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Last time in Lecture 7
▪ Prefetching, hardware or software

– correctness, timeliness

– instructions easier to prefetch than data

– software difficult to use ideally
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Bare Machine
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In a bare machine, the only kind of address is a physical 
address, corresponding to address lines of actual hardware 
memory.
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Managing Memory in Bare Machines

▪ Early machines only ran one program at a time, with this 
program having unrestricted access to all memory and all 
I/O devices

– This simple memory management model was also used in turn by the 
first minicomputer and first microcomputer systems

▪ Subroutine libraries became popular, were written in 
location-independent form

– Different programs use different combination of routines

▪ To run program on bare machines, use linker or loader
program to relocate library modules to actual locations in 
physical memory
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Dynamic Address Translation

▪ Motivation
– In early machines, I/O was slow and each I/O transfer 

involved the CPU (programmed I/O)

– Higher throughput possible if CPU and I/O of 2 or more 
programs were overlapped, how?

→ multiprogramming with DMA I/O devices, interrupts

▪ Location-independent programs
– Programming and storage management ease

→ need for a base register

▪ Protection
– Independent programs should not affect each other 

inadvertently

→ need for a bound register

▪ Multiprogramming drives requirement for 
resident supervisor software to manage context 
switches between multiple programs

5

P
h

ys
ic

al
 M

em
o

ry

Program 1

Program 2

OS



Simple Base and Bound Translation
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Separate Areas for Program and Data
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Base and Bound Machine
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Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers)
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External Fragmentation with Segments
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Paged Memory Systems

▪ Program-generated (virtual or logical) address split into:

12

Virtual Address Space 
Pages for Job 1

Page Table 
for Job 1

▪ Page Table contains physical address of start of each fixed-sized 
page in virtual address space

Physical 
Memory

Pages

Page Number Offset

0
1
2
3

0
1
2
3

1

0

3

2

▪ Paging makes it possible to store a large contiguous virtual 
memory space using non-contiguous physical memory pages



Private Address Space per User
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Paging Simplifies Allocation

▪ Fixed-size pages can be kept on OS free list and 
allocated as needed to any process

▪ Process memory usage can easily grow and shrink 
dynamically

▪ Paging suffers from internal fragmentation where 
not all bytes on a page are used

– Much less of an issue than external fragmentation or compaction 
for common page sizes (4-8KB)

– But one reason that many oppose move to larger page sizes
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Page Tables Live in Memory
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Coping with Limited Primary Storage

▪ Paging reduces fragmentation, but still many problems 
would not fit into primary memory, have to copy data to 
and from secondary storage (drum, disk)

▪ Two early approaches:
– Manual overlays, programmer explicitly copies code and data in and out 

of primary memory

• Tedious coding, error-prone (jumping to non-resident code?)

– Software interpretive coding (Brooker 1960).  Dynamic interpreter 
detects variables that are swapped out to drum and brings them back in

• Simple for programmer, but inefficient
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Not just ancient black art, e.g., IBM Cell microprocessor using in 
Playstation-3 had explicitly managed local store!

Many new “deep learning” accelerators have similar structure.



Demand Paging in Atlas (1962)
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Hardware Organization of Atlas 
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Atlas Demand-Paging Scheme

On a page fault: 

▪ Input transfer into a free page is initiated

▪ The Page Address Register (PAR) is updated

▪ If no free page is left, a page is selected to be replaced 
(based on usage)

▪ The replaced page is written on the drum
– to minimize drum latency effect, the first empty page on the drum was 

selected

▪ The page table is updated to point to the new location of 
the page on the drum

19



Size of Linear Page Table

▪With 32-bit addresses, 4-KB pages & 4-byte PTEs:
– 2^20 PTEs, i.e, 4 MB page table per user

– 4 GB of swap needed to back up full virtual address
space

▪ Larger pages?
– Internal fragmentation (Not all memory in page is used)

– Larger page fault penalty (more time to read from disk)

▪What about 64-bit virtual address space???
– Even 1MB pages would require 2^44  8-byte PTEs (35 TB!)

What is the “saving grace” ? 
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Hierarchical Page Table
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Analogy to recursion
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Two-Level Page Tables in Physical Memory
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Address Translation & Protection
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• Every instruction and data access needs address 
  translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient
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Translation-Lookaside Buffers (TLB)
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Address translation is very expensive!
In a two-level page table, each reference becomes several 
memory accesses

Solution: Cache translations in TLB
  TLB hit   Single-Cycle Translation

      TLB miss  Page-Table Walk to refill 
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TLB Designs

▪ Typically 32-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality across 

pages ➔ more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level (L1 and L2) TLBs

▪ Random or FIFO replacement policy

▪ TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page per entry

– TLB Reach = 
_____________________________________________?
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64 entries * 4 KB = 256 KB (if contiguous)



Handling a TLB Miss

▪Software (MIPS, Alpha)
– TLB miss causes an exception and the operating system 

walks the page tables and reloads TLB. A privileged 
“untranslated”  addressing mode used for walk.

– Software TLB miss can be very expensive on out-of-order 
superscalar processor as requires a flush of pipeline to 
jump to trap handler.

▪Hardware (SPARC v8, x86, PowerPC, RISC-V)
– A memory management unit (MMU) walks the page tables 

and reloads the TLB.

– If a missing (data or PT) page is encountered during the TLB 
reloading, MMU gives up and signals a Page Fault 
exception for the original instruction.

▪NOTE: A given ISA can use either TLB miss strategy
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Hierarchical Page Table Walk: SPARC v8
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)
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▪ Assumes page tables held in untranslated physical memory
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Page-Fault Handler

▪ When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits for the 
requested page to be read from disk

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

▪ Since it takes a long time to transfer a page (msecs), page 
faults are handled completely in software by OS

– Untranslated addressing mode is essential to allow kernel to access page 
tables

▪ Keeping TLBs coherent with page table changes might 
require expensive “TLB shootdown”

– Interrupt other processors to invalidate stale TLB entries

– Some mainframes had hardware TLB coherence
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Handling VM-related exceptions

▪ Handling a TLB miss needs a hardware or software 
mechanism to refill TLB 

▪ Handling page fault (e.g., page is on disk) needs 
restartable exception so software handler can resume 
after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

▪ A protection violation may abort process
– But often handled the same as a page fault
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