
CS 152 Computer Architecture and Engineering

CS252 Graduate Computer Architecture

Lecture 7 – Memory III

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

https://cwfletcher.github.io/

http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 6

▪ 3 C’s of cache misses
– Compulsory, Capacity, Conflict

▪ Write policies
– Write back, write-through, write-allocate, no write allocate

▪ Pipelining write hits

▪ Multi-level cache hierarchies reduce miss penalty
– 3 levels common in modern systems (some have 4!)

– Can change design tradeoffs of L1 cache if known to have L2

– Inclusive versus exclusive cache hierarchies

2

CS152 Administrivia

▪ HW 2 out; Lab 2 out “soon”

Extensions vs. slip days:

▪ We provide slip days for minor issues that cause small
delays in your ability to submit assignments (mild illness,
midterms in other classes, busy weeks, etc.).

▪ Extensions are meant to be used to cover significant
disruptions out of your control such as documented health
issues/family emergencies/"Acts of God".

▪ The reason we have a separate Extensions system is to
deal with major issues that may take more time to resolve
than we have slip days (e.g., sick for the entire
week). Minor issues (e.g., undocumented health issues,
last-minute computer issues, etc.) are meant to be
covered with slip days.

3

CS252

CS252 Administrivia

▪ Submit pre-proposals by tonight

▪ Brief pitch + discussion in tomorrow’s paper discussion
section

4

Recap: Multilevel Caches

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level

6

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

Roadmap for today

Cover a number of advanced ideas related to caches.

▪ Victim caches

▪ Pseudo-associative caches

▪ Way-predicting caches

▪ Early restart

▪ Critical word first

▪ Non-blocking caches

▪ Hardware pretching

▪ Software prefetching

▪ Compiler optimizations (interchange, fusion, tiling)

8

Recall:
Cache = HW-Optimized Hash table

▪ Bin == Set, Slots == Ways

▪ 1 Bin → Fully associative; 1 Slot / Bin → direct mapped

▪ M Slots / N Bins where M, N > 1 → set associative

▪ Hash function: take bits of the address (“Index bits”)

▪ Fixed # Slots per Bin; Slots read out in parallel

▪ Key/Value pairs in Bins stored separately (tag + data array) 9

Key

Hash

function

(Key1, Val1) (Key2, Val2)

(Key3, Val3)

Bin Slots

Implementation choices;

Not fundamental

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim

FA Cache

4 blocks

Evicted data

from L1

Evicted data
from VC

to where?

Hit data from VC
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 10

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

11

CS252

Way-Predicting Caches
(MIPS R10000 L2 cache)

13

• Use processor address to index into way-prediction table

• Look in predicted way at given index, then:

HIT MISS

Return copy

of data from

cache

Look in other way

Read block of data

from

next level of cache

MISS
SLOW HIT

(change entry in

prediction table)

CS252

Way-Predicting Instruction Cache
(Alpha 21264-like)

15

PC addr inst

Primary
Instruction
Cache

0x4

Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

Store last-used way for sequential
path and predicted branch taken
path. Can be fetching multiple
instructions per cycle.

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

16

▪ Don’t wait for full block before restarting CPU

▪ Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution

▪ Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

– Long blocks more popular today  Critical Word 1st Widely used

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in

with wrap-around on

cache line

CS252 17

Increasing Cache Bandwidth with
Non-Blocking Caches

▪ Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution

▪ “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

▪ “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

– Pentium Pro allows 4 outstanding memory misses

– Cray X1E vector supercomputer allows 2,048 outstanding memory misses

CS252 18

Value of Hit Under Miss for SPEC
(old data)

▪ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

▪ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

▪ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Integer

Floating Point

“Hit under n Misses”

0->1

1->2

2->64

Base

Prefetching

▪ Speculate on future instruction and data accesses
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

▪ Varieties of prefetching
– Hardware prefetching

– Software prefetching

– Mixed schemes

▪What types of misses does prefetching affect?

19

Issues in Prefetching

▪ Usefulness – should produce hits

▪ Timeliness – not late and not too early

▪ Cache and bandwidth pollution

20

L1 Data

L1 Instruction

Unified L2
Cache

RF

CPU

Prefetched data

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the next

consecutive line (i+1)

– Requested line placed in cache, and next line in instruction stream
buffer

– If miss in cache but hit in stream buffer, move stream buffer line
into cache and prefetch next line (i+2)

21

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction lineReq

 line

Req
 line

Hardware Data Prefetching

▪ Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

▪ One-Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed

– Why is this different from doubling block size?

– Can extend to N-block lookahead

▪ Strided prefetch
– If observe sequence of accesses to line b, b+N, b+2N → prefetch b+3N etc.

▪ Spatial memory streaming prefetch
– Set region size R. Observe a, b, c, a + R → prefetch b + R, c + R

▪ Memory-dependent/pointer chasing prefetch
– Observe p, *p, **p → prefetch ***p, ****p, etc.

▪ Example: Apple M-series processors feature multiple stride
prefetchers, an SMS prefetcher and a “stateless” memory-
dependent prefetcher 22

Software Prefetching

23

for(i=0; i < N; i++) {

prefetch(&a[i + 1]);

prefetch(&b[i + 1]);

SUM = SUM + a[i] * b[i];

}

Software Prefetching Issues

24

▪ Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might

be too late

– Prefetch too early, cause pollution

– Estimate how long it will take for the data to come into L1, so we
can set P appropriately

– Why is this hard to do?

for(i=0; i < N; i++) {

prefetch(&a[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

}

Must consider cost of prefetch instructions

Software Prefetching Example

25

[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]

Compiler Optimizations

▪ Restructuring code affects the data access sequence
– Group data accesses together to improve spatial locality

– Re-order data accesses to improve temporal locality

▪ Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced

– Needs mechanism for software to tell hardware not to cache data (“no-
allocate” instruction hints or page table bits)

▪ Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality

– Replace into dead cache locations

26

Loop Interchange

27

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?

Loop Fusion

28

for(i=0; i < N; i++)

a[i] = b[i] * c[i];

for(i=0; i < N; i++)

d[i] = a[i] * c[i];

for(i=0; i < N; i++)

{

 a[i] = b[i] * c[i];

 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

Matrix Multiply, Naïve Code

29

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access

x j

i

y k

i

z j

k

Matrix Multiply with Cache Tiling

30

for(jj=0; jj < N; jj=jj+B)

for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)

for(j=jj; j < min(jj+B,N); j++) {

r = 0;

for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];

x[i][j] = x[i][j] + r;

}

What type of locality does this improve?

y k

i

z j

k

x j

i

Acknowledgements

▪ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

– Krste Asanovic (UCB)

– Sophia Shao (UCB)

31

	Slide 1: CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 7 – Memory III
	Slide 2: Last time in Lecture 6
	Slide 3: CS152 Administrivia
	Slide 4: CS252 Administrivia
	Slide 6: Recap: Multilevel Caches
	Slide 8: Roadmap for today
	Slide 9: Recall: Cache = HW-Optimized Hash table
	Slide 10: Victim Caches (HP 7200)
	Slide 11: 2-Way Set-Associative Cache
	Slide 13: Way-Predicting Caches (MIPS R10000 L2 cache)
	Slide 15: Way-Predicting Instruction Cache (Alpha 21264-like)
	Slide 16: Reduce Miss Penalty of Long Blocks: Early Restart and Critical Word First
	Slide 17: Increasing Cache Bandwidth with Non-Blocking Caches
	Slide 18: Value of Hit Under Miss for SPEC (old data)
	Slide 19: Prefetching
	Slide 20: Issues in Prefetching
	Slide 21: Hardware Instruction Prefetching
	Slide 22: Hardware Data Prefetching
	Slide 23: Software Prefetching
	Slide 24: Software Prefetching Issues
	Slide 25: Software Prefetching Example
	Slide 26: Compiler Optimizations
	Slide 27: Loop Interchange
	Slide 28: Loop Fusion
	Slide 29: Matrix Multiply, Naïve Code
	Slide 30: Matrix Multiply with Cache Tiling
	Slide 31: Acknowledgements

