

CS152 Computer Architecture and

Engineering

 Caches and the Memory Hierarchy

 SOLUTION

Assigned

02/08/2024
Problem Set #2, Version (1.0)

Due February 21

@ 11:59:59PT

http://inst.eecs.berkeley.edu/~cs152/sp24

The problem sets are intended to help you learn the material, and we encourage you to collaborate

with other students and to ask questions in discussion sections and office hours to understand the

problems. However, each student must turn in their own solution to the problems.

The problem sets also provide essential background material for the exam and the midterms. The

problem sets will be graded primarily on an effort basis, but if you do not work through the problem

sets yourself you are unlikely to succeed on the exam or midterms!

By grading primarily on an effort basis, we mean that we will award significant partial credit for

demonstrating your understanding of the problem and concepts at hand. As long as reasonable

assumptions and explanations are provided, we will lean towards awarding credit.

We will distribute solutions to the problem set after the deadline to give you feedback.

Assignments must be submitted through Gradescope by 11:59:59pm PT on the specified due date.

Box/clearly mark all solutions that don’t involve filling in a figure/table. Only boxed/clearly

marked solutions and filled in figures/tables will be considered for grading. See the course website

for the policy on slip days (late submissions).

Name: ___

SID: ___

Collaborators (Name, SID):

__

http://inst.eecs.berkeley.edu/~cs152/sp24
https://www.gradescope.com/courses/703789
https://inst.eecs.berkeley.edu/~cs152/sp24/152_policies/#slip-days

Problem 1: Cache Access-Time & Performance

This problem requires the knowledge of Handout #2 and the Lectures on Memory. Please, read

these materials before answering the following questions.

Jessie is trying to determine the best cache configuration for a new processor. She knows how to

build two kinds of caches: direct-mapped caches and 4-way set-associative caches. The goal is to

find the better cache configuration with the given building blocks. She wants to know how these

two different configurations affect the clock speed and the cache miss-rate and choose the one

that provides better performance in terms of average latency for a load.

Problem 1.A Access Time: Direct-Mapped

First, we want to compute the access time of a direct-mapped cache. We use the implementation

shown in Figure H2-A in Handout #2. Assume a 256-KB (kibibyte = 210 bytes) cache with 8-word

(32-byte) cache lines. The address is 32 bits and byte-addressed, so the two least significant bits

of the address are ignored since a cache access is word-aligned. The data output is also 32 bits (1

word), and the MUX selects one word out of the eight words in a cache line. Using the delay

equations given in Table 2.1-1, fill in the column for the direct-mapped (DM) cache in the

table. Use the ceiling of the logarithm to get an integer, if needed. In the equation for the data

output driver, ‘associativity’ refers to the associativity of the cache (1 for direct-mapped caches,

A for A-way set-associative caches).

Component Delay equation (ps) DM (ps) SA (ps)

Decoder 30(# of index bits) + 80 Tag 470 410

Data 470 410

Memory array 30 log2 (# of rows) +

30 ⌈log2 (# of bits in a row)⌉ + 100

Tag 610 640

Data 730 730

Comparator 30(# of tag bits) + 70 490 550

N-to-1 MUX 50log2 N + 100 250 250

Buffer driver 180 180

Data output driver 50(associativity) + 100 150 300

Valid output

driver

40 40 40

Table 2.1-1: Delay of each Cache Component

i) What is the critical path of this direct-mapped cache for a cache read?

ii) What is the access time of the cache (the delay of the critical path)? To compute the access

time, assume that a 2-input gate (AND, OR) delay is 50 ps.

iii) If the CPU clock is 2.5 GHz, how many CPU cycles does a cache access take?

For the given cache structure which is byte addressable, we can know that the # of offset bits =

log2(# of byte in a word line) = 5 bits.

We know the # of lines = $ size / wordline size = 218/25 = 213 lines

Because the cache is direct map, then the # of index bit = log2(213) = 13 bits

Because the total address bits is 32 bits, then # of tag bits = 32-13-5 = 14 bits

Applying all values we calculate above to the delay equations, we have:

Decoder (tag) = 30 * 13 + 80 = 470ps

Decoder (data) = 30 * 13 + 80 = 470ps

Note: # of bits in a row for the tag should include the valid and dirty bits

Memory array (tag) = 30*log2(213) + 30*ceil(log2(14+2)) + 100 = 610ps

Memory array (data) = 30*log2(213) + 30*ceil(log2(32*8)) + 100 = 730ps

Comparator = 30*14+70 = 490ps

N-1 mux = 50*log2(8) + 100 = 250ps

Data output driver = 50 * 1 + 100 = 150ps

To determine the critical path for a cache read, we need to compute the time it takes to go

through each path in hardware (tag check and data read). By taking the maximum delay of these

two paths, we are left with the critical path.

Time to tag check valid driver from tag array

= Decoder (tag) + Memory array (tag) + comparator + AND gate + valid output driver

= 470 + 610 + 490 + 50 + 40 = 1660ps

Time to data output drive from data array

= Decoder (data) + Memory array (data) + 8-1 MUX + data output driver = 470 + 730 +

250 + 150 = 1600ps

From the above results, we can see that the critical path is tag check. The access time is 1660ps.

At 2.5GHz, the cache access takes (1660ps/(1/2.5GHz)) = 4.15 ~ 5 cycles. Here, rounding up to

the nearest cycle is sensible, as this reflects how a synchronous system would work.

Problem 1.B Access Time: Set-Associative

We also want to investigate the access time of a set-associative cache using the 4-way set-

associative cache in Figure H2-B in Handout #2. Assume the total cache size is still 256-KB (each

way is 64KB), a 2-input gate delay is 50 ps, a 4-input gate delay is 100 ps, and all other parameters

(such as the input address, cache line, etc.) are the same as part 2.1.A. Compute the delay of each

component and fill in the column for a 4-way set-associative cache in Table 2.1-1.

i) What is the critical path of the 4-way set-associative cache?

ii) What is the access time of the cache (the delay of the critical path)?

iii) What is the main reason that the 4-way set-associative cache is slower than the direct-

mapped cache?

iv) If the CPU clock is 2.5 GHz, how many CPU cycles does a cache access take?

For the given cache structure which is byte addressable, we know that the # of offset bits =

log2(# of byte in a word line) = 5 bits.

We know that the # of lines = ($ size / wordline size) / nWays = (218/25) / 4 = 211 lines

The number of index bits is then # of index bit = log2(211) = 11 bits

The total address bits is 32 bits, then the # of tag bits = 32-11-5 = 16 bits

Applying all values we calculate above to the delay equations, we have:

Decoder (tag) = 30 * 11 + 80 = 410ps

Decoder (data) = 30 * 11 + 80 = 410ps

Note: tag bits include the valid/dirty bits (+2)

Memory array (tag) = 30*log2(211) + 30*ceil(log2((16+2)*4)) + 100 = 640ps

Memory array (data) = 30*log2(211) + 30*ceil(log2(32*8*4)) + 100 = 730ps

Comparator = 30*16+70 = 550ps

N-1 mux = 50*log2(8) + 100 = 250ps

Data output driver = 50 * 4 + 100 = 300ps

There are three possible critical paths in an associative cache. The first two are the same as those

in the direct mapped cache. The third one is the path through the tag array, the tag comparators,

through the way-select mux, and through the data output driver.

Time to tag check valid driver

= Decoder (tag) + Memory array (tag) + comparator + AND gate + OR gate + valid output

driver

= 410 + 640 + 550 + 50 + 100 + 40 = 1790

Time to data output drive:

= Decoder (data) + Memory array (data) + 8-1 MUX + data output driver = 410 + 730 +

250 + 300 = 1690ps

Time to tag valid check to output driver:

= Decoder (tag) + Memory array (tag) + comparator + AND gate + buffer driver + data

output driver

= 410 + 640 + 550 + 50 + 180 + 300 = 2130ps

From the above results, we can see that the critical path is tag valid check to output driver. The

access time is 2130ps. At 2.5GHz, the cache access takes (2130ps/(1/2.5GHz)) = 5.3 ~ 6 cycles.

Here, rounding up to the nearest cycle is sensible, as this reflects how a synchronous system

would work.

Problem 1.C Miss-rate analysis

Now Ben is studying the effect of set-associativity on the cache performance. Since he now knows

the access time of each configuration, he wants to know the miss-rate of each one. For the miss-

rate analysis, Ben is considering two small caches: a direct-mapped cache with 8 lines with 32

bytes/line, and a 4-way set-associative cache of the same size and line size. For the set-associative

cache, Ben tries out two replacement policies – least recently used (LRU) and round robin (FIFO).

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, starting

with empty caches. For simplicity, assume that the addresses are only 12 bits. Complete the

following tables by filling in the hexadecimal tag values for the direct-mapped cache and both

types of 4-way set-associative caches showing the progression of cache contents as accesses

occur (in the tables, ‘inv’ = invalid, and the column of a particular cache line contains the tag of

that line). Also, for each address calculate the tag and index (which should help in filling out the

table). You only need to fill in elements in the table when a value changes.

Address: 12 bits

Tag: 4 bits [11:8]

Index: 3 bits [7:5]

Offset: 5 bits [4:0]

Address in

Binary

D-map

Address

Addresses and tags are in HEX

line in cache (tag) hit?

L0 L1 L2 L3 L4 L5 L6 L7
 11B 1 inv inv inv inv inv inv inv no
 134 1 no
 20D 2 no
 1A2 1 no
 105 1 no
 360 3 no
 27D 2 no
 121 1 yes
 1A3 1 yes
 17A 1 no
 307 3 no
 273 2 no
 131 1 yes

 Direct-Mapped

Total Misses 10

Total Accesses 13

Address: 12 bits

Tag: 6 bits [11:6]

Index: 1 bits [5:5]

Offset: 5 bits [4:0]

Address in

Binary

 4-way

Address

LRU -- addresses and tags are in HEX

line in cache hit?

Set 0 Set 1
way0 way1 Way2 way3 way0 way1 way2 way3

 11B 4 inv inv inv inv inv inv inv no
 134 4 no
 20D 8 no
 1A2 6 no
 105 - yes
 360 D no
 27D 9 no
 121 - yes
 1A3 - yes
 17A 5 no
 307 C no
 273 - yes
 131 - yes

 4-way LRU

Total Misses 8

Total Accesses 13

Address in

Binary

 4-way

Address

FIFO -- addresses and tags are in HEX

line in cache (tag) hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

 11B 4 inv inv inv inv inv inv inv no
 134 4 no
 20D 8 no
 1A2 6 no
 105 - yes
 360 D no
 27D 9 no
 121 - yes
 1A3 - yes
 17A 5 no
 307 C no
 273 - yes
 131 4 no

 4-way FIFO

Total Misses 9

Total Accesses 13

Problem 1.D Average Latency

Assume that the results of the above analysis can represent the average miss-rates of the direct-

mapped and the 4-way set-associative 256-KB caches studied in 1.A and 1.B.

i) What would be the average memory access latency in CPU cycles for each cache? Assume

that the cache miss penalty is 20 cycles and use cache access cycle count from 1.A and 1.B.

Which one is better?

ii) For the different replacement policies for the set-associative cache, which one has a smaller

cache miss rate for the address stream in 1.C? Explain why.

iii) Is that replacement policy always going to yield better miss rates? If not, give a counter

example using an address stream.

The miss rate for the direct-mapped cache is 10/13. The miss rate for the 4-way LRU set

associative cache is 8/13. For FIFO is 9/13.

The average memory access latency is (hit time) + (miss rate) × (miss penalty).

For the direct-mapped cache, the average memory access latency would be:

(5 cycles) + (10/13) × (20 cycles) = 20.4 cycles.

For the LRU set-associative cache, the average memory access latency would be: (6 cycles)

+ (8/13) × (20 cycles) = 18.3 cycles.

For the FIFO set-associative cache, the average memory access latency would be: (6 cycles)

+ (9/13) × (20 cycles) = 19.8 cycles.

The set-associative cache with LRU replacement is better than the direct-mapped cache in terms

of average memory access latency.

For the above example, LRU has a slightly smaller miss rate than FIFO. This is because the

FIFO policy replaced tag{4} block instead of tag {D} during the 10th access, because the {4}

block has been in the cache longer, even though the {D} was least recently used. In this case, the

LRU policy took better advantage of temporal locality.

LRU does not always outperform FIFO. Assume we have a set-associative cache with the same

parameters as in 1.C and an access sequence shown below. There is a miss with LRU for the last

access while there is a hit with FIFO.

 0x11B

 0x134

 0x20D

 0x1A2

 0x105

 0x360

 0x27D

 0x121

 0x1A3

 0x17A

 0x307

 0x273

 0x361

Problem 2: Loop Ordering

This problem requires knowledge of Lecture 7. Please, read it before answering the following

questions.

This problem evaluates the cache performances for different loop orderings. You are asked to

consider the following two loops, written in C, which calculate the sum of the entries in a 128 by

32 matrix of 32-bit integers:

Loop A Loop B

sum = 0;

for (i = 0; i < 128; i++)

 for (j = 0; j < 32; j++)

 sum += A[i][j];

sum = 0;

for (j = 0; j < 32; j++)

 for (i = 0; i < 128; i++)

 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row major order means that

elements in the same row of the matrix are adjacent in memory as shown in the following memory

layout:

A[i][j] resides in memory location [4*(32*i + j)]

Memory Location:

0 4 124 128 4*(32*127+31)

A[0][0] A[0][1] ... A[0][31] A[1][0] ... A[127][31]

For Problem 2.A to Problem 2.C, assume that the caches are initially empty. Also, assume that

only accesses to matrix A cause memory references and all other necessary variables are stored in

registers. Instructions are in a separate instruction cache.

Problem 2.A

Consider an 8KB direct-mapped data cache with 4-word (16-byte) cache lines.

Calculate the number of cache misses that will occur when running Loop A.

Calculate the number of cache misses that will occur when running Loop B.

Each element of the 128x32 matrix A can only be mapped to one particular cache location in this

direct-mapped data cache. Since each row has 32 32-bit integers, and since each cache line can

hold 4 32-bit ints, a row of the matrix occupies the lines in 8 consecutive sets of the cache.

Loop A—where each iteration of the inner loop sums a row of A—accesses memory addresses

in a linear sequence. Given this access pattern, the access to the first word in each cache line will

miss, but the next three accesses will hit. After sequentially moving through this line, it will not

be accessed again, so its later eviction will not cause any future misses. Therefore, Loop A will

only have compulsory misses for the 1024 (128 rows x 8 lines per row) first-word-in-line

accesses that matrix A spans.

The consecutive accesses in Loop B will move in a stride of 32 words. Therefore, the inner loop

will touch the first element in 128 cache lines before the next iteration of the outer loop. While

intuition might suggest that the 128 lines could all fit in the cache with 512 sets, there is a

complicating factor: each row is eight cache lines past the previous row, meaning that the lines

accessed when traversing the first column go in indices 0, 8, 16, 32, and so on. Since the lines

containing the column are competing for only one eighth of the total number of sets (effectively

64 sets), the lines loaded when starting a column are evicted by the time the column is complete,

preventing any reuse. Therefore, all 4096 (128 x 32) accesses miss.

The number of cache misses for Loop A:____________ 1024______________

The number of cache misses for Loop B:____________ 4096 _____________

Problem 2.B

Consider a direct-mapped data cache with 4-word (16-byte) cache lines.

Calculate the minimum number of cache lines required for the data cache if Loop A is to run

without any cache misses other than compulsory misses.

Calculate the minimum number of cache lines required for the data cache if Loop B is to run

without any cache misses other than compulsory misses.

Since Loop A accesses memory sequentially, we can sum all the elements in a cache line and

then never touch it again. Therefore, we only need to hold 1 active line at any given time to

avoid all but compulsory misses.

For Loop B to run without any cache misses other than compulsory misses, the data cache needs

to have the ability to hold one column of matrix A in the cache. Since the consecutive accesses in

the inner loop of Loop B will use one out of every eight cache lines, and since we have 128 rows,

Loop B requires 1024 (128 × 8) lines to avoid all but compulsory misses.

Data-cache size required for Loop A: ______________1 _____________ cache line(s)

Data-cache size required for Loop B: ______________1024 ___________ cache line(s)

Problem 2.C

Consider a 8KB set-associative data cache with 4 ways, and 4-word (16-byte) cache lines. This

data cache uses a first-in/first-out (FIFO) replacement policy.

Calculate the number of cache misses that will occur when running Loop A.

Calculate the number of cache misses that will occur when running Loop B.

Note that the offset is 4 bits.

The # of lines in a way of this cache = 2^13 / (2^4 * 4) = 2^7=128.

Loop A still only has 1024 (128 rows x 8 lines per row) compulsory misses.

Loop B still cannot fully utilize the cache. Consider accessing a single column. The first

128/8=16 accesses will allocate into way 1 in sets 0, 8, 16, 32, etc.; the next 16 accesses will

allocate into way 2 of those same sets; and so on. After 64 accesses, all four ways will be filled,

and the next 16 accesses along the column will evict the previous lines in way 1, preventing any

reuse. Therefore, all 4096 (128 x 32) accesses miss.

The number of cache misses for Loop A:____________ 1024 ______________

The number of cache misses for Loop B:____________ 4096 ______________

Problem 3: Microtagged Cache

In this problem, we explore microtagging, a technique to reduce the access time of set-

associative caches. Recall that for associative caches, the tag check must be completed before

load results are returned to the CPU, because the result of the tag check determines which cache

way is selected. Consequently, the tag check is often on the critical path.

The time to perform the tag check (and, thus, way selection) is determined in large part by the

size of the tag. We can speed up way selection by checking only a subset of the tag—called a

microtag—and using the results of this comparison to select the appropriate cache way. Of

course, the full tag check must also occur to determine if the cache access is a hit or a miss, but

this comparison proceeds in parallel with way selection. We store the full tags separately from

the microtag array.

We will consider the impact of microtagging on a 4-way set-associative 16KB data cache with

32-byte lines. Addresses are 32 bits long. Microtags are 8 bits long. The baseline cache (i.e.

without microtagging) is depicted in Figure H2-B in Handout #2. Figure 1, below, shows the

modified tag comparison and driver hardware in the microtagged cache.

Problem 3.A

(PRACTICE - OPTIONAL)

Cache Cycle Time

Table 2.4-1, below, contains the delays of the components within the 4-way set-associative

cache, for both the baseline and the microtagged cache. For both configurations, determine the

critical path and the cache access time (i.e., the delay through the critical path).

Assume that the 2-input AND gates have a 50ps delay and the 4-input OR gate has a 100ps

delay.

Component Delay equation (ps) Baseline Microtagged

Decoder 20(# of index bits) + 100 Tag 240 240

Data 240 240

Microtag 240

Memory array 20log2 (# of rows) +

20log2 ⌈(# of bits in a row)⌉ +

100

Tag 380 380

Data 440 440

Microtag 340

Comparator 20(# of tag bits) + 100 Tag 500 500

Microtag 260

N-to-1 MUX 50log2 N + 100 250 250

Buffer driver 200 200 200

Data output

driver
50(associativity) + 100 300 300

Valid output

driver

100 100 100

Table 2.4-1: Delay of each Cache Component

i) What is the old critical path? The old cycle time (in ps)?

Candidate 1: Full tag check

tag decoder → tag read → comparator → 2-in AND → 4-in OR → valid output driver

240 ps + 380 ps + 500 ps + 50 ps + 100 ps + 100 ps = 1370 ps

Candidate 2: Data select based on full tag check

tag decoder → tag read → comparator → 2-in AND → buffer driver → data output driver

240 ps + 380 ps + 500 ps + 50 ps + 200 ps + 300 ps = 1670 ps

Candidate 3: Data readout

data decoder → data read → 4-to-1 MUX → data output driver

240 ps + 440 ps + 250 ps + 300 ps = 1230ps

The critical path is the data select based on the full tag match. The cycle time is 1670 ps.

ii) What is the new critical path? The new cycle time (in ps)?

Candidate 1: Full tag check

same as baseline full tag check => 1370 ps

Candidate 2: Data select based on microtag check

μtag decoder → μtag read → comparator → 2-in AND → buffer driver → data out driver

240 ps + 340 ps + 260 ps + 50 ps + 200 ps + 300 ps = 1390 ps

Candidate 3: Data readout

same as baseline data read => 1230 ps

The critical path is the data select based on the microtag check. The cycle time is 1390 ps.

Problem 3.B AMAT

Assume temporarily that both the baseline cache and the microtagged cache have the same hit

rate, 90%, and the same average miss penalty, 15 ns. Using the cycle times 1.5 ns and 1.2 ns for

the baseline and microtag caches respectively, compute the average memory access time for both

caches.

i) What was the old baseline AMAT (in ns)?

ii) What is the new AMAT (in ns)?

AMAT = (hit_time) + (miss)_rate x (miss_penalty)

= X + (0.1) * (15ns) = X + 1.5ns, where X is the hit time

Old AMAT = 1.5 + 1.5 = 3 ns

New AMAT with microtags = 1.2 + 1.5 = 1.7 ns

Problem 3.C Constraints

Microtags add an additional constraint to the cache: in a given cache set, all microtags must be

unique. This constraint is necessary to avoid multiple microtag matches in the same set, which

would prevent the cache from selecting the correct way.

i) State which of the 3C’s of cache misses this constraint affects.

ii) How will the cache miss rate compare to an ordinary 4-way set-associative cache?

iii) How will it compare to that of a direct-mapped cache of the same size?

iv) Which 8 bits of the tag might you want to use for the microtag and why?

Because the uniqueness property of microtags restricts the replacement policy, the cache isn’t

free to make as optimal replacement decisions as it could in the baseline. This will lead to some

increase in conflict misses. The magnitude of this effect depends on which 8 bits are selected to

form the microtag. In principle, using the bottom 8 bits would result in more potential for

microtag collisions and would add the biggest restriction to the ability of the cache to hold

spatially local data – data within 212 to 220 bytes of each other. The same argument could be used

for choosing the top 8 bits. When addressing data that is spatially local, it will likely have the

same upper tag bits. But due to our constraint of uniqueness, this would also cause many cache

conflicts. Thus, we may want to choose 8 bits somewhere in the middle of the tag, depending on

our application. Regardless, the microtagged cache will still be better than a direct mapped cache

of the same size and line size.

Problem 4: Victim Cache Evaluation

Although direct-mapped caches have an advantage of smaller access time than set- associative

caches, they have more conflict misses due to their lack of associativity. In order to reduce these

conflict misses, Norm Jouppi proposed victim caching, where a small fully-associative back up

cache, called a victim cache, is added to a direct-mapped L1 cache to hold recently evicted cache

lines.

The following diagram shows how a victim cache can be added to a direct-mapped L1 data

cache. Upon a data access, the following chain of events takes place:

1. The L1 data cache is checked. If it holds the data requested, the data is returned.

2. If the data is not in the L1 cache, the victim cache is checked. If it holds the data

requested, the data is moved into the L1 cache and sent back to the processor. The data

evicted from the L1 cache is put in the victim cache, and put at the end of the FIFO

replacement queue.

3. If neither of the caches holds the data, it is retrieved from memory, and put in the L1

cache. If the L1 cache needs to evict old data to make space for the new data, the old data

is put in the victim cache and placed at the end of the FIFO replacement queue. Any data

that needs to be evicted from the victim cache to make space is written back to

memory or discarded, if unmodified.

Note that the two caches are exclusive. That means that the same data cannot be stored in both

L1 and victim caches at the same time.

Problem 4.A

(PRACTICE - OPTIONAL)

Baseline Cache Design

The diagram below shows our victim cache, a 32-byte fully associative cache with four 8-byte

cache lines. Each line contains two 4-byte words and has an associated tag and two status bits

(valid and dirty). The Input Address is 32-bits. Since the cache is word-addressed, it does not use

the two least significant bits. The output of the cache is a 4-byte word.

Figure 2.5-1: Victim cache datapath

Please complete Table 2.5-1 with delays across each element of the cache. Using the data you

compute in Table 2.5-1, calculate the critical path delay through this cache (from when the Input

Address is set to when both Valid Output Driver and the appropriate Data Output Driver are

outputting valid data).

Component Delay equation (ps) FA(ps)

Comparator 30(# of tag bits) + 100 970

N-to-1 MUX 50log2 N + 100 150

Buffer driver 200 200

AND gate 100 100

OR gate 50 log2 N + 100 200

Data output driver 50(associativity) + 100 300

Valid output driver 100 100

Table 2.5-1: Delay of each cache component

Critical Path Cache Delay:

Below, we evaluate the three major paths through the victim cache to find the critical path and

cycle time. Note that the victim cache is fully-associative and uses 29-bit tags.

Candidate 1: Tag check

comparator → 2-in AND → 4-in OR → valid output driver

970 ps + 100 ps + 200 ps + 100 ps = 1370 ps

Candidate 2: Data select based on tag check

comparator → 2-in AND → buffer driver → data output driver

970 ps + 100 ps + 200 ps + 300 ps = 1570 ps

Candidate 3: Data readout

2-to-1 MUX → data output driver

200 ps + 300 ps = 500 ps

The critical path is the data select based on the tag match. The cycle time is 1570 ps.

Problem 4.B Victim Cache Behavior

Now we will study the impact of a victim cache on cache hit rate.

Our main L1 cache is a 128 byte, direct-mapped cache with 16 bytes per cache line. The cache is

word (4-bytes) addressable.

The victim cache is similar to the one in Figure 2.5-1. It is a 32-byte fully associative cache with

16 bytes per cache line and is also word addressable. (Note that these parameters are different

from 4.A.) It uses the first in first out (FIFO) replacement policy.

Please complete Table 2.5-2 showing a trace of memory accesses. In the table, each entry

contains the tag of that line, or “inv”, if no data is present. You should only fill in elements in the

table when a value changes. For simplicity, the addresses are only 8 bits. The first 3 lines of the

table have been filled in for you. For your convenience, the address breakdown for access to the

main cache is depicted below.

Input

Address
Main Cache (tag) Victim Cache (tag)

 L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?

 inv inv inv inv inv inv inv inv - inv inv -

0 0 N N

80 1 N 0 N

4 0 N 8 Y

A0 1 N N

10 0 N N

C0 1 N N

18 0 Y

20 0 N A N

8C 1 N 0 Y

28 0 Y

AC 1 N 2 Y

38 0 N N

C4 1 Y

3C 0 Y

48 0 N C N

0C 0 N 8 N

24 0 N A N

Table 2.5-2: Memory access trace

Problem 4.C Average Memory Access Time

Assume 15% of L1 misses are resolved in the victim cache. If retrieving data from the victim

cache takes 4 cycles and retrieving data from main memory takes 50 cycles, by how many cycles

does the victim cache improve the average memory access time? Assume that the L1 miss rate is

10%.

AMAT = HitTime + L1MissRate * L1MissPenalty

AMAT2 = HitTime + L1MissRate * (VictimHitTime + (1 - VictimHitRate) *

VictimMissPenalty)

VictimMissPenalty = L1MissPenalty = DRAMTime, since this is just time to get data from main

memory

AMAT – AMAT2 = L1MissRate * (DRAMTime – VictimHitTime - (1 – VictimHitRate) *

DRAMTime)

= 0.1 * (50 – 4 – 0.85 * 50)

= 0.1 * 3.5 = 0.35

Problem 5: Three C’s of Cache Misses

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will have

no effect. You can assume the baseline cache is set associative. Explain your reasoning.

For subparts where the outcome is ambiguous, pick one outcome and answer with reasonable assumptions and explanations.

 Compulsory Misses Conflict Misses Capacity Misses

Halving the line size

(associativity and

sets constant)

Halves capacity

Increase

Shorter lines mean fewer

adjacent elements are brought

in with the first access to a

given line.

Increase

The program will access more

cache lines in total, creating

more opportunity for conflict

misses.

Increase

Capacity has been cut in half.

Doubling the number of sets

(capacity and line size constant)

Halves associativity

No effect

Halving associativity doesn’t

change when lines are first

brought into the cache

Increase

Typically, lower associativity

increases conflict misses, since

there are fewer places to put

the same element.

No effect

Capacity does not change.

Adding good prefetching

Decrease

Ideally, a good prefetcher can

bring data in before we use it,

avoiding compulsory misses.

Decrease

With good prefetching,

conflict misses should

decrease, as the prefetcher will

often bring lines that have been

evicted back into the cache.

Decrease

With good prefetching, capacity

misses should decrease. In a

situation where the working set

simply won’t fit, the prefetcher

can dynamically bring lines in,

“Just-In- Time,” avoiding what

would have been capacity

misses.

Combine ICache and DCache

into a single L1 cache with the

combined capacity

(associativity and line size

constant)

No effect May increase:

New opportunities for conflicts

between cache lines for data

and cache lines for instructions

are introduced

Decrease: Greater capacity

Problem 6: Memory Hierarchy Performance

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will have

no effect. You can assume the baseline cache is set associative. Explain your reasoning.

For subparts where the outcome is ambiguous, pick one outcome and answer with reasonable assumptions and explanations.

 Hit Time Miss Rate Miss Penalty

Halving the line size

(associativity and

sets constant)

Halves capacity

Decreases

The cache is now physically

smaller, which overshadows

the slightly increased tag check

time (tag grows by 1 bit).

Increases

Smaller capacity, less ability to

take advantage of spatial

locality within a single cache

line (more compulsory

misses).

Decreases

Smaller lines can be brought in

more quickly.

OR

No effect

because cache already brings in

critical word first.

Doubling the number of sets

(capacity and line size constant)

Halves associativity

Decreases

of sets increases, so tags get

smaller. Fewer tags must be

checked, and fewer ways have

to be muxed outs.

Increases

More conflict misses because

associativity gets halved.

No effect

This is dominated by the outer

memory hierarchy

Adding good prefetching

No effect

The prefetcher isn’t on the hit

path.

Decreases

The whole purpose of a

prefetcher is to reduce the miss

rate by bringing in data ahead

of time.

Good answer: no effect.

May increase due to bandwidth

pollution but we can(should)

give a priority on cache misses

over prefetch requests.

May decrease because a

prefetch can be inflight when a

miss occurs (but this is

unlikely).

Combine L1ICache and

L1DCache into a single L1

cache with the combined

capacity

(associativity and line size

constant)

Increase:

If the cache is dual-ported, it

will be slower than a single-

ported cache

If there is a single port, then

frequently data accesses may

stall for instruction accesses,

or vice-versa

May Decrease

Cache can more flexibly

allocate space towards either

data or instructions, depending

on dynamic program behavior.

May increase:

Edge cases may cause more

conflict misses between

instruction and data accesses

No effect:

This is dominated by outer

memory hierarchy

	Problem 2: Loop Ordering
	The number of cache misses for Loop A:____________ 1024______________
	The number of cache misses for Loop B:____________ 4096 _____________
	Data-cache size required for Loop A: ______________1 _____________ cache line(s)
	Data-cache size required for Loop B: ______________1024 ___________ cache line(s)
	The number of cache misses for Loop A:____________ 1024 ______________
	The number of cache misses for Loop B:____________ 4096 ______________

