CS 161 Spring 2024

Project 2 / Policies

Policies

This page outlines all the logistics of this project. All information about the project content is on the
other page; this page does not contain any project content.

Overview

In this project, you will be provided with some cryptographic library functions. You will need to use
those cryptographic library functions to design a secure file sharing system, which will allow users to
log in, store files, and share files with other users, while in the presence of attackers. Then, you will
implement your design by filling in 8 functions that users of your system can call to perform file
operations.

This project is heavily design-oriented. The starter code we give you is very limited (it's not much
more than 8 function signatures), so you will need to think of a design from scratch that satisfies the
functionality and security requirements.

For this project, you may either work alone, or in a team of two. We recommend working in teams of
two, since it helps to talk through the challenging components of this project with a partner.

Grading Breakdown and Deadlines

Project 2 is worth a total of 150 points, broken down as follows:

Task Due Points
Spec Quiz Friday, February 16, 2024 5
Design Doc Checkpoint Friday, February 23, 2024 15
Coding Checkpoint Wednesday, March 13, 2024 5
Final Design Doc Friday, March 22, 2024 5

Final Test Case Coverage Friday, March 22, 2024 20



Task Due Points

Final Autograded Code Friday, March 22, 2024 100

Checkpoint: Spec Quiz

To begin this assignment, you will complete a Spec Quiz, which will be released on gradescope.

The intent of the spec quiz is to help guide your understanding for the scope and requirements of
this project. Understanding the spec is very important, as any mistakes in your understanding of

what's required will derail your design and make later fixes to your design/code extremely painful.

Checkpoint: Design Document

Before writing any code, you will start by writing down the design that you intend to implement.

Your design document can include any details that you think are important, including, but not
limited to: What data structures (i.e. struct definitions) will you be using? How will you organize the
data you need to store? When a user calls a function, what steps will you take? What cryptographic
functions will you be using, and what inputs will you provide to those functions (e.g. what key will
you use)?

You can organize your document in any way that seems clear to you. If you're having trouble
organizing your design doc, note that we have several "Design Questions” in green boxes
throughout the spec. One way to organize your design doc is by answering each of those design

questions, one by one.

For the checkpoint, you will need to submit a design document with your draft design so far. Your
design does not need to be perfect, but should have significant thought put into it. The more you've
thought about your design for the checkpoint, the more feedback we can offer you before you start
coding. Having a stronger design for the checkpoint will also reduce the amount of re-coding and
re-designing you need to do while coding.

Your design document must be readable and typed. Please limit your design document to 2 pages
of text with 11 pt font or greater. There is no minimum length, as long as you've given a complete
overview of your design (e.g. answered all the design questions in the spec).

It's natural to feel that 2 pages is too short to describe your whole design. Our suggestion is to keep
a detailed design document for yourself, which can be as long as you'd like. Then, once you're



satisfied with your design, summarize the key points of your design into a 2-page document that

you submit for the checkpoint.

Your design document must also include a diagram that visualizes how you're organizing the data
that you're storing. The diagram can be on a third page (it doesn’t count against your 2-page limit).
You can use any drawing tool (e.g. hand-drawn, Miro, Draw.io, Docs, Publisher, etc.) and the diagram
can be in any format that seems clear to you. If you're having trouble with your diagram, you could

check out our suggested template (LaTeX, PDF, Google doc).
Deliverable: A design document containing:

« At most 2 pages of text, describing your draft design (e.g. answering the “Design Questions” in
green boxes throughout the spec)

« A diagram showing how you're organizing the data that you're storing. (The diagram is not part

of the 2-page limit.)

Checkpoint: Design Review

After you've submitted your design document, your project group should sign up for one 20-minute
design review with a staff member. During this design review, you will present your design and
receive feedback for it. Your design will be graded for correctness.

Design reviews tend to be more efficient in-person, but we'll have some remote time slots if needed.
Deliverable: Sign up for a design review using the Google calendar links on EdStem.
Some guidelines for scheduling a time slot:

* You need to have a design document submitted by the time of your design review.

« Do not sign up for multiple design reviews. We don't have staff-hours to hold multiple reviews
for one group, and we reserve the right to take off points if you sign up for too many slots.

« To cancel an appointment slot, delete the event from your Google calendar. If you need to
reschedule, please cancel at least 24 hours in advance. If you need to cancel within 24 hours, you
should additionally make a private post on Ed, and email the staff member hosting your design
review, explaining why.

« If you sign up for a slot and don't show up, we reserve the right to take off points, and we can't
promise that we'll have time to schedule another time slot for you.

Grading:



Everybody starts out with a score of 18/15 points, with early design doc reviews starting at 20/15
points. We will subtract points for mistakes, missing sections, etc. Note that the extra 3/5 points
are a buffer, so your design doesn’t need to be perfect to get a full score.

The maximum score is capped at 15 points (no extra credit).

Getting Started Coding

After your design review, you're ready to start implementing your design in code. Follow these steps

to get started:

1

2

Install Golang. Go v1.20 is recommended.

Complete the online Golang Tutorial.

« The tutorial can take quite a bit of time to complete, so plan accordingly.

« The tutorial is a helpful tool that you may end up referencing frequently, especially while

learning Go for the first time.

Accept the Project 2 GitHub Classroom Invite Link.

At this step, you may receive an email asking you to join the csi61-students organization.
Enter a team name. If you're working with a partner, only one partner should create a team -
the other partner should join the team through the list of teams.

« Clone your repository using the git clone command.

+ Feel free to review 61B’s git resources (commands, commands continued, guide, common

issues) for a refresher!

In ReapME.md, make sure to include the student IDs of both you and your partner, as well as your
team name.

In the client_test directory of the checked out repository, run go test.
« Go will automatically retrieve the dependencies defined in go.mod and run the tests defined in
client_test.go and client_unittest.go.

« Itis expected that some tests will fail because you have not yet implemented all of the
required functions.

Optionally, we've provided a unit test framework that you can access in the client directory,
where you can create unit tests for your implementation-specific functions inside

client_unittest.go.

 If you would like to only run unit tests, please rename the unit test file to client_unit_test.go
(and an _ between unit and test) and run go test in the ciient directory. Reminder: If you



later want to run unit tests with client tests together, make sure to change the name of the

file back to client_unittest.go and run go test from the client_test directory.

If the starter code is buggy and you need to pull updates from the starter code repo, you can do so

with these steps:

17 Run only once:

- |If you use HTTP: git remote add starter https://github.com/csl6l-staff/project2-starter-code.git
o |f you use SSH: git remote add starter git@github.com:cs161-staff/project2-starter-code

2 Run each time you need to pull updates: git pull starter main

Please refer to our Suggested Workflow for an in-depth debugging guide!

Checkpoint: Coding

Deliverable: Submit your implementation, in the ciient.go file, to the Project 2 Coding Checkpoint

assignment on Gradescope.

On submission to this assignment, the autograder will run the basic tests provided to you in
client_test.go . Your score for the coding checkpoint will be solely dictated by the basic tests and
nothing else: here, there are no hidden tests. In order to recieve full credit on the coding checkpoint,
you'll only need to pass 2 of the 4 basic tests. As one example, you can implement 1nituser, Getuser,

StoreFile, LoadFile, and AppendTorile, and get full credit.

Please do not start your coding checkpoint until your design review. Feel free to explore the
codebase to understand how the API functions are called, but we do not recommend starting to

code until after you've discussed your design in depth with a TA.

The intent of the coding checkpoint is to ensure that you are on track for completion of the project.
Please do not rush this; remember that one of our security principles is to design security in from
the start. Retrofitting a codebase that passes the basic tests to include security measures for your

final autograder is not recommended-so please start this early!

Autograder: Implementation

Deliverable: Submit your implementation, in the client.go file, to the Project 2 Autograder
assignment on Gradescope.

Before the deadline, the autograder will only check that your code compiles, and run the same basic
tests that were provided in the starter code. You will not be able to see your actual score for the



project before the deadline.

After the deadline, we will run all the functionality and security tests on your design, and release
your final autograder score. Almost all tests for this project are “hidden” and are not run until after
the deadline. This is done to simulate a real-world security environment: attackers don't tell you
ahead of time what their attacks will be, so you have to think proactively to defend against potential
attacks. We encourage you to write your own tests to check the functionality requirements and

simulate the attacks that we'll be running on your system.

We have many years of accumulated knowledge about attacks, while you only have one semester to
think about the project. Therefore, it's expected that your design will not score full points on the
autograder, and we'll account for this when computing final grades.

Below is an example of a Project 2 score distribution from a previous semester. It doesn't look like
our usual project distributions (where most people get full credit). Instead, the distribution looks
more like a typical CS 161 exam curve. If you'd like, you can think of this assignment as a long take-

home exam.
108 103
64
47
34 29
2 0 0 — L
— ——
0 10 20 30 40 50 60 70 80 20 100 110 120
Minimum Median Maximum Mean Std Dev @

0.0 79.83 120.0 79.28 17.1

Each failed test (e.g. a functionality requirement that doesn’t work on your system, or an attack that
your system doesn’t defend against), incurs a multiplicative penalty. For example, if every test has a
10% penalty, then each failed test multiples your total score by 0.9. In the example, failing one test
results in a score of 90%, failing two tests results in a score of 81% (instead of 80% in the additive
penalty model), failing three tests results in a score of 72.9% (instead of 70% in the additive penalty
model), etc. We have lots of tests, and even a submission that scores relatively high will fail many of
them. This grading system ensures that each subsequent failed test has less of an impact on your
overall grade.

Your code cannot use any external libraries beyond the ones we've imported. Don't try any
adversarial behavior on the autograder (e.g. don't try to DoS autograder resources). Attempts to



circumvent the autograder will be considered academic dishonesty.

Autograder: Test Coverage

Deliverable: Submit client_test.go, a file with the tests you've written, to the Project 2 Autograder
assignment on Gradescope.

We've provided some basic tests in the starter code, but you will need to write the majority of tests
yourself.

To compute your test coverage score, we will run your tests on the staff reference implementation of
client.go. The staff implementation contains 34 specially-flagged lines of code that correspond to
interesting behavior (e.g. we might flag a line of code that returns an error if the HMAC is incorrect).

We check how many flagged lines of code are executed as a result of running your tests.

Each flagged line of code you get to run is worth 1 coverage flag point. To receive full credit for test
case coverage, your tests need to cause 20 of the flagged lines of code to execute. We cannot
answer any questions about what the flag numbers on the autograder correspond to. It's okay if you
don't score all 20 points here; it's more important to make sure that your own design is thoroughly
tested.

You may check your test case coverage by submitting to the autograder on Gradescope at any time
before the project deadline. The coverage score you see on Gradescope is your final coverage score

for the project (there are no hidden coverage flag points).

Note that getting a full score on the coverage flags does not guarantee anything about your own
implementation. It can be a good indicator that you've written thorough tests, but there is no
guarantee that the tests you've written are the same as the hidden tests we’ll be running on your

own implementation.

We reserve the right to re-run the autograder on all submissions before releasing final scores.
Therefore, if your code coverage score is non-deterministic, we cannot promise that the score will

stay the same after re-running the autograder.

Final Design Document

Deliverable: Submit an updated version of your design document to the Project 2 Final Design Doc

assignment on Gradescope.

This document should reflect the final design you've implemented in code. If you made

modifications after the checkpoint, you can modify your checkpoint design document. If you didn't



update your design, it's also okay to re-submit the same document you did for the checkpoint.

We'll grade your final design document on completion and effort, not correctness. The correctness
of your final design is checked by running the autograder on your code.



