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Agenda

● Prefetching

● Virtual Addresses

● Page Tables

● Lab 2 Preview



Memory Hierarchy Revisited (Better Picture)

Data is most likely to be in DRAM 
before first access. Long latencies to 
access DRAM

- e.g. 100ns -> 400 CPU cycles 
per access (at 4Ghz). This is 
difficult to hide.

- On the other hand, L1 cache 
latency is 1ns -> 4 CPU cycles 
per access. Easier to hide 



Prefetching Metrics

● Accuracy

● Coverage

● Timeliness



Prefetching Metrics

● Accuracy

○ Is the prefetch useful (did we use what was prefetched)?

○ Useful / Total prefetches

● Coverage

○ Is the prefetcher covering all accesses?

○ Useful / Total unique accesses

● Timeliness

○ Is the prefetch on time (not too early / too late)?

○ On-time / Total prefetches



Prefetching Types

● Instruction Prefetching

○ What is the memory access pattern?

● Data Prefetching

○ What is the memory access pattern?



Prefetching Types

● Instruction Prefetching

○ What is the memory access pattern?

■ Often sequential with control flow jumps

● Data Prefetching

○ What is the memory access pattern?

■ Much more irregular (loops, pointer chasing, etc)



Prefetching Algorithms

● Next-Line

○ Always prefetch the next N cache lines after a demand access/compulsory 

miss

● Strided

○ After seeing N addresses with distance of D between them, prefetch the 

current address plus the D offset (C + D)

○ Is Next-Line considered Strided?

● More complicated

○ History-based prediction: i.e. Address Correlation



Address Correlation Prefetching

● After training, you know the probability of one address followed by another

● Use the prediction for the next prefetch request

What’s the similarities between this and branch 
prediction? Can we use multiple addresses to 

determine next prefetch?



Q1: Prefetching

int A[N][M]; // N=32, M=32

int sum = 0; 

for (int j = 0; j < M; j++) { 

for (int i = 0; i < N; i++) { 

prefetch(&A[i][j] + OFFSET); // prefetches from (A + M*i + j + OFFSET) 

sum += A[i][j]; 

}

} 

Assume 128B cache lines (each row fits entirely in a cache line). Without the prefetch, the inner loop takes 

50 cycles. The L1 miss penalty is 40 cycles. What should OFFSET be to minimize the total program 

cycles?



Q1: Prefetching

int A[N][M]; // N=32, M=32

int sum = 0; 

for (int j = 0; j < M; j++) { 

for (int i = 0; i < N; i++) { 

prefetch(&A[i][j] + OFFSET); // prefetches from (A + M*i + j + OFFSET) 

sum += A[i][j]; 

}

} 

Perfect prefetching: 50-40=10 cycles per iteration.  Prefetched data takes 40 cycles to return, so 

need to fetch 4 iterations in advance. OFFSET = 4*32 = 128



Page Segment

Replace a block Easy (fixed size) Difficult (variable size, hard to 
find in main memory)

Inefficiency Internal External

Efficiency in disk 
traffic

Yes (adjust page size to 
balance access time and 
transfer time)

Not always (bad when the 
segment is small)

Virtual Memory: Page vs Segments



Linear vs Hierarchical Page Tables



Consider 4 GiB (32-bit) of addressable virtual memory, 4 KiB pages, 4-byte PTEs (PPN, valid)

● Vaddr: [Virtual page number] [offset]
● How many bits in the page offset? 
● How many bits in the page number? 
● How many pages?

Consider a linear page table for a process with 
only 1 page mapped to physical memory (paged 
in)

● How many valid PTEs? 
● Total size of page table?

Consider a 2-level page table for a process with 
only 1 page mapped to physical memory (paged 
in).  Assume that VPN bits are split equally 
between the two levels.

● How many valid PTEs? 
● Total size of page table?

Q2: Linear vs Hierarchical Page Tables



Consider 4 GiB (32-bit) of addressable virtual memory, 4 KiB pages, 4-byte PTEs

● How many bits in the page offset? log2(page size in bytes) = log2(4096) = 12
● How many bits in the virtual page number? Size of memory address - page offset bits = 32 - 12 = 20
● How many virtual pages? 2^20 PTEs

Consider a linear page table for a process with 
only 1 page mapped to physical memory (paged 
in)

● How many valid PTEs? 1 valid PTE
● Total size of page table? 2^20 * 4B = 4MiB

Consider a 2-level page table for a process with 
only 1 page mapped to physical memory (paged 
in).  Assume that VPN bits are split equally 
between the two levels.

● How many valid PTEs? 2 valid PTEs
● Total size of page table structures? 

○ Lvl 1 Page Table = 2^10 PTEs * 4 = 4KiB
○ Lvl 2 Page Table = 2^10 PTEs * 4 = 4KiB
○ 8 KiB total

Q2: Linear vs Hierarchical Page Tables



● Page Table Walk
○ Expensive 
○ Software/Hardware

● Are virtual and physical 
addresses necessarily the same 
width?

● Can an architecture support 
multiple page sizes 
simultaneously?

○ Advantages and 
disadvantages of 
superpages?

Memory Hierarchy with Virtual Memory



● Page Table Walk
○ Expensive 
○ Software/Hardware

● Are virtual and physical 
addresses necessarily the same 
width? No

● Can an architecture support 
multiple page sizes 
simultaneously? Yes

○ Advantages and 
disadvantages of 
superpages? 

■ Page faults penalties?
■ Paging traffic?
■ Internal fragmentation?

Memory Hierarchy with Virtual Memory



Translation Lookaside Buffer (TLB)

● TLB
○ Speed up address translation by caching PTEs
○ Typically fully associative
○ TLB miss is distinct from a page fault!

● On ALL accesses to a virtual 
address

○ Check for tag match in TLB
○ If no match: 

■ Perform PTW
■ If no valid PTE (not paged in), 

page fault
○ Check protection bits:

■ If fail, page fault



Translation Lookaside Buffer (TLB)

Refer to online Appendix L of textbook 
for exhaustive treatment on TLB design

● TLB
○ Speed up address translation by caching PTEs
○ Typically fully associative
○ TLB miss is distinct from a page fault!

● On ALL accesses to a virtual 
address

○ Check for tag match in TLB
○ If no match: 

■ Perform PTW
■ If no valid PTE (not paged in), 

page fault
○ Check protection bits:

■ If fail, page fault



● What are the advantages of a hierarchical page table? 
○ Disadvantages?

● What’s in a PTP? (Page table pointer)
● What’s in a PTE? (Page table entry)
● What manages the page tables?
● Should page tables reside in cache? Where?

○ When should PTEs enter the TLB?
○ Should page tables reside in data cache? What are the advantages/disadvantages?

● What if a PTE is modified in the page table while currently present in the TLB?
○ What if that PTE is in multiple TLBs (i.e., different cores)?

Multi-Level Page Tables



● What are the advantages of a hierarchical page table? reduce total page table size
○ Disadvantages? Longer page table walks

● What’s in a PTP? (Page table pointer) pointer to index (PPN) of next level page table
● What’s in a PTE? (Page table entry) PPN + valid bit, etc.
● What manages the page tables? OS (SW)
● Should page tables reside in cache? Where? Yes (SW uses standard memory instructions to manage page 

tables, e.g. paging in from main memory) Note that page table walks may not populate the cache if done with hardware.
○ When should PTEs enter the TLB? on each PT walk 
○ Should page tables reside in data cache? What are the advantages/disadvantages?

■ PT walk -> likely you will walk down nearby PTs again
■ Potentially polluting cache 

● What if a PTE is modified in the page table while currently present in the TLB?
○ If OS modifies PTE, need to evict that TLB entry 
○ What if that PTE is in multiple TLBs (i.e., different cores)?

■ May need flush to all other TLBs (TLB shootdown)

Multi-Level Page Tables



Page faults represent a variety of causes:

● Pages that were swapped out to secondary storage (disk)
● Pages that are part of the legitimate address space but not yet committed  
● Copy-on-write with shared pages (e.g. forks) or zero-filled pages
● Emulating accessed/dirty bits in PTEs without hardware support
● Segfault

Most page faults that occur are not errors!

Page faults must be restartable exceptions

Page Faults



● Assume: 8-bit virtual addresses, 32-bit words, 32-bit PTEs, 16-byte pages, two-level page 
table, LRU 4-entry TLB

● At the beginning, the TLB is empty and the free pages list contains 0x9, 0x5, 0xA, 0x7, 0x1, 
0x3, 0xB, 0xD, 0xE, and 0xF in that order. PTBR is set to 0.

1. How many bytes of virtual memory are addressable?

2. How many bytes of physical memory are addressable? Assume a PTE is PPN + valid bit

3. Why might DRAM size > virtual address space size be useful?

Q3: Multi-Level Page Tables



● Assume: 8-bit virtual addresses, 32-bit words, 32-bit PTEs, 16-byte pages, two-level page 
table, LRU 4-entry TLB

● At the beginning, the TLB is empty and the free pages list contains 0x9, 0x5, 0xA, 0x7, 0x1, 
0x3, 0xB, 0xD, 0xE, and 0xF in that order. PTBR is set to 0.

Physical address = [PPN] [4 bits]

1. How many bytes of virtual memory are addressable? 
a. 2^8 = 256 Bytes

2. How many bytes of physical memory are addressable? Assume a PTE is PPN + valid bit
a. PPN = 32 - 1 = 31 bits; 2^31 pages * 16 B/page = 32 GiB

3. Why might DRAM size > virtual address space size be useful?
a. Multiple processes resident in main memory

Q3: Multi-Level Page Tables



Offset bits: log2(page size) = 4

VPN bits: VA width - offset bits = 8-4 =4

Index1 bits: 2

Index2 bits: 2

offset (vaddr[a:b]) : vaddr[3:0]

index2 (vaddr[a:b]) : vaddr[5:4]

index1 (vaddr[a:b]) : vaddr[7:6]

Q3: Multi-Level Page Tables

● 8-bit virtual addresses, 
● 32-bit words, 
● 16-byte pages, 
● two-level page table,
● LRU 4-entry TLB



Q3: Multi-Level Page Tables

Virtual Address Index1 Index2 TLB hit/miss Page hit/
Page fault

Physical 
Address

0x68 0x1 0x2 miss hit 0x128
0x14 0x0 0x1 miss hit 0x134
0x6C 0x1 0x2 hit hit 0x12C
0x90

0x74

0xE4

0x18

0xD0

Addr Contents
0x00 0x06
0x04 0x04
0x08 0x02
0x0C
0x10
0x14
0x18
0x1C
0x20 0x08
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0x44
0x48 0x12
0x4C 0x11
0x50
0x54
0x58
0x5C
0x60
0x64 0x13
0x68
0x6C

TLB

VPN 0x6 0x1
PPN 0x12 0x13

Free pages: 0x9, 0x5, 0xA, 0x7, 0x1, 0x3, 0xB, 0xD, 0xE, 0xF



Q3: Multi-Level Page Tables

Virtual Address Index1 Index2 TLB hit/miss Page hit/
Page fault

Physical 
Address

0x68 0x1 0x2 miss hit 0x128
0x14 0x0 0x1 miss hit 0x134
0x6C 0x1 0x2 hit hit 0x12C
0x90 0x2 0x1 miss fault 0x090
0x74 0x1 0x3 miss hit 0x114
0xE4 0x3 0x2 miss fault 0x0a4
0x18 0x0 0x1 miss hit 0x138
0xD0 0x3 0x1 miss fault 0x070

Addr Contents
0x00 0x06
0x04 0x04
0x08 0x02
0x0C 0x05
0x10
0x14
0x18
0x1C
0x20 0x08
0x24 0x09
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0x44
0x48 0x12
0x4C 0x11
0x50
0x54 0x07
0x58 0x0A
0x5C
0x60
0x64 0x13
0x68
0x6C

TLB

VPN  0x6 0x1 0x1 0xe 0x9 0xd 0x7
PPN 0x12 0x13 0x130xA 0x9 0x07 0x11

Free pages: 0x9, 0x5, 0xA, 0x7, 0x1, 0x3 (PPNs)



Focuses on design of memory hierarchies using realistic SoC implementations

● Directed problem: Matrix transpose case study
● Open-ended problems:

a. Reverse-engineer a memory system using micro-benchmarks
b. Design your own hardware prefetcher (recommended to run on eda-* machines)
c. Design your own replacement policy and victim cache

Lab 2



Expect to spend a significant fraction of time on RTL simulations

● Some interesting memory behaviors only manifest over longer time scales
● ~4.5 kHz simulator (varies by design complexity)
● 0.5-3 million cycles for a “short” program (2 to 10 minutes)

○ Up to 10 million cycles for a few benchmarks (bfs, ccbench)
○ Potentially long debug cycle for some open-ended problems

● Can run parallel simulations in some cases (make -j N)

Budget your time appropriately - start early!

● Option to not use EDA machines (and/or use multiple ones)

Fair Warnings



Rocket

● Single-issue in-order RV64IMAFDC core
● Extensively optimized for efficient ASIC implementation (1.6 GHz in 28nm)

○ Minimize high-fanout stall signals
○ Restructure pipeline logic to cope with long clock-to-Q delays of compiler-generated SRAMs
○ Details in background section of Lab 2 document

● Implements privileged ISA


