memo on CDC6600

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the 6600 system. I understand 
that in the laboratory developing the system there are only 34 people 
including the janitor. Of these, 14 are engineers and 4 are programmers... 
Contrasting this modest effort with our vast development activities, I fail 
to understand why we have lost our industry leadership position by 
letting someone else offer the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has 
answered his own question.”
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Computer Architecture Terminology

Latency (in seconds or cycles):  Time taken for a single 
operation from start to finish (initiation to useable result)

Bandwidth (in operations/second or operations/cycle): Rate 
of which operations can be performed 

Occupancy (in seconds or cycles): Time during which the 
unit is blocked on an operation (structural hazard)

Note, for a single functional unit:

▪ Occupancy can be much less than latency (how?)

▪ Occupancy can be greater than latency (how?)

▪ Bandwidth can be greater than 1/latency (how?)

▪ Bandwidth can be less than 1/latency (how?)
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Issues in Complex Pipeline Control
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units
• Out-of-order write hazards due to variable latencies of different functional 
units
• How to handle exceptions?



CDC6600 Scoreboard

▪ Instructions dispatched in-order to functional units 
provided no structural hazard or WAW

– Stall on structural hazard, no functional units available

– Only one pending write to any register

▪ Instructions wait for input operands (RAW hazards) before 
execution

– Can execute out-of-order

▪ Instructions wait for output register to be read by 
preceding instructions (WAR)

– Result held in functional unit until register free
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More Complex In-Order Pipeline
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▪ Delay writeback so all operations 
have same latency to W stage

– Write ports never oversubscribed 
(one inst. in & one inst. out every 
cycle)

– Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

– Handle exceptions in-order at 
commit point

Commit 
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PC
Inst. 
Mem D Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider

How to prevent increased writeback latency 
from slowing down single cycle integer 
operations? Bypassing



In-Order Superscalar Pipeline
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▪ Fetch two instructions per cycle; issue both 
simultaneously if one is integer/memory 
and other is floating point

▪ Inexpensive way of increasing throughput, 
examples include Alpha 21064 (1992) & 
MIPS R5000 series (1996)

▪ Same idea can be extended to wider issue 
by duplicating functional units (e.g. 4-issue 
UltraSPARC & Alpha 21164) but regfile ports 
and bypassing costs grow quickly
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X3
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In-Order Pipeline with two ALU stages

37[ © Motorola 1994 ]
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MC68060 Dynamic ALU Scheduling
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EA MEM ALU

EA MEM ALU

EA MEM ALU

EA MEM ALU

add x1,x1,24(x2)

lw x4, 16(x5)

x2+24 x1+M[x2+24]

Using RISC-V style assembly code for MC68060

EA MEM ALU

add x3,x1,x6
x1+x6

addi x5,x2,12

x2+12

x5+16

lw x8, 16(x3)

x3+16

Common trick used in modern in-order RISC pipeline designs, even without 
reg-mem operations

N
o
t 

a
 r

e
a
l 
R

IS
C

-V
 i
n
s
tr

u
c
ti
o
n
!



Acknowledgements

▪ This course is partly inspired by previous MIT 6.823 and 
Berkeley CS252 computer architecture courses created by 
my collaborators and colleagues:

– Arvind (MIT)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

– Sophia Shao (UCB)

39


	Slide 1: CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture   Lecture 4 – Pipelining Part II
	Slide 2: Last Time in Lecture 3
	Slide 3: Asynchronous Interrupts
	Slide 4: Trap: altering the normal flow of control
	Slide 5: Trap Handler
	Slide 6: Synchronous Trap
	Slide 7: Exception Handling 5-Stage Pipeline
	Slide 8: Exception Handling 5-Stage Pipeline
	Slide 9: Exception Handling 5-Stage Pipeline
	Slide 10: Speculating on Exceptions
	Slide 11: Deeper Pipelines: MIPS R4000
	Slide 12: R4000 Load-Use Delay
	Slide 13: R4000 Branches
	Slide 14: Simple vector-vector add code example
	Slide 15: Simple Pipeline Scheduling
	Slide 16: One way to reduce hazards: Loop Unrolling
	Slide 17: Alternative Approach: Decoupling (lookahead, runahead) in µarchitecture
	Slide 18: Simple Decoupled Machine
	Slide 19: Decoupled Execution
	Slide 20: Simple Decoupled Machine
	Slide 21: CS152 Administrivia
	Slide 22: CS252 Administrivia
	Slide 23: IBM 7030 “Stretch” (1954-1961)
	Slide 24: Supercomputers
	Slide 25: CDC 6600 Seymour Cray, 1964
	Slide 26: CDC 6600:  A Load/Store Architecture
	Slide 27: CDC 6600: Datapath
	Slide 28: CDC6600: Vector Addition
	Slide 29: CDC6600 ISA designed to simplify high-performance implementation
	Slide 30
	Slide 31: IBM Memo on CDC6600
	Slide 32: Computer Architecture Terminology
	Slide 33: Issues in Complex Pipeline Control
	Slide 34: CDC6600 Scoreboard
	Slide 35: More Complex In-Order Pipeline
	Slide 36: In-Order Superscalar Pipeline
	Slide 37: In-Order Pipeline with two ALU stages
	Slide 38: MC68060 Dynamic ALU Scheduling
	Slide 39: Acknowledgements

