
CS152 Discussion Section 5

Midterm 1 Review

Feb 19
Spring 2024

Administrivia

● Midterm 1
○ Feb 27th during lecture time and place

● See the midterm logistics page on the website
○ 1 two-sided cheat sheet

■ Must be printed (cannot be used with an electronics)

General Advice

● Some problems may involve new variations on a basic design, but a solid
understanding of the fundamentals will help you reason about new designs

○ e.g., what are the implications of making a particular modification?
● Consider how architectural features interact with each other

○ e.g., how does virtual memory impact cache design?
○ “Cross-cutting issues” sections in textbook can give perspective

● State your assumptions

Virtual Memory

● Motivations for address translation
● Paging vs segmentation
● Hierarchical page tables

○ How many PTEs are in each level of the page table?
○ What portion of the virtual address space do non-leaf PTEs map?

● Page table walk
○ How does the page table walker determine the location of the next level page table?

● TLBs
○ Compare TLBs to normal data caches
○ What happens on a context switch?

Virtual Memory

● Motivations for address translation
○ Wanted to overlap program execution because IO is slow. Location independent programs

(base register), programs should not affect one another (bound register)
● Paging vs segmentation

○ Paging simplifies allocation, worst case disk traffic is bounded, may increase fragmentation
● Hierarchical page tables

○ How many PTEs are in each level of the page table?
○ What portion of the virtual address space do non-leaf PTEs map?

● Page table walk
○ How does the page table walker determine the location of the next level page table?

● TLBs
○ Compare TLBs to normal data caches
○ What happens on a context switch? TLB flush

Microprogramming

● Decompose a complex instruction into multiple states (microinstructions)
○ Write pseudocode first

● Specify outputs for current state and state transition
● Optimize microinstructions to perform multiple actions if possible

○ Constraint is usually the single shared bus
● Simplify control signals by using don’t-cares (*)

○ Prioritize correctness first
● Be familiar with the single-bus machine from Handout 1

○ Excerpts from Handout 1 will be included for reference in exam materials
○ Note: Old exam solutions use a different RegEn/RegWr and MemEn/MemWr convention

Microprogramming (2020 MT1 Q2)

State Pseudocode ldIR Reg
Sel

RegWr en
Reg

ldA ldB ALU
Op

en
ALU

ld
MA

Mem
Wr

en
Mem

Imm
Sel

en
Imm

μBr Next State

FETCH0 MA := PC;
A := PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

IR := Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S *

PC := A + 4 0 PC 1 0 0 * INC_A
_4

1 * 0 0 * 0 D *

...

State Pseudocode ldIR Reg
Sel

RegWr en
Reg

ldA ldB ALU
Op

en
ALU

ld
MA

Mem
Wr

en
Mem

Imm
Sel

en
Imm

μBr Next State

(cont’d)

Iron Law of Processor Performance

● Terms: instructions/program, cycles/instruction, time/cycle
● Know which terms are influenced by:

○ Software
○ Architecture
○ Microarchitecture
○ Process technology

● Evaluate trade-offs between different design decisions
● State all assumptions (be reasonable)

Hazards

● Structural hazards
○ Shared bus, register file ports, unpipelined functional units, etc.

● Data hazards: RAW, WAR, WAW
○ How can WAW hazards arise in an in-order pipeline?
○ Consider through memory as well

● Control hazards
○ Where in a pipeline are unconditional direct jumps (JAL), unconditional indirect jumps (JALR),

and conditional branches resolved?
○ Know what the jump/branch penalties are for a given pipeline

Pipelining

● What are the bypass paths in a fully-bypassed 5-stage datapath?
○ Does it ever make sense to bypass from the end of a stage to the start of a stage?
○ When can you “remove” a bypass path? What can make a bypass path unnecessary?

● Latency vs throughput/bandwidth vs occupancy
● How to calculate CPI

○ Measure from when the first instruction finishes to when last instruction finishes
○ CPI of 5-stage pipeline ≠ 5 when no stalls

● What is a critical path in synchronous digital logic?

Exceptions

● Synchronous traps vs asynchronous interrupts
● Precise vs imprecise exceptions
● How to implement precise exceptions in a pipeline

○ Where is the commit point in a pipeline?

Pipelining (2020 MT1 Q3)

Pipelining (2020 MT1 Q3)

What is the latency of a divide operation when the iterative divider produces 2 bits
per cycle until it outputs a full 32-bit result?

Pipelining (2020 MT1 Q3)

What is the latency of a divide operation when the iterative divider produces 2 bits
per cycle until it outputs a full 32-bit result?

32 / 2 = 16 cycles

Pipelining (2020 MT1 Q3)

What is the occupancy of a divide operation in cycles?

Pipelining (2020 MT1 Q3)

What is the occupancy of a divide operation in cycles?

16 cycles

Pipelining (2020 MT1 Q3)

Pipelining (2020 MT1 Q3)

Caches

● Temporal and spatial locality
● 3 C’s of cache misses: compulsory, conflict, capacity
● Cache organization: associativity, replacement policy, write policy
● Memory system optimizations
● AMAT = hit time + miss rate * miss penalty

○ Know how to generalize equation for multi-level memory hierarchy
○ What design aspects affect each term?

● For a given cache configuration, where can lines be placed?
○ Which addresses correspond to which sets?

Conflict vs Capacity Misses

● Conflict misses: avoided with wider associativity and better replacement policy
○ More clearly identifiable when cache is underutilized due to poor placement

● Capacity misses: avoided only by increasing overall capacity
○ Harder to differentiate from conflict misses when access pattern is less regular

● Comparing miss ratios (miss rates) is sometimes more useful than attempting to
categorize individual misses
○ Capacity component of miss ratio for cache C =

miss ratio of fully-associative cache similar to C (same capacity, same line size)
with ideal replacement minus compulsory miss ratio of C

Calculating Misses (PS2 Q2)

4 KiB direct-mapped cache with 32-byte cache lines

int A[128][32]; // row-major order

● Elements are striped across sets in groups of 8
● Large strided accesses (i.e., along a column) leave

some cache sets unused
○ One column of 128 elements does not fit in 128 sets at once

● Same pattern even when base address of A is not
aligned to cache size (4 KiB boundary)

○ Starting set index will be greater than 0
○ When determining whether interleaved accesses to two

arrays will cause conflicts, the absolute addresses do not
matter - only their relative displacement

Set Elements

0 A[0][0..7]
A[32][0..7]
A[64][0..7]
A[96][0..7]

1 A[0][8..15]
A[32][8..15]
A[64][8..15]
A[96][8..15]

2 A[0][16..23]
A[32][16..23]
A[64][16..23]
A[96][16..23]

3 A[0][24..31]
A[32][24..31]
A[64][24..31]
A[96][24..31]

4 A[1][0..7]
A[33][0..7]
A[65][0..7]
A[97][0..7]

... ...

127 A[31][24..31]
A[63][24..31]
A[95][24..31]
A[127][24..31]

Prefetching

● HW prefetching vs SW prefetching
● What types of misses do they prevent?
● Usefulness vs Timeliness

○ What happens when prefetches are not useful?
○ What happens when prefetches are not timely?

