Computer Security

Security Principles / 1. Security Principles

1. Security Principles

1.1. Know your threat model

A threat model is a model of who your attacker is and what resources they have. Attackers target
systems for various reasons, be it money, politics, fun, etc. Some aren't looking for anything logical-

some attackers just want to watch the world burn.

Take, for example your own personal security. Understanding your threat model has to do with
understanding who and why might someone attack you; criminals, for example, could attack you for
money, teenagers could attack you for laughs (or to win a dare), governments might spy on you to
collect intelligence (but you probably are not important enough for that just yet), or intimate

partners could spy on you.

Once you understand who your attacker is and what resources they might possess, there are some
common assumptions that we take into account for attackers:

1 The attacker can interact with your systems without anyone noticing, meaning that you might
not always be able to detect the attacker tampering with your system before they attack.

2 The attacker has some general information about your system, namely the operating system, any
potential software vulnerabilities, etc.

3 The attacker is persistent and lucky; for example, if an attack is successful 1/1,000,000 times, the
attacker will try 1,000,000 times.

4 The attacker has the resources required to undertake the attack (up to an extent). This will be
touched on in “Securities is Economics”, but depending on who your threat model is, assume
that the attacker has the ability and resources to perform the attack.

5 The attacker can coordinate several complex attacks across various systems, meaning that the
attacker does not have to mount only a single attack on one device, but rather can attack your
entire network at the same time.

6 Every system is a potential target. For example, a casino was once hacked because a fish-tank
thermometer was hacked within the network.

Finally, be extremely vigilant when dealing with old code as the assumptions that were originally

made might no longer be valid and the threat model might have changed. When the Internet was

first created, for example, it was mostly populated by academics who (mostly) trusted one another.
As such, several networking protocols made the assumption that all other network participants
could be trusted and were not malicious. Today however, the Internet is populated by billions of
devices, some of whom are malicious. As such, many network protocols that were designed a long
time ago are now suffering under the strain of attack.

1.2. Consider Human Factors

The key idea here is that security systems must be usable by ordinary people, and therefore must be
designed to take into account the role that humans will play. As such, you must remember that
programmers make mistakes and will use tools that allow them to make mistakes (like C and C++).
Similarly, users like convenience; if a security system is unusable and not user-friendly, no matter
how secure it is, it will go unused. Users will find a way to subvert security systems if it makes their

lives easier.

No matter how secure your system is, it all comes down to people. Social engineering attacks, for
example, exploit other people’s trust and access for personal gain. The takeaway here is to consider
the tools that are presented to users, and try to make them fool-proof and as user-friendly as
possible.

For example, your computer pops up with a notification that tells you it needs to restart to “finish
installing important updates”; if you are like a majority of the user population, you likely click
“remind me later”, pushing off the update. If the computer is attempting to fix a security patch, the
longer the update gets pushed, the more time your computer is vulnerable to an attack. However,
since the update likely inconveniences the user, they forego the extra security for convenience.

Another example: the NSA's cryptographic equipment stores its key material on a small physical
token. This token is built in the shape of an ordinary door key. To activate an encryption device, you
insert the key into a slot on the device and turn the key. This interface is intuitively understandable,

even for 18-year-old soldiers out in the field with minimal training in cryptography.

1.3. Security is economics

No system is completely, 100% secure against all attacks; rather, systems only need to be protected
against a certain level of attacks. Since more security usually costs more money to implement, the
expected benefit of your defense should be proportional to the expected cost of the attack.
Essentially, there is no point putting a $100 lock on a $1 item.

To understand this concept, we can think about physical safes, which come with a rating of their
level of security. For instance, a consumer grade safe, a TL-15, might indicate that it will resist attacks

for up to 15 minutes by anyone with common tools, and might cost around $3,000, while a TL-30, a
safe that would resist attacks for up to 30 minutes with common tools might cost around $5000.
Finally, a TXTL-60 (a super high-end safe), might resist attacks for up to 60 minutes with common
tools, a cutting torch, and up to 4 oz of explosives, and would cost upwards of $50,000. The idea is
that security usually comes at a cost. A more secure safe is going to cost you more than a less
secure safe. With infinite money, you could use the best safe available to lock all your valuables, but
since you don't have infinite money, you must determine how valuable the thing you want to
protect is, and you must judge how much you are willing to pay to protect it. This illustrates that
security is often a cost-benefit analysis where someone needs to make a decision regarding how
much security is worth.

A corollary of this principle is you should focus your energy on securing the weakest links. Security is
like a chain: a system is only as secure as the weakest link. Attackers follow the path of least
resistance, and they will attack the system at its weakest point. There is no sense putting an
expensive high-end deadbolt on a screen door; attackers aren’t going to bother trying to pick the
lock when they can just rip out the screen and step through.

A closely related principle is conservative design, which states that systems should be evaluated
according to the worst security failure that is at all plausible, under assumptions favorable to the
attacker. If there is any plausible circumstance under which the system can be rendered insecure,
then it is prudent to consider seeking a more secure system. Clearly, however, we must balance this
against "security is economics”: that is, we must decide the degree to which our threat model

indicates we indeed should spend resources addressing the given scenario.

1.4. Detect if you can't prevent

If prevention is stopping an attack from taking place, detection is simply learning that the attack has
taken place, and response would be doing something about the attack. The idea is that if you
cannot prevent the attack from happening, you should at least be able to know that the attack has
happened. Once you know that the attack has happened, you should find a way to respond, since

detection without response is pointless.

For example, the Federal Information Processing Standard (FIPS) are publicly announced standards
developed for use in computer systems by various government contractors. Type Il devices—the
highest level of security in the standard, are intended to be tamper-resistant. However, Type IlI
devices are very expensive. Type Il devices are only required to be tamper-evident, so that if
someone tampers with them, this will be visible (e.g., a seal will be visibly broken). This means they
can be built more cheaply and used in a broader array of applications.

When dealing with response, you should always assume that bad things will happen, and therefore
prepare your systems for the worst case outcome. You should always plan security in a way that lets
you get back to some form of a working state. For example, keeping offsite backups of computer
systems is a great idea. Even if your system is completely destroyed, it should be no big deal since
all your data is backed up in some other location.

1.5. Defense in depth

The key idea of defense in depth is that multiple types of defenses should be layered together so an

attacker would have to breach all the defenses to successfully attack a system.

Take, for example, a castle defending its king. The castle has high walls. Behind those walls might be
a moat, and then another layer of walls. Layering multiple simple defensive strategies together can
make security stronger. However, defense in depth is not foolproof-no amount of walls will stop
siege cannons from attacking the castle. Also, beware of diminishing returns—if you've already built
100 walls, the 101st wall may not add enough additional protection to justify the cost of building it
(security is economics).

Another example of defense in depth is through a composition of detectors. Say you had two
detectors, D¢ and D, which have false positive rates of F'P; and F'Ps respectively, and false
negative rates of F'N; and F'N,, respectively. One way to use the two detectors would be to have
them in parallel, meaning that either detector going off would trigger a response. This would
increase the false positive rate and decrease the false negative rate. On the other hand, we could
also have the detectors in series, meaning that both detectors have to alert in order to trigger a
response. In this case, the false positive rate would decrease while the false negative rate would

increase.

1.6. Least privilege

Consider a research building home to a team of scientists as well as other people hired to maintain
the building (janitors, IT staff, kitchen staff, etc.) Some rooms with sensitive research data might be

only accessible to trusted scientists. These rooms should not be accessible to the maintenance staff
(e.g. janitors). For best security practices, any one party should only have as much privilege as it

needs to play its intended role.

In technical terms, give a program the set of access privileges that it legitimately needs to do its job
—but nothing more. Try to minimize how much privilege you give each program and system

component.

Least privilege is an enormously powerful approach. It doesn’t reduce the probability of failure, but
it can reduce the expected cost of failures. The less privilege that a program has, the less harm it can
do if it goes awry or becomes subverted.

For instance, the principle of least privilege can help reduce the damage caused by buffer overflow.
(We'll discuss buffer overflows more in the next section.) If a program is compromised by a buffer
overflow attack, then it will probably be completely taken over by an intruder, and the intruder will
gain all the privileges the program had. Thus, the fewer privileges that a program has, the less harm
is done if it should someday be penetrated by a buffer overflow attack.

How does Unix do, in terms of least privilege? Answer: Pretty lousy. Every program gets all the
privileges of the user that invokes it. For instance, if | run a editor to edit a single file, the editor
receives all the privileges of my user account, including the powers to read, modify, or delete all my
files. That's much more than is needed; strictly speaking, the editor probably only needs access to
the file being edited to get the job done.

How is Windows, in terms of least privilege? Answer: Just as lousy. Arguably worse, because many
users run under an Administrator account, and many Windows programs require that you be
Administrator to run them. In this case, every program receives total power over the whole
computer. Folks on the Microsoft security team have recognized the risks inherent in this, and have
taken many steps to warn people away from running with Administrator privileges, so things have

gotten better in this respect.

1.7. Separation of responsibility

Split up privilege, so no one person or program has complete power. Require more than one party

to approve before access is granted.

In a nuclear missile silo, for example, two launch officers must agree before the missile can be

launched.

Another example of this principle in action is in a movie theater, To watch a movie, you first pay the
cashier and get a ticket stub. Then, when you enter the movie theater, a different employee tears
your ticket in half and collects one half of it, putting it into a lockbox. Why bother giving you a ticket
that 10 feet later is going to be collected from you? One answer is that this helps prevent insider
fraud. Employees might be tempted to let their friends watch a movie without paying. The presence
of two employees makes an attack harder, since both employees must work together to let
someone watch a movie without paying.

In summary, if you need to perform a privileged action, require multiple parties to work together to
exercise that privilege, since it is more likely for a single party to be malicious than for all of the
parties to be malicious and collude with one another.

1.8. Ensure complete mediation

When enforcing access control policies, make sure that you check every access to every object. This
kind of thinking is helpful to detect where vulnerabilities could be. As such, you have to ensure that
all access is monitored and protected. One way to accomplish this is through a reference monitor,

which is a single point through which all access must occur.

1.9. Shannon’s Maxim

Shannon’s Maxim states that the attacker knows the system that they are attacking.

“Security through obscurity” refers to systems that rely on the secrecy of their design, algorithms, or
source code to be secure. The issue with this, however, is that it is extremely brittle and it is often
difficult to keep the design of a system secret from a sufficiently motivated attacker. Historically,
security through obscurity has a lousy track record: many systems that have relied upon the secrecy
of their code or design for security have failed miserably.

In defense of security through obscurity, one might hear reasoning like: “this system is so obscure,
only 100 people around the world understand anything about it, so what are the odds that an
adversary will bother attacking it?” One problem with such reasoning is that such an approach is
self-defeating. As the system becomes more popular, there will be more incentive to attack it, and
then we cannot rely on its obscurity to keep attackers away.

This doesn’t mean that open-source applications are necessarily more secure than closed-source
applications. But it does mean that you shouldn't trust any system that relies on security through
obscurity, and you should probably be skeptical about claims that keeping the source code secret
makes the system significantly more secure.

As such, you should never rely on obscurity as part of your security. Always assume that the attacker
knows every detail about the system that you are working with (including its algorithms, hardware,
defenses, etc.)

A closely related principle is Kerckhoff's Principle, which states that cryptographic systems should
remain secure even when the attacker knows all internal details of the system. (We'll discuss

cryptographic systems more in the cryptography section.) The secret key should be the only thing
that must be kept secret, and the system should be designed to make it easy to change keys that

are leaked (or suspected to be leaked). If your secrets are leaked, it is usually a lot easier to change

the key than to replace every instance of the running software.

1.10. Use fail-safe defaults

Choose default settings that “fail safe”, balancing security with usability when a system goes down.
When we get to firewalls, you will learn about default-deny polices, which start by denying all
access, then allowing only those which have been explicitly permitted. Ensure that if the security

mechanisms fail or crash, they will default to secure behavior, not to insecure behavior.

For example, firewalls must explicitly decide to forward a given packet or else the packet is lost
(dropped). If a firewall suffers a failure, no packets will be forwarded. Thus, a firewall fails safe. This is
good for security. It would be much more dangerous if it had fail-open behavior, since then all an
attacker would need to do is wait for the firewall to crash (or induce a crash) and then the fort is

wide open.

1.11. Design security in from the start

Trying to retrofit security to an existing application after it has already been spec’ed, designed, and
implemented is usually a very difficult proposition. At that point, you're stuck with whatever
architecture has been chosen, and you don't have the option of decomposing the system in a way
that ensures least privilege, separation of privilege, complete mediation, defense in depth, and other
good properties. Backwards compatibility is often particularly painful, because you can be stuck with

supporting the worst insecurities of all previous versions of the software.

Finally, let's examine three principles that are widely accepted in the cryptographic community
(although not often articulated) that can play a useful role in considering computer system security

as well.

1.12. The Trusted Computing Base (TCB)

Now that you understand some of the important principles for building secure systems, we will try
to see what you can do at design time to implement these principles and improve security. The
question we want to answer is how can you choose an architecture that will help reduce the
likelihood of flaws in your system, or increase the likelihood that you will be able to survive such
flaws? We begin with a powerful concept, the notion of a trusted computing base, also known as the
TCB.

In any system, the trusted computing base (TCB) is that portion of the system that must operate

correctly in order for the security goals of the system to be assured. We have to rely on every

component in the TCB to work correctly. However, anything that is outside the TCB isn't relied upon
in any way; even if it misbehaves or operates maliciously, it cannot defeat the system'’s security
goals. Generally, the TCB is made to be as small as possible since a smaller, simpler TCB is easier to

write and audit.

Suppose the security goal is that only authorized users are allowed to log into my system using SSH.
What is the TCB? Well, the TCB includes the SSH daemon, since it is the one that makes the
authentication and authorization decisions; if it has a bug, or if it was programmed to behave
maliciously, then it will be able to violate my security goal by allowing access to unauthorized users.
The TCB also includes the operating system, since the operating system has the power to tamper
with the operation of the SSH daemon (e.g., by modifying its address space). Likewise, the CPU is in
the TCB, since we are relying upon the CPU to execute the SSH daemon’s machine instructions
correctly. Suppose a web browser application is installed on the same machine; is the web browser
in the TCB? Hopefully not! If we've built the system in a way that is at all reasonable, the SSH
daemon is supposed to be protected (by the operating system’s memory protection) from
interference by unprivileged applications, like a web browser.

TCB Design Principles: Several principles guide us when designing a TCB:

« Unbypassable (or completeness): There must be no way to breach system security by bypassing
the TCB.

« Tamper-resistant (or security): The TCB should be protected from tampering by anyone else. For
instance, other parts of the system outside the TCB should not be able to modify the TCB's code
or state. The integrity of the TCB must be maintained.

«Verifiable (or correctness): It should be possible to verify the correctness of the TCB. This usually
means that the TCB should be as simple as possible, as generally it is beyond the state of the art

to verify the correctness of subsystems with any appreciable degree of complexity.

Keeping the TCB simple and small is excellent. The less code you have to write, the fewer chances
you have to make a mistake or introduce some kind of implementation flaw. Industry standard error
rates are 1-5 defects per thousand lines of code. Thus, a TCB containing 1,000 lines of code might
have 1-5 defects, while a TCB containing 100,000 lines of code might have 100-500 defects. If we
need to then try to make sure we find and eliminate any defects that an adversary can exploit, it's
pretty clear which one to pick!! The lesson is to shed code: design your system so that as much code

as possible can be moved outside the TCB.

Benefits of TCBs: The notion of a TCB is a very powerful and pragmatic one as it allows a primitive
yet effective form of modularity. It lets us separate the system into two parts: the part that is

security-critical (the TCB), and everything else.

This separation is a big win for security. Security is hard. It is really hard to build systems that are
secure and correct. The more pieces the system contains, the harder it is to assure its security. If we
are able to identify a clear TCB, then we will know that only the parts in the TCB must be correct for
the system to be secure. Thus, when thinking about security, we can focus our effort where it really
matters. And, if the TCB is only a small fraction of the system, we have much better odds at ending
up with a secure system: the less of the system we have to rely upon, the less likely that it will

disappoint.
In summary, some good principles are:

« Know what is in the TCB. Design your system so that the TCB is clearly identifiable.
« Try to make the TCB unbypassable, tamper-resistant, and as verifiable as possible.
+ Keep It Simple, Stupid (KISS). The simpler the TCB, the greater the chances you can get it right.

« Decompose for security. Choose a system decomposition/modularization based not just on
functionality or performance grounds—choose an architecture that makes the TCB as simple and

clear as possible.

1.13. TOCTTOU Vulnerabilities

A common failure of ensuring complete mediation involves race conditions. The time of check to
time of use (TOCTTOU) vulnerability usually arises when enforcing access control policies such as

when using a reference monitor. Consider the following code:

procedure withdraw(amount w) {
// contact central server to get balance
1. let b := balance

2. if b < w, abort

// contact central server to set the balance
3. set balance :=b - w

4. give w dollars to the user

This code takes as input the amount you want to withdraw, w. It then looks up your bank balance in
the database; if you do not have enough money in your account to withdraw the specified amount,
then it aborts the transaction. If you do have enough money, it decrements your balance by the
amount that you want to withdraw and then dispenses the cash to you.

Suppose that multiple calls to withdraw can take place concurrently (i.e. two separate ATMs). Also

suppose that the attacker can somehow pause the execution of procedure on one ATM.

So suppose that your current account balance is $100 and you want to withdraw $100. At the first
ATM, suppose you pause it after step 2. Then, you go over to the second ATM and proceed to
withdraw $100 successfully (meaning that your account balance should now be $0). You then go
back to the first ATM and unpause the procedure; since the account balance check was completed
before you withdrew the money from the second ATM, the first ATM still thinks you have $100 in
your account, and it allows you to withdraw another $100! So despite your bank account having
only $100 to begin with, you ended up with $200.

This is known as a Time-Of-Check To Time-Of-Use (TOCTTOU) vulnerability, because between the
check and the use of whatever state was checked, the state somehow changed. In the above
example, between the time that the balance was checked and the time that balance was set, the
balance was somehow changed.

1T Windows XP consisted of about 40 million lines of code—all of which were in the TCB. Yikes!

