
CS152 Discussion Section 3

Memory Hierarchy

Week of Feb 5
Spring 2024

● Lab1 due Friday Feb 9

● Problem Set 1 due Wednesday Feb 7

● Problem Set 2 will be out Wednesday Feb 7

Feedback form! - tinyurl.com/152feedback

Administrivia: Week 3

Agenda

● Review: Exceptions

● Review: More Complex Pipelines

● Review: Cache Organization

● Review: Different Eviction Policies

● Review: Cache Optimization

● Questions and Office Hours

Exceptions

Precise Exception Definition:

All instructions prior to the exception in program order have committed,
and none of the instructions after (and including the faulting instruction)
appear to have started.

● Why are precise exceptions useful?
○ Architectural state matches programmer’s model of sequential execution
○ Deterministic debugging
○ Clean restartability without exposing microarchitectural state

● Why might one not want to always implement precise exceptions?
○ Introduces hardware complexity
○ Specific application does not need to or cannot recover from fatal exceptions

Exceptions

Exceptions

Q1: Precise Exceptions

● Describe how program execution time may be affected by adding support for precise
exceptions

○ Remember, execution time = instructions/program * cycles/instruction *
time/cycle

● Compare and contrast precise exception handling with branch misprediction

Q1: Precise Exceptions

● Describe how program execution time may be affected by adding hardware support for
precise exceptions

○ Remember, execution time = instructions/program * cycles/instruction * time/cycle

Instructions/Program: Decrease. Without hardware support for precise exceptions, may need more
instructions to restore microarchitectural state

Cycles/Instruction: None (precise exception information carried in parallel)

Time/Cycle: Increase (increased hardware complexity may be on critical path)

● Compare and contrast precise exception handling with branch misprediction

Exception: update Cause and EPC registers, flush pipeline, inject handler PC into Fetch stage

Branch mispredict: kill instructions in F and D phases and use calculated target PC

More Complex Pipelines

Hazards?
Exceptions?

More Complex Pipelines

Hazards? Unpipelined FU’s cause
hazards in E/WB (structural/data)

Exceptions? Stall everything into
commit point (End of M)

Memory Hierarchy

Logic Registers SRAM DRAM Other

Capacity

Latency

Bandwidth

Where should instruction data go?
Where should program data go?

Why Caches?

Why Caches?

● Temporal Locality
● Spatial Locality

Why Caches?

● Temporal Locality
○ Recently accessed locations are more likely to be accessed again
○ Examples:

■ Adding to counter
■ Matrix multiplication

● Spatial Locality
○ Locations near recently accessed locations are more likely to be

accessed
○ Examples:

■ for(i=0; i<10; i++) {sum = sum + array[i];}

Simple Cache

Placement Policy

*Memory Blocks
from 0 to 31

Nice
Illustration

Consider a 1 KiB 4-way set-associative cache with 32-byte cache lines. The
address is 12 bits wide. How are the address bits partitioned?

Address = Tag : Index : Offset

● Tag:

● Index:

● Offset:

Q2: Cache Organization

Consider a 1 KiB 4-way set-associative cache with 32-byte cache lines. The address is 12 bits wide.
How are the address bits partitioned?

Address = Tag : Index : Offset

● Tag:
Addr[11:8], 4 bits

● Index:
Cache block = 32 bytes
3 bits, addr[7:5]

● Offset:
log2(32) bits = 5
addr[4:0]

Q2: Cache Organization

● Random
○ Why is this not as bad as it sounds?

● Least-Recently Used (LRU)
● Not-Most-Recently Used (NMRU)

Plus many more possibilities…

● Pseudo Least-Recently Used (PLRU)
● First-In First-Out (FIFO)

Q3: Replacement Policy

Suppose we see the following stream of accesses where A, B, C, D, and E
represent unique addresses from different lines that all map to the same set:

A, B, C, D, B, A, E

Assume the cache has four ways and all lines in the set are initially invalid.
When address E is accessed, one of the cache lines must be evicted. For each
replacement policy, which line gets evicted?

● FIFO
● NMRU
● LRU
● PLRU

Replacement Policy

FIFO (First-In-First-Out)

State: next line to replace

On replacement,
increment state

Assume state starts at 0

Access Way0 Way1 Way2 Way3 State
after
Access

A A 1

B B 2

C C 3

D D 0

B hit 0

A hit 0

E E 1

NMRU (Not Most Recently Used)

Almost same as FIFO

State: next line to replace

On replacement OR hit to
line-to-be replaced,
increment state

Assume state starts at 0

Access Way0 Way1 Way2 Way3 State
after
Access

A A 1

B B 2

C C 3

D D 0

B hit 0

A hit 1

E E 2

LRU (Least Recently Used)

State: list of least recently
accessed ways

Initial state: [3, 2, 1, 0]

On hit, move hit way to
back of state list

To replace, pop from front
of state list

Access Way0 Way1 Way2 Way3 State
after
Access

A A [0,3,2,1]

B B [1,0,3,2]

C C [2,1,0,3]

D D [3,2,1,0]

B hit [1,3,2,0]

A hit [0,1,3,2]

E E

Represent tree as 0(0)(0)

Initial state is 0(0)(0)

Access Way0 Way1 Way2 Way3 State
after
Access

A A 1(1)(0)

B B 0(1)(1)

C C 1(0)(1)

D D 0(0)(0)

B hit 0(0)(1)

A hit 1(1)(1)

E E 0(1)(0)

Way 1 Way 2Way 0 Way 3

0 1 10

0 1

Pseudo-LRU

Cache Tags (hex)

Address
(hex)

Set 0 Set 1 Hit?

Way 0 Way 1 Way 2 Way 3 PLRU
State

Way 0 Way 1 Way 2 Way 3 PLRU
State

208 2 inv inv inv 110 inv inv inv inv 000 no

22C 2 110 no

41C 4 011 no

604 6 101 no

320 3 011 no

214 hit 111 yes

310 3 010 no

50C 5 100

404 hit 001 yes

tim
e

4-way Pseudo LRU

Causes of Cache Misses

● Compulsory
● Capacity
● Conflict

Causes of Cache Misses

● Compulsory
○ First reference to a line. Will always happen
○ To improve: increase line size (but increased conflict misses and miss penalty)

● Capacity
○ Cache is too small, so requested line was evicted
○ To improve: increase cache size (but increased hit time)

● Conflict
○ Occur due to placement policy (would not occur in a fully associative cache)
○ To improve: increase cache size and increase associativity (but increased hit time)

Write Policies

● Cache Hit
● Cache Miss

Write Policies

● Cache Hit
○ Write-through - write to $ + memory
○ Write-back - write to $ only, evictions spawn writes

● Cache Miss
○ No-write-allocate - write to memory
○ Write-allocate - fetch into $ then write to memory

● Common combinations
○ Write-through + no-write-allocate
○ Write-back + write-allocate

Write Policies

● Cache Hit
○ Write-through - write to $ + memory
○ Write-back - write to $ only, evictions spawn writes

● Cache Miss
○ No-write-allocate - write to memory
○ Write-allocate - fetch into $ then write to memory

● Common combinations
○ Write-through + no-write-allocate
○ Write-back + write-allocate

Why do we care about the
optimizations?

Any issues with multiple
CPU’s accessing memory?

Average memory access time (AMAT) = Hit time + Miss rate x Miss penalty

Increase / Decrease / No Change

Technique Hit
Time

Miss
Penalty

Miss
Rate

Hardware
Complexity

Smaller, simpler caches

Multi-level caches

Smart replacement policy

Pipelined writes

Write buffer

Sub-blocks (sector cache)

Q4: Cache Optimizations

Increase / Decrease / No Change

Technique Hit
Time

Miss
Penalty

Miss
Rate

Hardware
Complexity

Smaller, simpler caches Decrease No change Increase Decrease

Multi-level caches No change Decrease Decrease Increase

Smart replacement policy May increase No change Decrease Increase

Pipelined writes Decrease No change No change Increase

Write buffer No change Decrease No change Increase

Sub-blocks (sector cache) No change Decrease Increase Increase

Cache Optimizations

Increase / Decrease / No Change

Cache Optimizations

Technique Hit
Time

Miss
Penalty

Miss
Rate

Hardware
Complexity

Code optimization

Compiler prefetching

Hardware prefetching
(stream buffer)

Increase / Decrease / No Change

Cache Optimizations

Technique Hit
Time

Miss
Penalty

Miss
Rate

Hardware
Complexity

Code optimization No change No change Decrease No change

Compiler prefetching No change No change Decrease No change

Hardware prefetching
(stream buffer)

No change Increase Decrease Increase

