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Administrivia

● Midterm 1
○ Feb 27th during lecture time and place

● See the midterm logistics page on the website
○ 1 two-sided cheat sheet

■ Must be printed (cannot be used with an electronics)



General Advice

● Some problems may involve new variations on a basic design, but a solid 
understanding of the fundamentals will help you reason about new designs

○ e.g.,  what are the implications of making a particular modification?
● Consider how architectural features interact with each other

○ e.g., how does virtual memory impact cache design?
○ “Cross-cutting issues” sections in textbook can give perspective

● State your assumptions



Virtual Memory

● Motivations for address translation
● Paging vs segmentation
● Hierarchical page tables

○ How many PTEs are in each level of the page table?
○ What portion of the virtual address space do non-leaf PTEs map?

● Page table walk
○ How does the page table walker determine the location of the next level page table?

● TLBs
○ Compare TLBs to normal data caches
○ What happens on a context switch?



Virtual Memory

● Motivations for address translation
○ Wanted to overlap program execution because IO is slow. Location independent programs 

(base register), programs should not affect one another (bound register)
● Paging vs segmentation

○ Paging simplifies allocation, worst case disk traffic is bounded, may increase fragmentation
● Hierarchical page tables

○ How many PTEs are in each level of the page table?
○ What portion of the virtual address space do non-leaf PTEs map?

● Page table walk
○ How does the page table walker determine the location of the next level page table?

● TLBs
○ Compare TLBs to normal data caches
○ What happens on a context switch? TLB flush



Microprogramming

● Decompose a complex instruction into multiple states (microinstructions)
○ Write pseudocode first

● Specify outputs for current state and state transition
● Optimize microinstructions to perform multiple actions if possible

○ Constraint is usually the single shared bus
● Simplify control signals by using don’t-cares (*)

○ Prioritize correctness first
● Be familiar with the single-bus machine from Handout 1

○ Excerpts from Handout 1 will be included for reference in exam materials
○ Note: Old exam solutions use a different RegEn/RegWr and MemEn/MemWr convention



Microprogramming (2020 MT1 Q2)





State Pseudocode ldIR Reg
Sel

RegWr en
Reg

ldA ldB ALU
Op

en
ALU

ld
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FETCH0 MA := PC;
A := PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

IR := Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S *

PC := A + 4 0 PC 1 0 0 * INC_A
_4

1 * 0 0 * 0 D *

...
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(cont’d)





Iron Law of Processor Performance

● Terms: instructions/program, cycles/instruction, time/cycle
● Know which terms are influenced by:

○ Software
○ Architecture
○ Microarchitecture
○ Process technology

● Evaluate trade-offs between different design decisions
● State all assumptions (be reasonable)



Hazards

● Structural hazards
○ Shared bus, register file ports, unpipelined functional units, etc.

● Data hazards: RAW, WAR, WAW
○ How can WAW hazards arise in an in-order pipeline?
○ Consider through memory as well

● Control hazards
○ Where in a pipeline are unconditional direct jumps (JAL), unconditional indirect jumps (JALR), 

and conditional branches resolved?
○ Know what the jump/branch penalties are for a given pipeline



Pipelining

● What are the bypass paths in a fully-bypassed 5-stage datapath?
○ Does it ever make sense to bypass from the end of a stage to the start of a stage?
○ When can you “remove” a bypass path? What can make a bypass path unnecessary?

● Latency vs throughput/bandwidth vs occupancy
● How to calculate CPI

○ Measure from when the first instruction finishes to when last instruction finishes
○ CPI of 5-stage pipeline ≠ 5 when no stalls

● What is a critical path in synchronous digital logic?



Exceptions

● Synchronous traps vs asynchronous interrupts
● Precise vs imprecise exceptions
● How to implement precise exceptions in a pipeline

○ Where is the commit point in a pipeline?



Pipelining (2020 MT1 Q3)



Pipelining (2020 MT1 Q3)

What is the latency of a divide operation when the iterative divider produces 2 bits 
per cycle until it outputs a full 32-bit result?



Pipelining (2020 MT1 Q3)

What is the latency of a divide operation when the iterative divider produces 2 bits 
per cycle until it outputs a full 32-bit result?

32 / 2 = 16 cycles



Pipelining (2020 MT1 Q3)

What is the occupancy of a divide operation in cycles?



Pipelining (2020 MT1 Q3)

What is the occupancy of a divide operation in cycles?

16 cycles



Pipelining (2020 MT1 Q3)



Pipelining (2020 MT1 Q3)



Caches

● Temporal and spatial locality
● 3 C’s of cache misses: compulsory, conflict, capacity
● Cache organization: associativity, replacement policy, write policy
● Memory system optimizations
● AMAT = hit time + miss rate * miss penalty

○ Know how to generalize equation for multi-level memory hierarchy
○ What design aspects affect each term?

● For a given cache configuration, where can lines be placed?
○ Which addresses correspond to which sets?



Conflict vs Capacity Misses

● Conflict misses: avoided with wider associativity and better replacement policy
○ More clearly identifiable when cache is underutilized due to poor placement

● Capacity misses: avoided only by increasing overall capacity
○ Harder to differentiate from conflict misses when access pattern is less regular

● Comparing miss ratios (miss rates) is sometimes more useful than attempting to 
categorize individual misses
○ Capacity component of miss ratio for cache C =

miss ratio of fully-associative cache similar to C (same capacity, same line size) 
with ideal replacement minus compulsory miss ratio of C



Calculating Misses (PS2 Q2)

4 KiB direct-mapped cache with 32-byte cache lines

int A[128][32]; // row-major order

● Elements are striped across sets in groups of 8
● Large strided accesses (i.e., along a column) leave 

some cache sets unused
○ One column of 128 elements does not fit in 128 sets at once

● Same pattern even when base address of A is not 
aligned to cache size (4 KiB boundary)

○ Starting set index will be greater than 0
○ When determining whether interleaved accesses to two 

arrays will cause conflicts, the absolute addresses do not 
matter - only their relative displacement

Set Elements

0 A[ 0][0..7]
A[32][0..7]
A[64][0..7]
A[96][0..7]

1 A[ 0][8..15]
A[32][8..15]
A[64][8..15]
A[96][8..15]

2 A[ 0][16..23]
A[32][16..23]
A[64][16..23]
A[96][16..23]

3 A[ 0][24..31]
A[32][24..31]
A[64][24..31]
A[96][24..31]

4 A[ 1][0..7]
A[33][0..7]
A[65][0..7]
A[97][0..7]

... ...

127 A[ 31][24..31]
A[ 63][24..31]
A[ 95][24..31]
A[127][24..31]



Prefetching

● HW prefetching vs SW prefetching
● What types of misses do they prevent?
● Usefulness vs Timeliness

○ What happens when prefetches are not useful?
○ What happens when prefetches are not timely?


