
CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 13 –VLIW

Chris Fletcher
Electrical Engineering and Computer Sciences

University of California at Berkeley

https://cwfletcher.github.io/
http://inst.eecs.berkeley.edu/~cs152

Last Time in Lecture 12

§ Branch prediction
– temporal, history of a single branch
– spatial, based on path through multiple branches

§ Branch History Table (BHT) vs. Branch History Buffer (BTB)
– tradeoff in capacity versus latency

§ Return-Address Stack (RAS)
– specialized structure to predict subroutine return addresses

§ Advanced branch prediction structures
– Perceptron
– TAGE

2

Superscalar Control Logic Scaling

§ Each issued instruction must somehow check against W*L
instructions, i.e., growth in hardware µ W*(W*L)

§ For in-order machines, L is related to pipeline latencies and check is
done during issue (interlocks or scoreboard)

§ For out-of-order machines, L also includes time spent in instruction
buffers (instruction window or ROB), and check is done by
broadcasting tags to waiting instructions at write back (completion)

§ As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Out-of-order control logic grows faster than W2 (~W3)
3

Lifetime L

Issue Group

Previously
Issued

Instructions

Issue Width W

Out-of-Order Control Complexity:
MIPS R10000

4

Control
Logic

[SGI/MIPS Technologies
Inc., 1995]

Sequential ISA Bottleneck

5

Check instruction
dependencies

Superscalar processor

a = foo(b);

for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

VLIW: Very Long Instruction Word

§ Multiple operations packed into one instruction
§ Each operation slot is for a fixed function
§ Constant operation latencies are specified
§ Architecture requires guarantee of:

– Parallelism within an instruction => no cross-operation RAW
check

– No data use before data ready => no data interlocks
6

Two Integer Units,
Single-Cycle Latency

Two Load/Store Units,
Three-Cycle Latency Two Floating-Point Units,

Four-Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

Early VLIW Machines

§ FPS AP120B (1976)
– scientific attached array processor
– first commercial wide instruction machine
– hand-coded vector math libraries using software pipelining and

loop unrolling

§ Multiflow Trace (1987)
– commercialization of ideas from Fisher’s Yale group including

“trace scheduling”
– available in configurations with 7, 14, or 28

operations/instruction
– 28 operations packed into a 1024-bit instruction word

§ Cydrome Cydra-5 (1987)
– 7 operations encoded in 256-bit instruction word
– rotating register file

7

VLIW Compiler Responsibilities

§Schedule operations to maximize parallel
execution

§Guarantees intra-instruction parallelism

§Schedule to avoid data hazards (no
interlocks)

– Typically separates operations with explicit NOPs

8

Loop Execution

9

How many FP ops/cycle?

for (i=0; i<N; i++)

 B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop: fld add x1

fadd

fsd add x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)

 add x1, 8

 fadd f2, f0, f1

 fsd f2, 0(x2)

 add x2, 8

 bne x1, x3,
loop

Compile

Schedule

Loop Unrolling

10

for (i=0; i<N; i++)

 B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

 B[i] = A[i] + C;

 B[i+1] = A[i+1] + C;

 B[i+2] = A[i+2] + C;

 B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

Scheduling Loop Unrolled Code

11

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 fsd f8, 24(x2)

add x2, 32
 bne x1, x3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1
fld f2
fld f3
fld f4add x1 fadd f5

fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8add x2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

Software Pipelining

12

How many FLOPS/cycle?

loop: fld f1, 0(x1)
 fld f2, 8(x1)
 fld f3, 16(x1)
 fld f4, 24(x1)
 add x1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 fsd f5, 0(x2)
 fsd f6, 8(x2)
 fsd f7, 16(x2)
 add x2, 32
 fsd f8, -8(x2)
 bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPxUnroll 4 ways first
fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5

add x1

loop:iterate

prolog

epilog

4 fadds / 4 cycles = 1

Software pipelining

§ How do we write the loop?

13

Loop’: fsd f4,16(x1)
 fadd f4,f0,f2
 fld f0,0(x1)
 addi x1,x1,-8
 bne x1,x2,Loop’

SW pipelined, main loop:
Loop: fld f0,0(x1)
 fadd f4,f0,f2
 fsd f4,0(x1)
 addi x1,x1,-8
 bne x1,x2,Loop

Startup/Wind-down code

14

Startup:

 fld f0,0(x1) // ld, iter 0

 fadd f4,f0,f2 // add, iter 0

 fld f0,-8(x1) // ld, iter 1

 addi x1,x1,-16

Loop’:

 fsd f4,16(x1) // st, iter 0

 fadd f4,f0,f2 // add, iter 1

 fld f0,0(x1) // ld, iter 2

 addi x1,x1,-8

 bne x1,x2,Loop’

Winddown:

 fsd f4,16(x1) // st, iter N-1

 fadd f4,f0,f2 // add, iter N

 fsd f4,0(x1) // st, iter N

Basic idea:

Add some code before/after main loop to ensure
that

Each logical iteration has a ld, add, sub

Software Pipelining vs. Loop Unrolling

15

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

Problems with “Classic” VLIW

§ Object-code compatibility
– have to recompile all code for every machine, even for two machines in

same generation

§ Object code size
– instruction padding wastes instruction memory/cache
– loop unrolling/software pipelining replicates code

§ Scheduling variable latency memory operations
– caches and/or memory bank conflicts impose statically unpredictable

variability

§ Knowing branch probabilities
– Profiling requires an significant extra step in build process

§ Scheduling for statically unpredictable branches
– optimal schedule varies with branch path

16

VLIW Instruction Encoding

§ Schemes to reduce effect of unused fields
– Compressed format in memory, expand on I-cache refill

• used in Multiflow Trace
• introduces instruction addressing challenge

– Mark parallel groups
• used in TMS320C6x DSPs, Intel IA-64

– Provide a single-op VLIW instruction
• Cydra-5 UniOp instructions

17

Group 1 Group 2 Group 3

Intel Itanium, EPIC IA-64

§ EPIC is the style of architecture (cf. CISC, RISC)
– Explicitly Parallel Instruction Computing (really just VLIW)

§ IA-64 is Intel’s chosen ISA (cf. x86, MIPS)
– IA-64 = Intel Architecture 64-bit
– An object-code-compatible VLIW

§ Merced was first Itanium implementation (cf. 8086)
– First customer shipment expected 1997 (actually 2001)
– McKinley, second implementation shipped in 2002
– Recent version, Poulson, eight cores, 32nm, announced 2011

18

Eight Core Itanium “Poulson” [Intel 2011]

19

§ 8 cores
§ 1-cycle 16KB L1 I&D caches
§ 9-cycle 512KB L2 I-cache
§ 8-cycle 256KB L2 D-cache
§ 32 MB shared L3 cache
§ 544mm2 in 32nm CMOS
§ Over 3 billion transistors

§ Cores are 2-way multithreaded
§ 6 instruction/cycle fetch

– Two 128-bit bundles

§ Up to 12 insts/cycle execute

IA-64 Instruction Format

§ Template bits describe grouping of these instructions with
others in adjacent bundles

§ Each group contains instructions that can execute in
parallel

20

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2group i-1

bundle j bundle j+1bundle j+2bundle j-1

IA-64 Registers

§ 128 General Purpose 64-bit Integer Registers
§ 128 General Purpose 64/80-bit Floating Point Registers
§ 64 1-bit Predicate Registers

§ GPRs “rotate” to reduce code size for software pipelined
loops

– Rotation is a simple form of register renaming allowing one instruction
to address different physical registers on each iteration

21

Intel Kills Itanium

§ Donald Knuth “ … Itanium approach that was supposed to
be so terrific—until it turned out that the wished-for
compilers were basically impossible to write.”

§ “Intel officially announced the end of life and product
discontinuance of the Itanium CPU family on January 30th,
2019”, Wikipedia

22

What if there are no loops?

23

§ Branches limit basic block size
in control-flow intensive
irregular code

§ Difficult to find ILP in individual
basic blocks

Basic block

Trace Scheduling [Fisher,Ellis]

24

§ Pick string of basic blocks, a trace, that
represents most frequent branch path

§ Use profiling feedback or compiler
heuristics to find common branch paths

§ Schedule whole “trace” at once
§ Add fixup code to cope with branches

jumping out of trace

CS252

Rotating Register Files

25

Problems: Scheduled loops require lots of registers,
 Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration

25

CS252

Rotating Register File

26

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+R1

Rotating Register Base (RRB) register points to base of current
register set. Value added on to logical register specifier to give
physical register number. Usually, split into rotating and non-
rotating registers.

26

CS252

Rotating Register File
(Previous Loop Example)

27

bloopsd f9, ()fadd f5, f4, ...ld f1, ()

Three cycle load latency
encoded as difference of 3

in register specifier
number (f4 - f1 = 3)

Four cycle fadd latency
encoded as difference of 4

in register specifier
number (f9 – f5 = 4)

bloopsd P17, ()fadd P13, P12,ld P9, () RRB=8
bloopsd P16, ()fadd P12, P11,ld P8, () RRB=7
bloopsd P15, ()fadd P11, P10,ld P7, () RRB=6
bloopsd P14, ()fadd P10, P9,ld P6, () RRB=5
bloopsd P13, ()fadd P9, P8,ld P5, () RRB=4
bloopsd P12, ()fadd P8, P7,ld P4, () RRB=3
bloopsd P11, ()fadd P7, P6,ld P3, () RRB=2
bloopsd P10, ()fadd P6, P5,ld P2, () RRB=1

27

IA-64 Predicated Execution

28

Problem: Mispredicted branches limit ILP
Solution: Eliminate hard to predict branches with predicated execution

– Almost all IA-64 instructions can be executed conditionally under predicate
– Instruction becomes NOP if predicate register false

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2
p1,p2 <- cmp(a==b)
(p1) Inst 3 || (p2) Inst 5
(p1) Inst 4 || (p2) Inst 6
Inst 7
Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On average
>50% branches removed

Warning: Complicates bypassing!

CS252

IA-64 Speculative Execution

29

Problem: Branches restrict compiler code motion

Inst 1
Inst 2
br a==b, b2

Load r1
Use r1
Inst 3

Can’t move load above branch
because might cause spurious
exception

Load.s r1
Inst 1
Inst 2
br a==b, b2

Chk.s r1
Use r1
Inst 3

Speculative load
never causes
exception, but sets
“poison” bit on
destination register

Check for exception in
original home block
jumps to fixup code if
exception detected

Particularly useful for scheduling long latency loads early

Solution: Speculative operations that don’t cause exceptions

CS252

IA-64 Data Speculation

30

Problem: Possible memory hazards limit code scheduling

Requires associative hardware in address check table

Inst 1
Inst 2
Store

Load r1
Use r1
Inst 3

Can’t move load above store
because store might be to same
address

Load.a r1
Inst 1
Inst 2
Store

Load.c
Use r1
Inst 3

Data speculative load
adds address to
address check table

Store invalidates any
matching loads in
address check table

Check if load invalid (or
missing), jump to fixup
code if so

Solution: Hardware to check pointer hazards

Limits of Static Scheduling

§ Statically unpredictable branches
§ Variable memory latency (unpredictable cache misses)
§ Code size explosion
§ Compiler complexity
§ Despite several attempts, VLIW has failed in general-purpose

computing arena (so far).
– More complex VLIW architectures are close to in-order superscalar in

complexity, no real advantage on large complex apps.

§ Successful in embedded DSP market
– Simpler VLIWs with more constrained environment, friendlier code.

31

Acknowledgements

§ This course is partly inspired by previous MIT 6.823 and
Berkeley CS252 computer architecture courses created by
my collaborators and colleagues:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Krste Asanovic (UCB)
– Sophia Shao (UCB)

32

