
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 6 – Memory II

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://cwfletcher.github.io
http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 6

§ Dynamic RAM (DRAM) is main form of main memory
storage in use today

– Holds values on small capacitors, need refreshing (hence dynamic)
– Slow multi-step access: precharge, read row, read column

§ Static RAM (SRAM) is faster but more expensive
– Used to build on-chip memory for caches

§ Cache holds small set of values in fast memory (SRAM)
close to processor

– Need to develop search scheme to find values in cache, and replacement
policy to make space for newly accessed locations

§ Caches exploit two forms of predictability in memory
reference streams

– Temporal locality, same location likely to be accessed again soon
– Spatial locality, neighboring location likely to be accessed soon

2

Recap: Replacement Policy

3

In an associative cache, which line from a set should be
evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-way)
• Pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• Used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

Pseudo-LRU Binary Tree

§ For 2-way cache, on a hit, single LRU bit is set to point to
other way

§ For 4-way cache, need 3 bits of state. On cache hit, on
path down tree, set all bits to point to other half. On miss,
bits say which way to replace

4

Way 0Way 1Way 2Way 3

1 0

1 10 0

CPU-Cache Interaction
(5-stage pipeline)

5

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,
Register

Fetch
wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Improving Cache Performance

6

Average memory access time (AMAT) =
 Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate
• reduce the miss penalty

What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

Causes of Cache Misses: The 3 C’s

Compulsory: first reference to a line (a.k.a. cold
start misses)

– misses that would occur even with infinite cache

Capacity: cache is too small to hold all data needed
by the program

– misses that would occur even under perfect
replacement policy

Conflict: misses that occur because of collisions
due to line-placement strategy

– misses that would not occur with ideal full associativity

7

Effect of Cache Parameters on Performance

§ Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

§ Higher associativity
+ reduces conflict misses
- may increase hit time

§ Larger line size
+ reduces compulsory misses
- increases conflict misses and miss penalty

8

Figure B.9 Total miss rate (top) and
distribution of miss rate (bottom) for
each size cache according to the three
C's for the data in Figure B.8. The top
diagram shows the actual data cache
miss rates, while the bottom diagram
shows the percentage in each category.
(Space allows the graphs to show one
extra cache size than can fit in Figure
B.8.)

© 2018 Elsevier Inc. All rights reserved.

Recap: Line Size and Spatial Locality

10

Word3Word0 Word1 Word2

Larger line size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing line size?

Line Address

2b = line size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag

A line is unit of transfer between the cache and memory

4 word line, b=2

Fewer lines => more conflicts. Can waste bandwidth.

Offset

© 2019 Elsevier Inc. All rights reserved. 11

Figure B.10 Miss rate versus block size for five different-sized caches.
Note that miss rate actually goes up if the block size is too large relative to the
cache size. Each line represents a cache of different size. Figure B.11 shows
the data used to plot these lines. Unfortunately, SPEC2000 traces would take
too long if block size were included, so these data are based on SPEC92 on a
DECstation 5000 (Gee et al. 1993).

Write Policy Choices
§ Cache hit:

– write-through: write both cache & memory
• Generally higher traffic but simpler pipeline & cache design

– write-back: write cache only, memory is written only when the
entry is evicted
• A dirty bit per line further reduces write-back traffic
• Must handle 0, 1, or 2 accesses to memory for each load/store

§ Cache miss:
– no-write-allocate: only write to main memory
– write-allocate (aka fetch-on-write): fetch into cache

§ Common combinations:
– write-through and no-write-allocate
– write-back with write-allocate

12

Write Performance

13

Tag DataV

=

OffsetTag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE

Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one
cycle for tag check plus one cycle for data write if hit

Solutions:
§ Design data RAM that can perform read and write in one

cycle, restore old value after tag miss
§ Pipelined writes: Hold write data for store in single buffer

ahead of cache, write cache data during next store’s tag check
§ Fully-associative (CAM Tag) caches: Word line only enabled if

hit

14

Pipelining Cache Writes

15

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write DataDelayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L
S

1 0

Hit?

Data from a store hit is written into data portion of cache
during tag access of subsequent store

CS152 Administrivia

§ PS 1 due 11:59 PM Feb 8

§ Lab 1 due 11:59PM Feb 10

§ PS 2 out Feb 8

16

CS252

CS252 Administrivia

§ Start thinking of class projects and forming teams of two
to three

§ Preproposal due Tuesday February 13th

17

Write Buffer to Reduce Read Miss Penalty

18

Processor is not stalled on writes, and read misses can go ahead of
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss
Simple solution: on a read miss, wait for the write buffer to go empty
Faster solution: Check write buffer addresses against read miss addresses, if no

match, allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified

L2 Cache
RF

CPU

Write
buffer

Evicted dirty lines for write-back cache
OR

All writes in write-through cache

Reducing Tag Overhead with Sub-Blocks

§ Problem: Tags are too large, i.e., too much overhead
– Simple solution: Larger lines, but miss penalty could be large.

§ Solution: Sub-block placement (aka sector cache)
– A valid bit added to units smaller than full line, called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?

19

100
300
204

1 1 1 1
1 1 0 0
0 1 0 1

Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

20

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

© 2019 Elsevier Inc. All rights reserved. 21

Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches
smaller than the sum of the two 64 KiB first-level caches make little sense, as reflected in
the high miss rates. After 256 KiB the single cache is within 10% of the global miss rates.
The miss rate of a single-level cache versus size is plotted against the local miss rate
and global miss rate of a second-level cache using a 32 KiB first-level cache. The L2
caches (unified) were two-way set associative with replacement. Each had split L1
instruction and data caches that were 64 KiB two-way set associative with LRU
replacement. The block size for both L1 and L2 caches was 64 bytes. Data were
collected as in Figure B.4.

Presence of L2 influences L1 design

§ Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time
– Backup L2 reduces L1 miss penalty
– Reduces average access energy

§ Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim write

back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1 and

reload from L2 when parity error detected on L1 read)

22

© 2019 Elsevier Inc. All rights reserved. 23

Figure B.15 Relative execution time by second-level cache size. The two bars are for
different clock cycles for an L2 cache hit. The reference execution time of 1.00 is for an
8192 KiB second-level cache with a 1-clock-cycle latency on a second-level hit. These
data were collected the same way as in Figure B.14, using a simulator to imitate the Alpha
21264.

Inclusion Policy

§ Inclusive multilevel cache:
– Inner cache can only hold lines also present in outer

cache
– External coherence snoop access need only check

outer cache
§ Exclusive multilevel caches:

– Inner cache may hold lines not in outer cache
– Swap lines between inner/outer caches on miss
– Used in AMD Athlon with 64KB primary and 256KB

secondary cache

Why choose one type or the other?

24

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

25

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

Power 7 On-Chip Caches [IBM 2009]

26

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM (eDRAM)

25-cycle latency to local
slice

IBM z196 Mainframe Caches 2010

27

§96 cores (4 cores/chip, 24 chips/system)
– Out-of-order, 3-way superscalar @ 5.2GHz

§L1: 64KB I-$/core + 128KB D-$/core
§L2: 1.5MB private/core (144MB total)
§L3: 24MB shared/chip (eDRAM) (576MB total)
§L4: 768MB shared/system (eDRAM)

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)

28

