
CS152 Section 6
Out-of-Order Execution
Week of March 4, 2024



● Out-of-order execution

Agenda



● Hope the midterm went well!
● Lab 2 due March 8th
● PS3 due March 18th
● Lab 3 is due March 20th

Admin



Why is Out-of-Order Execution Useful?

● Exploit instruction-level parallelism (ILP) to keep processor busy
○ Make suboptimal code run fast

● Dynamically schedule around long-latency instructions
ld x2, 0(x1)       # cache miss: 200 cycles
add x5, x3, x4

ld x7, 4(x6)

● Initiate long-latency instructions earlier



What Limits OoO Performance?

● Want to issue instruction C right after A, but cannot reorder it earlier 
due to WAR hazard on B  (f3)

● Suppose only four F registers exist, and it is not feasible for compiler 
to choose f2 as the destination of C since f2 is read by a later 
instruction

A: fmul f1, f0, f2
B: fadd f0, f3, f1
C: fmul f3, f2, f3
D: fadd f3, f3, f1



What Limits OoO Performance?

● WAW/WAR hazards
○ Caused by reuse of limited set of architectural (named) registers
○ Would not exist if an infinite number of registers were available
○ Not a “true” data dependency

● How can x86 (8 “GPRs”) and x86-64 (16 GPRs) implementations achieve 
high performance?

● How can we use more registers than what the ISA specifies?



Register Renaming

● Main idea: Decouple architectural registers (used for expressing dataflow) 
from physical registers (used for storage)

○ For each in-flight instruction, rename the destination register with a unique tag that refers to a 
separate buffer to hold result

○ Somehow maintain relationship between tags and ISA registers



Register Renaming

A: fmul f1, f0, f2
B: fadd f0, f3, f1
C: fmul f3, f2, f3
D: fadd f3, f3, f1

fmul P4, P0, P2
fadd P5, P3, P4
fmul P6, P2, P3
fadd P7, P6, P4

Rename Table

Initial Final

f0 P0 P5

f1 P1 P4

f2 P2 P2

f3 P3 P7



Tomasulo’s Algorithm

● On instruction dispatch (in program order):
1. Allocate reservation station (RS) entry
2. If source register has “present” (P) bit set in register file (RF) entry, copy value into tag/data 

field in RS and set P bit for operand
3. Otherwise, copy tag from RF into RS and clear P bit for operand
4. Replace RF entry for destination register with tag assigned to RS entry (tagdest)

● Prior to execution:
1. For missing operands, monitor result bus for tag match; replace tag with value; set P
2. When all operands are present, issue to functional unit

● On completion:
1. Broadcast <tagdest, result> on result bus for RF and other RS entries to consume
2. Deallocate RS entry



Q1: Tomasulo’s Algorithm

Simulate execution of the following code using Tomasulo’s Algorithm:

A: fmul f1, f0, f2    # produces value V3
B: fadd f0, f3, f1    # produces value V4
C: fmul f3, f2, f3    # produces value V5
D: fadd f3, f3, f1    # produces value V6

● At most one instruction dispatched per cycle
○ Can begin execution the same cycle as dispatch if all operands are present

● Fully-pipelined functional units
○ 2-cycle floating-point add latency
○ 3-cycle floating-point multiply latency

● Broadcasting result takes another cycle
○ Result bus can broadcast two results simultaneously



Dispatched instruction: A

Register File

p tag/data

f0 1 V0

f1 0 T3

f2 1 V1

f3 1 V2

Reservation Stations

p tag/data p tag/data

T3 1 V0 1 V1

T4

Reservation Stations

p tag/data p tag/data

T0

T1

T2
Multiplier

stage dest tag

1 T3

2

3

Adder

stage dest tag

1

2

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 1
On instruction dispatch (in program order):

1. Allocate reservation station (RS) entry
2. If source register has “present” (P) bit set in register file (RF) entry, copy value 

into tag/data field in RS and set P bit for operand
3. Otherwise, copy tag from RF into RS and clear P bit for operand
4. Replace RF entry for destination register with tag assigned to RS entry (tagdest)



Dispatched instruction: B

Register File

p tag/data

f0 0 T0

f1 0 T3

f2 1 V1

f3 1 V2

Reservation Stations

p tag/data p tag/data

T3 1 V0 1 V1

T4

Reservation Stations

p tag/data p tag/data

T0 1 V2 0 T3

T1

T2
Multiplier

stage dest tag

1

2 T3

3

Adder

stage dest tag

1

2

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 2
On instruction dispatch (in program order):

1. Allocate reservation station (RS) entry
2. If source register has “present” (P) bit set in register file (RF) entry, copy value 

into tag/data field in RS and set P bit for operand
3. Otherwise, copy tag from RF into RS and clear P bit for operand
4. Replace RF entry for destination register with tag assigned to RS entry (tagdest)



Dispatched instruction: C

Register File

p tag/data

f0 0 T0

f1 0 T3

f2 1 V1

f3 0 T4

Reservation Stations

p tag/data p tag/data

T3 1 V0 1 V1

T4 1 V1 1 V2

Reservation Stations

p tag/data p tag/data

T0 1 V2 0 T3

T1

T2
Multiplier

stage dest tag

1 T4

2

3 T3

Adder

stage dest tag

1

2

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 3
On instruction dispatch (in program order):

1. Allocate reservation station (RS) entry
2. If source register has “present” (P) bit set in register file (RF) entry, copy value 

into tag/data field in RS and set P bit for operand
3. Otherwise, copy tag from RF into RS and clear P bit for operand
4. Replace RF entry for destination register with tag assigned to RS entry (tagdest)



Dispatched instruction: D

Register File

p tag/data

f0 0 T0

f1 1 V3

f2 1 V1

f3 0 T1

Reservation Stations

p tag/data p tag/data

T3

T4 1 V1 1 V2

Reservation Stations

p tag/data p tag/data

T0 1 V2 1 V3

T1 0 T4 1 V3

T2
Multiplier

stage dest tag

1

2 T4

3

Adder

stage dest tag

1 T0

2

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 4
On completion:

1. Broadcast <tagdest, result> on result bus for RF and other RS entries to 
consume

2. Deallocate RS entry
3. For missing operands, monitor result bus for tag match; replace tag with value; 

set P



Dispatched instruction: N/A

Register File

p tag/data

f0 0 T0

f1 1 V3

f2 1 V1

f3 0 T1

Reservation Stations

p tag/data p tag/data

T3

T4 1 V1 1 V2

Reservation Stations

p tag/data p tag/data

T0 1 V2 1 V3

T1 0 T4 1 V3

T2
Multiplier

stage dest tag

1

2

3 T4

Adder

stage dest tag

1

2 T0

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 5
On completion:

1. Broadcast <tagdest, result> on result bus for RF and other RS entries to 
consume

2. Deallocate RS entry
3. For missing operands, monitor result bus for tag match; replace tag with value; 

set P



Dispatched instruction: N/A

Register File

p tag/data

f0 1 V4

f1 1 V3

f2 1 V1

f3 0 T1

Reservation Stations

p tag/data p tag/data

T3

T4

Reservation Stations

p tag/data p tag/data

T0

T1 1 V5 1 V3

T2
Multiplier

stage dest tag

1

2

3

Adder

stage dest tag

1 T1

2

A: fmul f1, f0, f2    # V3
B: fadd f0, f3, f1    # V4
C: fmul f3, f2, f3    # V5
D: fadd f3, f3, f1    # V6

Cycle 6
On completion:

1. Broadcast <tagdest, result> on result bus for RF and other RS entries to 
consume

2. Deallocate RS entry
3. For missing operands, monitor result bus for tag match; replace tag with value; 

set P



Tomasulo’s Algorithm

Q: Why can’t the reservation station entry for an instruction be deallocated 
immediately on issue?

A: fmul f4, f0, f1    # Dispatched and issued immediately; RS is freed
B: fmul f5, f2, f3    # Allocated same RS as A before A has written back

f4 and f5 now assigned the same tag in regfile, causing instruction A to 
incorrectly clobber f5 on writeback



Tomasulo’s Algorithm

Q: Why are exceptions imprecise in this implementation?

● Register file is irrevocably modified on dispatch
● No mechanism to recover original value of destination register if instruction 

causes an exception



How to Regain Precise Exceptions?

Reorder Buffer (ROB) separates commit from completion:

● Completion: Result available (out-of-order)
● Commit: Architectural state updated (in-order)

v i op p rs1/tag p rs2/tag p result rd xcpt?

oldest

free



Terminology for OoOE

● Dispatch vs. Issue
○ Dispatch: instruction decoded and enters ROB/Reservation Station
○ Issue: instruction “issued” for execution (enters EX Unit)
○ Some papers and diagrams will use the term Issue for what we refer to as Dispatch

● Completion vs. Commit
○ Precise Exceptions (In-order commit despite OoO completion)
○ “Retired” also used to mean “committed”





Data-in-ROB

● ROB holds both tags and 
data

● Separate architectural 
register file



Unified Physical Register File

● Physical register file holds both committed and temporary values
● Only tags held in ROB



Q2: Renaming with Unified PRF

● On dispatch:
1. Allocate new physical register for destination from free list
2. Update decode-stage mapping

● On commit:
1. Update architectural mapping
2. Deallocate previous physical register for destination; re-add to free list

● On exception:
1. Repair decode-stage rename table by un-renaming in reverse order; walk through ROB 

entries from newest to oldest (MIPS R10k approach)



Renaming with Unified PRF (Q2)

Initial Map Table

Architectural
Register

Physical
Register

x1 p12

x2 P11 P2 P7

x3 P5, P10 P0

x4 P6, P4 P1

x5 P3

Instruction Architectural 
Destination 

Register

Physical 
Destination 

Register

Freed 
Register

ld x2, 0(x4) x2 P2 P11

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 P4 P6

addi x3, x3, 0x4 x3 P10 P5

bne x4, x1, loop - - -

ld x2, 0(x4) x2 p7 P2

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 p1 P4

addi x3, x3, 0x4 x3 p0 P10

bne x4, x1, loop - - -

Free 
List

p2

p4

p10

p7

p1

p0

p9

p8

p13

p14



Renaming with Unified PRF (Q2)

Initial Map Table

Architectural
Register

Physical
Register

x1 p12

x2 P11 P2

x3 P5

x4 P6

x5 P3

Instruction Architectural 
Destination 

Register

Physical 
Destination 

Register

Freed 
Register

ld x2, 0(x4) x2 p2 p11

sw x2, 0(x3)

addi x4, x4, 0x4

addi x3, x3, 0x4

bne x4, x1, loop

ld x2, 0(x4)

sw x2, 0(x3)

addi x4, x4, 0x4

addi x3, x3, 0x4

bne x4, x1, loop

Free 
List

p2

p4

p10

p7

p1

p0

p9

p8

p13

p14



Renaming with Unified PRF (Q2)

Initial Map Table

Architectural
Register

Physical
Register

x1 p12

x2 P11, P2, P7

x3 P5, p10, p0

x4 P6, p4, p1

x5 p3

Instruction Architectural 
Destination 

Register

Physical 
Destination 

Register

Freed 
Register

ld x2, 0(x4) x2 p2 p11

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 p4 p6

addi x3, x3, 0x4 x3 p10 p5

bne x4, x1, loop - - -

ld x2, 0(x4) x2 p7 p2

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 p1 p4

addi x3, x3, 0x4 x3 p0 p10

bne x4, x1, loop - - -

Free 
List

p2

p4

p10

p7

p1

p0

p9

p8

p13

p14



Renaming with Unified PRF (Q2)

Suppose the second load instruction caused an exception.  Show the state of the 
map table and free list before jumping to the exception handler.

Map Table

Architectural
Register

Physical
Register

x1

x2

x3

x4

x5

Free List



Renaming with Unified PRF (Q2)

Initial Map Table

Architectural
Register

Physical
Register

x1 p12

x2 P11, P2, P7, P2

x3 P5, p10, p0, p10

x4 P6, p4, p1, p4

x5 p3

Instruction Architectural 
Destination 

Register

Physical 
Destination 

Register

Freed 
Register

ld x2, 0(x4) x2 p2 p11

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 p4 p6

addi x3, x3, 0x4 x3 p10 p5

bne x4, x1, loop - - -

ld x2, 0(x4) x2 p7 p2

sw x2, 0(x3) - - -

addi x4, x4, 0x4 x4 p1 p4

addi x3, x3, 0x4 x3 p0 p10

bne x4, x1, loop - - -

Free 
List

p2

p4

p10

p7

p1

p0

p9

p8

p13

p14


