
CS 152 Computer Architecture and Engineering

CS252 Graduate Computer Architecture

Lecture 8 – Address Translation

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

https://cwfletcher.github.io/

http://inst.eecs.berkeley.edu/~cs152

Last time in Lecture 7
▪ Prefetching, hardware or software

– correctness, timeliness

– instructions easier to prefetch than data

– software difficult to use ideally

2

Bare Machine

3

In a bare machine, the only kind of address is a physical
address, corresponding to address lines of actual hardware
memory.

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address Physical Address

Managing Memory in Bare Machines

▪ Early machines only ran one program at a time, with this
program having unrestricted access to all memory and all
I/O devices

– This simple memory management model was also used in turn by the
first minicomputer and first microcomputer systems

▪ Subroutine libraries became popular, were written in
location-independent form

– Different programs use different combination of routines

▪ To run program on bare machines, use linker or loader
program to relocate library modules to actual locations in
physical memory

4

Dynamic Address Translation

▪ Motivation
– In early machines, I/O was slow and each I/O transfer

involved the CPU (programmed I/O)

– Higher throughput possible if CPU and I/O of 2 or more
programs were overlapped, how?

→ multiprogramming with DMA I/O devices, interrupts

▪ Location-independent programs
– Programming and storage management ease

→ need for a base register

▪ Protection
– Independent programs should not affect each other

inadvertently

→ need for a bound register

▪ Multiprogramming drives requirement for
resident supervisor software to manage context
switches between multiple programs

5

P
h

ys
ic

al
 M

em
o

ry

Program 1

Program 2

OS

Simple Base and Bound Translation

6

Load X

Program
Address
Space

Bound
Register

Bounds
Violation?

P
h

ys
ic

al
 M

em
o

ry

Current
Segment

Base
Register

+

Physical
Address

Logical
Address

Base and bounds registers are visible/accessible only when
processor is running in the supervisor mode

Base Physical Address

Segment Length

≥

Separate Areas for Program and Data

7

Physical
Address

Physical
Address

Load X

Program
Address
Space

P
h

ys
ic

al
 M

em
o

ry

Data
Segment

Data Bound
Register

Data Base
Register +

Bounds
Violation?

Program Bound
Register

Program Base
Register +

Program
Segment

Logical
Address

Logical
Address

What is an advantage of this separation?
What about more base/bound pairs?

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

≥

≥
Bounds

Violation?

Program Counter

Base and Bound Machine

8

Can fold addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers)

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

+

Logical
Address

Bounds Violation?

Physical
Address

Program Base
Register

+

Logical
Address

Bounds Violation?

≥ ≥

Program Bound
Register

External Fragmentation with Segments

9

72K

Job 1
32K

Job 2
24K

8K

Job 1
32K

Job 2
24K

Job 3
64K

Job 3
starts

Job 1
32K

24K

Job 3
64K

8K

Job 2
finishes

Job 4
32K

Job 4
arrives

Can’t run Job 4, as
not enough
contiguous space.
Must compact.

Paged Memory Systems

▪ Program-generated (virtual or logical) address split into:

12

Virtual Address Space
Pages for Job 1

Page Table
for Job 1

▪ Page Table contains physical address of start of each fixed-sized
page in virtual address space

Physical
Memory

Pages

Page Number Offset

0
1
2
3

0
1
2
3

1

0

3

2

▪ Paging makes it possible to store a large contiguous virtual
memory space using non-contiguous physical memory pages

Private Address Space per User

13

Virtual Address Space
Pages for Job 1

Page Table
for Job 1 Physical

Memory
Pages

0
1
2
3

0
1
2
3

1

0

1
3
3
3
2

0
0

2

2

1

Operating
System
Pages

Virtual Address Space
Pages for Job 2

Page Table
for Job 2

0
1
2
3

0
1
2
3

Virtual Address Space
Pages for Job 3

Page Table
for Job 3

0
1
2
3

0
1
2
3

Paging Simplifies Allocation

▪ Fixed-size pages can be kept on OS free list and
allocated as needed to any process

▪ Process memory usage can easily grow and shrink
dynamically

▪ Paging suffers from internal fragmentation where
not all bytes on a page are used

– Much less of an issue than external fragmentation or compaction
for common page sizes (4-8KB)

– But one reason that many oppose move to larger page sizes

14

Page Tables Live in Memory

15

Virtual Address Space
Pages for Job 1

Physical
Memory

Pages

0
1
2
3

Page Table
for Job 1

1

0

1
3
3

2

0

2
Virtual Address Space

Pages for Job 2

0
1
2
3

Page Table
for Job 2

Simple linear page tables
are too large, so
hierarchical page tables
are commonly used (see
later)

Common for modern OS
to place page tables in
kernel’s virtual memory
(page tables can be
swapped to secondary
storage)

Coping with Limited Primary Storage

▪ Paging reduces fragmentation, but still many problems
would not fit into primary memory, have to copy data to
and from secondary storage (drum, disk)

▪ Two early approaches:
– Manual overlays, programmer explicitly copies code and data in and out

of primary memory

• Tedious coding, error-prone (jumping to non-resident code?)

– Software interpretive coding (Brooker 1960). Dynamic interpreter
detects variables that are swapped out to drum and brings them back in

• Simple for programmer, but inefficient

16

Not just ancient black art, e.g., IBM Cell microprocessor using in
Playstation-3 had explicitly managed local store!

Many new “deep learning” accelerators have similar structure.

Demand Paging in Atlas (1962)

17

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
MemoryUser sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”
 Tom Kilburn

Primary memory as a cache
for secondary memory

Hardware Organization of Atlas

18

Initial
Address
Decode

16 ROM pages
0.4-1 sec

2 subsidiary pages
 1.4 sec

Main
 32 pages
 1.4 sec

Drum (4)
192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR) per
page frame

Compare the effective page address against all 32 PARs
 match  normal access
 no match  page fault
 save the state of the partially executed instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

Atlas Demand-Paging Scheme

On a page fault:

▪ Input transfer into a free page is initiated

▪ The Page Address Register (PAR) is updated

▪ If no free page is left, a page is selected to be replaced
(based on usage)

▪ The replaced page is written on the drum
– to minimize drum latency effect, the first empty page on the drum was

selected

▪ The page table is updated to point to the new location of
the page on the drum

19

Size of Linear Page Table

▪With 32-bit addresses, 4-KB pages & 4-byte PTEs:
– 2^20 PTEs, i.e, 4 MB page table per user

– 4 GB of swap needed to back up full virtual address
space

▪ Larger pages?
– Internal fragmentation (Not all memory in page is used)

– Larger page fault penalty (more time to read from disk)

▪What about 64-bit virtual address space???
– Even 1MB pages would require 2^44 8-byte PTEs (35 TB!)

What is the “saving grace” ?

20

Hierarchical Page Table

21

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address from CPU

(Processor
Register, satp in

RISC-V)

PTE of a nonexistent page

p1 p2 offset

01112212231

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

em
o

ry

RISC-V Sv32 Virtual Memory Scheme

Analogy to recursion

22

Page Table for
PT

“PT2”

Page Table
for Data

”PT”

Data Pages

offset

Page Table for PT2
“PT3”

Data too big for
physical memory

PT too big for
physical memory

Two-Level Page Tables in Physical Memory

23

VA1

User 1

User1/VA1

User2/VA1

Level 1 PT
User 1

Level 1 PT
User 2

VA1

User 2

Level 2 PT
User 2

Virtual
Address
Spaces

Physical
Memory

Address Translation & Protection

24

• Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Exception?

Supervisor/User Mode

Read/Write
Protection

Check

Translation-Lookaside Buffers (TLB)

25

Address translation is very expensive!
In a two-level page table, each reference becomes several
memory accesses

Solution: Cache translations in TLB
 TLB hit  Single-Cycle Translation

 TLB miss  Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

TLB Designs

▪ Typically 32-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality across

pages ➔ more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level (L1 and L2) TLBs

▪ Random or FIFO replacement policy

▪ TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page per entry

– TLB Reach =
___?

26

64 entries * 4 KB = 256 KB (if contiguous)

Handling a TLB Miss

▪Software (MIPS, Alpha)
– TLB miss causes an exception and the operating system

walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk.

– Software TLB miss can be very expensive on out-of-order
superscalar processor as requires a flush of pipeline to
jump to trap handler.

▪Hardware (SPARC v8, x86, PowerPC, RISC-V)
– A memory management unit (MMU) walks the page tables

and reloads the TLB.

– If a missing (data or PT) page is encountered during the TLB
reloading, MMU gives up and signals a Page Fault
exception for the original instruction.

▪NOTE: A given ISA can use either TLB miss strategy
27

Hierarchical Page Table Walk: SPARC v8

28

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

29

▪ Assumes page tables held in untranslated physical memory

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address

Physical
Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Page Fault?
Protection violation?

Page-Fault Handler

▪ When the referenced page is not in DRAM:
– The missing page is located (or created)

– It is brought in from disk, and page table is updated

• Another job may be run on the CPU while the first job waits for the
requested page to be read from disk

– If no free pages are left, a page is swapped out

• Pseudo-LRU replacement policy, implemented in software

▪ Since it takes a long time to transfer a page (msecs), page
faults are handled completely in software by OS

– Untranslated addressing mode is essential to allow kernel to access page
tables

▪ Keeping TLBs coherent with page table changes might
require expensive “TLB shootdown”

– Interrupt other processors to invalidate stale TLB entries

– Some mainframes had hardware TLB coherence

30

Handling VM-related exceptions

▪ Handling a TLB miss needs a hardware or software
mechanism to refill TLB

▪ Handling page fault (e.g., page is on disk) needs
restartable exception so software handler can resume
after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

▪ A protection violation may abort process
– But often handled the same as a page fault

31

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Acknowledgements

▪ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– John Kubiatowicz (UCB)

– David Patterson (UCB)

– Krste Asanovic (UCB)

– Sophia Shao (UCB)

32

	Slide 1: CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 8 – Address Translation
	Slide 2: Last time in Lecture 7
	Slide 3: Bare Machine
	Slide 4: Managing Memory in Bare Machines
	Slide 5: Dynamic Address Translation
	Slide 6: Simple Base and Bound Translation
	Slide 7: Separate Areas for Program and Data
	Slide 8: Base and Bound Machine
	Slide 9: External Fragmentation with Segments
	Slide 12: Paged Memory Systems
	Slide 13: Private Address Space per User
	Slide 14: Paging Simplifies Allocation
	Slide 15: Page Tables Live in Memory
	Slide 16: Coping with Limited Primary Storage
	Slide 17: Demand Paging in Atlas (1962)
	Slide 18: Hardware Organization of Atlas
	Slide 19: Atlas Demand-Paging Scheme
	Slide 20: Size of Linear Page Table
	Slide 21: Hierarchical Page Table
	Slide 22: Analogy to recursion
	Slide 23: Two-Level Page Tables in Physical Memory
	Slide 24: Address Translation & Protection
	Slide 25: Translation-Lookaside Buffers (TLB)
	Slide 26: TLB Designs
	Slide 27: Handling a TLB Miss
	Slide 28: Hierarchical Page Table Walk: SPARC v8
	Slide 29: Page-Based Virtual-Memory Machine (Hardware Page-Table Walk)
	Slide 30: Page-Fault Handler
	Slide 31: Handling VM-related exceptions
	Slide 32: Acknowledgements

