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Last time in Lecture 6

▪ 3 C’s of cache misses
– Compulsory, Capacity, Conflict

▪ Write policies
– Write back, write-through, write-allocate, no write allocate

▪ Pipelining write hits

▪ Multi-level cache hierarchies reduce miss penalty
– 3 levels common in modern systems (some have 4!)

– Can change design tradeoffs of L1 cache if known to have L2

– Inclusive versus exclusive cache hierarchies
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CS152 Administrivia

▪ HW 2 out; Lab 2 out “soon”

Extensions vs. slip days:

▪ We provide slip days for minor issues that cause small 
delays in your ability to submit assignments (mild illness, 
midterms in other classes, busy weeks, etc.).

▪ Extensions are meant to be used to cover significant 
disruptions out of your control such as documented health 
issues/family emergencies/"Acts of God".

▪ The reason we have a separate Extensions system is to 
deal with major issues that may take more time to resolve 
than we have slip days (e.g., sick for the entire 
week). Minor issues (e.g., undocumented health issues, 
last-minute computer issues, etc.) are meant to be 
covered with slip days.
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CS252

CS252 Administrivia

▪ Submit pre-proposals by tonight

▪ Brief pitch + discussion in tomorrow’s paper discussion 
section
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Recap: Multilevel Caches

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level
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CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions



Roadmap for today

Cover a number of advanced ideas related to caches.

▪ Victim caches

▪ Pseudo-associative caches

▪ Way-predicting caches

▪ Early restart

▪ Critical word first

▪ Non-blocking caches

▪ Hardware pretching

▪ Software prefetching

▪ Compiler optimizations (interchange, fusion, tiling)
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Recall: 
Cache = HW-Optimized Hash table 

▪ Bin == Set, Slots == Ways

▪ 1 Bin → Fully associative; 1 Slot / Bin → direct mapped

▪ M Slots / N Bins where M, N > 1 → set associative

▪ Hash function: take bits of the address (“Index bits”)

▪ Fixed # Slots per Bin; Slots read out in parallel

▪ Key/Value pairs in Bins stored separately (tag + data array) 9
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Victim Caches (HP 7200)
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Victim cache is a small associative backup cache, added to a direct-mapped 
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 10



2-Way Set-Associative Cache
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CS252

Way-Predicting Caches
(MIPS R10000 L2 cache)
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• Use processor address to index into way-prediction table

• Look in predicted way at given index, then:
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CS252

Way-Predicting Instruction Cache 
(Alpha 21264-like)
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instructions per cycle.



Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First
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▪ Don’t wait for full block before restarting CPU

▪ Early restart—As soon as the requested word of the block 
arrives, send it to the CPU and let the CPU continue execution

▪ Critical Word First—Request the missed word first from memory 
and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block

– Long blocks more popular today  Critical Word 1st Widely used 

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in 

with wrap-around on 

cache line
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Increasing Cache Bandwidth with
Non-Blocking Caches

▪ Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution

▪ “hit under miss”  reduces the effective miss penalty by working 
during miss vs. ignoring CPU requests

▪ “hit under multiple miss” or “miss under miss”  may further 
lower the effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller as there can be 
multiple outstanding memory accesses, and can get miss to line with 
outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot support 
multiple misses)

– Pentium Pro allows 4 outstanding memory misses

– Cray X1E vector supercomputer allows 2,048 outstanding memory misses
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Value of Hit Under Miss for SPEC 
(old data)

▪ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

▪ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

▪ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Integer

Floating Point

“Hit under n Misses”

0->1

1->2

2->64

Base



Prefetching

▪ Speculate on future instruction and data accesses 
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

▪ Varieties of prefetching
– Hardware prefetching

– Software prefetching

– Mixed schemes

▪What types of misses does prefetching affect?
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Issues in Prefetching

▪ Usefulness – should produce hits

▪ Timeliness – not late and not too early

▪ Cache and bandwidth pollution
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Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the next 

consecutive line (i+1)

– Requested line placed in cache, and next line in instruction stream 
buffer

– If miss in cache but hit in stream buffer, move stream buffer line 
into cache and prefetch next line (i+2)
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Hardware Data Prefetching

▪ Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

▪ One-Block Lookahead (OBL) scheme 
– Initiate prefetch for block b + 1 when block b is accessed

– Why is this different from doubling block size?

– Can extend to N-block lookahead

▪ Strided prefetch
– If observe sequence of accesses to line b, b+N, b+2N → prefetch b+3N etc.

▪ Spatial memory streaming prefetch
– Set region size R.  Observe a, b, c, a + R → prefetch b + R, c + R

▪ Memory-dependent/pointer chasing prefetch
– Observe p, *p, **p → prefetch ***p, ****p, etc.

▪ Example: Apple M-series processors feature multiple stride 
prefetchers, an SMS prefetcher and a “stateless” memory-
dependent prefetcher 22



Software Prefetching
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for(i=0; i < N; i++) {

prefetch( &a[i + 1] );

prefetch( &b[i + 1] );

SUM = SUM + a[i] * b[i];

}



Software Prefetching Issues
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▪ Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might 

be too late

– Prefetch too early, cause pollution

– Estimate how long it will take for the data to come into L1, so we 
can set P appropriately

– Why is this hard to do?

for(i=0; i < N; i++) {

prefetch( &a[i + P] );
prefetch( &b[i + P] );
SUM = SUM + a[i] * b[i];

}

Must consider cost of prefetch instructions



Software Prefetching Example
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[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]



Compiler Optimizations

▪ Restructuring code affects the data access sequence 
– Group data accesses together to improve spatial locality

– Re-order data accesses to improve temporal locality

▪ Prevent data from entering the cache
– Useful for variables that will only be accessed once before being 

replaced

– Needs mechanism for software to tell hardware not to cache data (“no-
allocate” instruction hints or page table bits)

▪ Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality

– Replace into dead cache locations
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Loop Interchange
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for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?



Loop Fusion
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for(i=0; i < N; i++)

a[i] = b[i] * c[i];

for(i=0; i < N; i++)

d[i] = a[i] * c[i];

for(i=0; i < N; i++)

{

       a[i] = b[i] * c[i]; 

       d[i] = a[i] * c[i];

  }

What type of locality does this improve?



Matrix Multiply, Naïve Code
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for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)  
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access

x j

i

y k

i

z j

k



Matrix Multiply with Cache Tiling
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for(jj=0; jj < N; jj=jj+B)

for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)

for(j=jj; j < min(jj+B,N); j++) {

r = 0;

for(k=kk; k < min(kk+B,N); k++) 

r = r + y[i][k] * z[k][j];

x[i][j] = x[i][j] + r;

}

What type of locality does this improve?

y k

i

z j

k

x j

i
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