Computer Security

Network Security / 30. TCP and UDP

30. Transport Layer: TCE UDP

30.1. Cheat sheet

* Layer: 4 (transport)

« Purpose: Establish connections between individual processes on machines (TCP and UDP).

Guarantee that packets are delivered successfully and in the correct order (TCP only).

« Vulnerability: On-path and MITM attackers can inject data or RST packets. Off-path attackers
must guess the 32-bit sequence number to inject packets.

« Defense: Rely on cryptography at a higher layer (TLS). Use randomly generated sequence
numbers to stop off-path attackers.

30.2. Networking background: Ports

Recall that IP, the layer 3 (inter-network) protocol, is a best-effort protocol, meaning that packets
can be corrupted, reordered, or dropped entirely. Also, IP addresses uniquely identify machines, but
do not support multiple processes on one machine using the network (e.g. multiple browser tabs,
multiple applications).

The transport layer solves the problem of multiple processes by introducing port numbers. Each
process on a machine that wants to communicate over the network uses a unique 16-bit port
number. Recall that port numbers are unique per machine, but cannot be used for global
addressing—two machines can have processes with the same port number. However, an IP address

and a port number together uniquely identify one process on one machine.

On client machines, such as your laptop, port numbers can be arbitrarily assigned. As long as each
application uses a different port number, incoming packets can be sorted by port number and
directed to the correct application. However, server machines offering services over the network
need to use constant, well-known port numbers so client machines can send requests to those port
numbers. For example, web servers always receive HTTP requests at port 80, and HTTPS (secure)
requests at port 443. Ports below 1024 are "reserved” ports: only a program running as root can

receive packets at those ports, but anyone can send packets to those ports.

The transport layer has 2 main protocols to choose from: TCP guarantees reliable, in-order packet
delivery, while UDP does not. Both protocols use port numbers to support communication between
processes. The choice of protocol depends on the context of the application.

30.3. Protocol: UDP

UDP (user datagram protocol) is a best-effort transport layer protocol. With UDP, applications
send and receive discrete packets, and packets are not guaranteed to arrive, just like in IP. It is
possible for datagrams to be larger than the underlying network’s packet size, but this can

sometimes introduce problems.

The UDP header contains 16-bit source and destination port numbers to support communication

between processes. The header also contains a checksum (non-cryptographic) to detect corrupted
packets.

32 Bits
< >« >
Bit 0 Bit 15 Bit 16 Bit 31
Source port Destination port
Length Checksum

30.4. Protocol: TCP

TCP (Transmission Control Protocol) is a reliable, in-order, connection-based stream protocol. In
TCP, a client first establishes a connection to the server by performing a handshake. Once
established, the connection is reliable and in order: TCP handles resending dropped packets until
they are received on the other side and rearranging any packets received out of order. TCP also
handles breaking up long messages into individual packets, which lets programmers think in terms

of high-level, arbitrary-length bytestream connections and abstract away low-level, fixed-size
packets.

Like UDP, the TCP header contains 16-bit source and destination port numbers to support
communication between processes, and a checksum to detect corrupted packets. Additionally, a 32-
bit sequence number and a 32-bit acknowledgment (ACK) number are used for keeping track of
missing or out-of-order packets. Flags such as SYN, ACK, and FIN can be set in the header to
indicate that the packet has some special meaning in the TCP protocol.

32 Bits

< >« >
Bit 0 Bit 15 Bit 16 Bit 31

Source port Destination port

Sequence Number

Acknowledgement Number

Flags Checksum

A unique TCP connection is identified by a 5-tuple of (Client IP Address, Client Port, Server IP
Address, Server Port, Protocol), where protocol is always TCP. In other words, a TCP connection is a
sequence of back-and-forth communications between one port on one IP address, and another port
on another IP address.

TCP communication works between any two machines, but it is most commonly used between a
client requesting a service (such as your computer) and a server providing the service. To provide a
service, the server waits for connection requests (sometimes called listening for requests), usually on
a well-known port. To request the service, the client makes a connection request to that server’s IP
address and well-known port.

A TCP connection consists of two bytestreams of data: one from the client to the server, and one
from the server to the client. The data in each stream is indexed using sequence numbers. Since

there are two streams, there are two sets of sequence numbers in each TCP connection, one for each

bytestream.
Sequence ACK
———JEEJggme__> X+1 Y+1
4_’%&@@_—_— Y+1 X+1+A
%’ X+1+A Y+1+B
AJitwth—D-—’ Y+1+B X+1+A+C

In every TCP packet, the sequence number field in the header is set to the index of the first byte sent
in that packet. In packets from the client to the server, the sequence number is an index in the
client-to-server bytestream, and in packets from the server to the client, the sequence number is an
index in the server-to-client bytestream. If packets are reordered, the end hosts can use the
sequence numbers to reconstruct the message in the correct order.

To ensure packets are successfully delivered, when one side receives a TCP packet, it must reply with
an acknowledgment saying that it received the packet. If the packet was dropped in transit, the
recipient will never send an acknowledgment, and after a timeout period, the sender will re-send
that packet.

If the packet is delivered, but the acknowledgment is dropped in transit, the sender will notice that it
never received an acknowledgment and will re-send the packet. The recipient will see a duplicate
packet (since the original packet was delivered), discard the duplicate, and re-send the
acknowledgment.

Sending acknowledgment packets is wasteful in a two-way communication, so TCP combines
acknowledgment packets with data packets. Each TCP packet can contain both data and an

acknowledgment that a previous packet was received.

To support acknowledgments, the acknowledgment (ACK) number in the header is set to the index
of the last byte received, plus 1. (This is equivalent to the index of the next byte the sender expects
to receive.) In other words, in packets from the client to the server, the ACK number is the next
unsent byte in the server-to-client stream, and in packets from the server to the client, the ACK

number is the next unsent byte in the client-to-server stream.

Note that in each packet, the sequence number is an index in the sender’s bytestream, and the ACK
number is an index in the recipient’'s bytestream.

Sequence ACK
% A
4_’_’5\(%__—- B A+1
* A+1 B+1

Note that the sequence numbers do not start at O (for a security reason discussed below). Instead, to
initiate a connection, the client and server participate in a three-way TCP handshake to exchange
random initial sequence numbers.

1 The client sends a SYN packet (a packet with no data and the SYN flag set) to the server. The

client sets the sequence number field to a random 32-bit initial sequence number (ISN).

2 If the server decides to accept the request, it sends back a SYN-ACK packet (a packet with no
data and both the SYN flag and ACK flag set). The server sets the sequence number field to its

own random 32-bit initial sequence number (note that this is different from the client’s ISN). The

acknowledgment number is set to the client’s initial sequence number + 1.

3 The client responds with an ACK packet (a packet with no data and the ACK flag set). The
sequence number is set to the client’s initial sequence number + 1 and the acknowledgement
number is set to the server’s initial sequence number + 1.

To end a connection, one side sends a FIN (a packet with the FIN flag set), and the other side replies
with a FIN-ACK. This indicates that the side that sent the FIN will not send any more data, but can
continue accepting data. This leaves the TCP connection in a “half closed” state, where one side
stops sending but will receive and acknowledge further information. When the other side is done, it
sends its own FIN as well, and it is acknowledged with a FIN-ACK reply.

Connections can also be unilaterally aborted. If one side sends a RST packet with a proper sequence
number, this tells the other side that “| won't send any more data on this connection and | won't
accept any more data on this connection.” Unlike FIN packets, RST packets are not acknowledged. A
RST usually indicates something went wrong, such as a program crashing or abruptly terminating a
connection.

30.5. Tradeoffs between TCP and UDP

TCP is slower than UDP, because it requires a 3-way handshake at the start of each connection, and
it will wait indefinitely for dropped packets to be sent again. However, TCP provides better
correctness guarantees than UDP.

UDP is generally used when speed is a concern. For example, DNS requires extremely short response
times, so it uses UDP instead of TCP at the transport layer. Video games and voice applications often
use UDP because it is better to just miss a request than to stall everything waiting for a
retransmission.

30.6. Attack: TCP Packet Injection

The main attack in TCP is packet injection. The attacker spoofs a malicious packet, filling in the

header so that the packet looks like it came from someone in the TCP connection.

A related attack is RST injection. Instead of sending a packet with malicious data, the attacker sends
a packet with the RST flag, causing the connection to abruptly terminate. This attack is useful for
censorship: for example, Comcast used RST injection to abruptly terminate BitTorrent uploads.

Recall that that there are three types of network attackers. Each one has different capabilities in

attacking the TCP protocol.

Off-path Adversary: The off-path adversary cannot read or modify any messages over the
connection. Therefore, to attack a TCP communication, an off-path adversary must know or guess
the values of the client IP, client port, server IP, and server port. Usually, the server IP address and
port are well-known. Whether we know the client IP or port depends on our threat model. The off-
path attacker must also guess the sequence number to inject a packet into the communication,
because if the sequence number is too far off from what the recipient is expecting, it will reject the
spoofed packet. Sanity check: What is the approximate probability of correctly guessing a random
sequence number?’

On-path Adversary: The on-path adversary can read, but not modify messages. Since they can read
the sequence numbers, IP addresses, and ports being used in the connection, an on-path adversary
can inject messages into a TCP connection without guessing any values. As a concrete example,
assume Alice has just sent a packet to Bob with sequence number X, and Bob responds with a
packet of his own with sequence number Y and ACK X + 1. An on-path adversary Mallory wants to
inject data into this TCP connection. While she cannot stop Alice from responding (because Mallory
is not a man-in-the-middle), Mallory can race Alice’s next packet with her own, using sequence
number X + 1, ACK'Y + 1, and Alice’s IP and port. Since TCP on its own does not provide integrity,
Bob will not be able to distinguish which message actually came from Alice, and which one came
from Mallory.

In-path Adversary: The in-path (man-in-the-middle) adversary has all the powers of the on-path
adversary and can additionally modify and block messages sent by either party. As a result, the same
attack as the on-path adversary outlined above applies, and in addition, the in-path adversary
doesn’t have to race the party they are spoofing. A man in the middle can just block the message
from ever arriving to the other party and send their own.

30.7. Defenses: TLS, random initial sequence numbers

The main problem here is that TCP by itself provides no confidentiality or integrity guarantees. To
prevent injections like these, we rely on TLS, which is a higher-layer protocol that secures TCP

communication with cryptography.

One important defense against off-path attackers is using random, unpredictable initial sequence
numbers. This forces the off-path attacker to guess the correct sequence number with very low

probability.

1 The sequence number is 32 bits, so guessing a random sequence number succeeds with
probability 1/2%%.

