
Computer Science 161

TLS
CS 161 Spring 2024 - Lecture 19

Computer Science 161

Last Time: TCP and UDP

● Transmission Control Protocol (TCP): Reliably sending packets
○ 3-way handshake: Client sends SYN, server sends SYN-ACK, client sends ACK
○ Provides reliability, ordering, and ports
○ Attack: TCP hijacking through data injection or RST injection

■ Blind attacks must guess the client’s or server’s sequence numbers
○ Attack: TCP spoofing by sending a spoofed SYN packet

■ Blind attacks must guess the server’s sequence number
● User Datagram Protocol (UDP): Non-reliably sending packets

○ No reliability or ordering, only ports
○ Same injection and spoofing attacks as TCP, but easier

2

Computer Science 161

TLS

3Textbook Chapter 31

Computer Science 161

TLS

● TLS (Transport Layer Security): A protocol
for creating a secure communication
channel over the Internet

○ Replaces SSL (Secure Sockets Layer), which is
an older version of the protocol

● TLS is built on top of TCP
○ Relies upon: Byte stream abstraction between the

client and the server
○ Provides: Byte stream abstraction between the

client and the server
■ The abstraction appears the same to the end

client, but TLS provides confidentiality and
integrity!

4

TLS

Transport

(Inter) Network

Link

Physical1

2

3

4

4.5

Application7

Computer Science 161

Today: Secure Internet Communication with TLS

● Goals of TLS
○ Confidentiality: Ensure that attackers cannot read your traffic
○ Integrity: Ensure that attackers cannot tamper with your traffic

■ Prevent replay attacks
● The attacker records encrypted traffic and then replays it to the server
● Example: Replaying a packet that sends “Pay $10 to Mallory”

○ Authenticity: Make sure you’re talking to the legitimate server
■ Defend against an attacker impersonating the server

5

Computer Science 161

TLS Handshake

6Textbook Chapter 31

Computer Science 161

7

TLS Handshake Step 1: Exchange Hellos

● Assume an underlying TCP connection has
already been formed

● The client sends ClientHello with
○ A 256-bit random number RB (“client random”)
○ A list of supported cryptographic algorithms

● The server sends ServerHello with
○ A 256-bit random number RS (“server random”)
○ The algorithms to use (chosen from the client’s list)

● RB and RS prevent replay attacks
○ RB and RS are randomly chosen for every

handshake
○ This guarantees that two handshakes will never be

exactly identical

Client Server

ServerHello

ClientHello

Computer Science 161

8

TLS Handshake Step 2: Certificate

● The server sends its certificate
○ Recall certificates: The server’s identity and public

key, signed by a trusted certificate authority
● The client validates the certificate

○ Verify the signature in the certificate
● The client now knows the server’s public key

○ The client is not yet sure that they are talking to the
legitimate server (not an impersonator)

○ Recall: Certificates are public. Anyone can provide
a certificate for anybody

Client Server

ServerHello

ClientHello

Certificate

Computer Science 161

ServerHello

ClientHello

9

TLS Handshake Step 3: Premaster Secret

● This step has two main purposes
○ Make sure the client is talking to the legitimate

server (not an impersonator)
■ The server must prove that it owns the

private key corresponding to the public key in
the certificate

○ Give the client and server a shared secret
■ An attacker should not be able to learn the

secret
■ This will help the client and the server secure

messages later
● Two approaches to sharing a premaster

secret: RSA or Diffie-Hellman (DHE)

Client Server

Certificate

Computer Science 161

ServerHello

ClientHello

10

TLS Handshake Step 3: Premaster Secret (RSA)

● The client randomly generates a premaster
secret (PS)

● The client encrypts PS with the server’s
public key and sends it to the server

○ The client knows the server’s public key from the
certificate

● The server decrypts the premaster secret
● The client and server now share a secret

○ Recall RSA encryption: Nobody except the
legitimate server can decrypt the premaster secret

○ Proves that the server owns the private key
(otherwise, it could not decrypt PS)

Client Server

Certificate

{PS}Kserver

Computer Science 161

ServerHello

ClientHello

11

TLS Handshake Step 3: Premaster Secret (DHE)

● The server generates a secret a and
computes ga mod p

● The server signs ga mod p with its private
key and sends the message and signature

● The client verifies the signature
○ Proves that the server owns the private key

● The client generates a secret b and
computes gb mod p

● The client and server now share a
premaster secret: gab mod p

○ Recall Diffie-Hellman: an attacker cannot compute
gab mod p

Client Server

Certificate

{ga mod p}K-1server

gb mod p

Computer Science 161

12

TLS Handshake Step 4: Derive Symmetric Keys

● The server and client each derive symmetric
keys from RB, RS, and PS

○ Usually derived by seeding a PRNG with the three
values

○ Changing any of the values results in different
symmetric keys

● Four symmetric keys are derived
○ CB: For encrypting client-to-server messages
○ CS: For encrypting server-to-client messages
○ IB: For MACing client-to-server messages
○ IS: For MACing server-to-client messages
○ Note: Both client and server know all four keys

Client Server

{ga mod p}K-1server

gb mod p

{PS}Kserver

or

Compute
keys

Compute
keys

Computer Science 161

13

TLS Handshake Step 5: Exchange MACs

● The server and client exchange MACs on all
the messages of the handshake so far

○ Recall MACs: Any tampering on the handshake will
be detected

○ Not to be confused with MAC addresses

Client Server

Compute
keys

Compute
keys

MAC(IB, steps 1-4)

MAC(IS, steps 1-4)

Computer Science 161

14

TLS Handshake Step 6: Send Messages

● Messages can now be sent securely
○ Encrypted and MAC’d
○ Note: TLS uses MAC-then-encrypt, even though

encrypt-then-MAC is generally considered better,
for legacy reasons

Client Server

Compute
keys

Compute
keys

MAC(IB, steps 1-4)

MAC(IS, steps 1-4)

{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Computer Science 161

15

TLS: Talking to the Legitimate Server

● How can we be sure we are talking to the
legitimate server?

○ The server sent its certificate, so we know the
server’s public key

○ The server proved that it owns the corresponding
private key

■ RSA: The server decrypted the PS
■ DHE: The server signed its half of the

exchange
● An attacker impersonating the server would

not have the server’s private key (assuming
they have not compromised the server)

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

16

TLS: Securing Messages

● How can we be sure that network attackers
can’t read or tamper with our messages?

● The attacker doesn’t know PS
○ RSA: PS was encrypted with the server’s public

key
○ DHE: An attacker cannot learn the Diffie-Hellman

secret
● The symmetric keys are derived from PS

○ The attacker doesn’t know the symmetric keys
used to encrypt and MAC messages

● Encryption and MACs provide confidentiality
and integrity

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

17

TLS: Replay Attacks

● How can we be sure that the attacker hasn’t
replayed old messages from a past TLS
connection?

● Every handshake uses a different RB and RS

● The symmetric keys are derived from RB
and RS

○ The symmetric keys are different for every
connection

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

18

TLS: Replay Attacks

● How can we be sure that the attacker hasn’t
replayed old messages from the current TLS
connection?

● Add record numbers in the encrypted TLS
message

○ Every message uses a unique record number
○ If the attacker replays a message, the record

number will be repeated
● TLS record numbers are not TCP sequence

numbers
○ Record numbers are encrypted and used for

security
○ Sequence numbers are unencrypted and used for

correctness, in the layer below

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

Forward Secrecy

19Textbook Chapter 31.1

Computer Science 161

Forward Secrecy

● Recall forward secrecy: If an attacker records a connection now and
compromises secret values later, they cannot compromise the recorded
connection

● RSA TLS: No forward secrecy is guaranteed
○ The adversary can record RB, RS, and the encrypted PS
○ If the adversary later compromises the server’s private key, they can decrypt PS and derive

the keys!
● DHE TLS: Guaranteed forward secrecy

○ Diffie-Hellman provides forward secrecy: PS is deleted after the TLS session is over, so the
adversary can’t learn the keys, even if they later compromise the server’s private key

○ Note: Because the server’s Diffie-Hellman component is signed, the adversary can’t MITM the
Diffie-Hellman exchange without the server’s private key

20

Computer Science 161

TLS 1.3 Changes

● TLS 1.3: The latest version of the TLS protocol (2018)
● RSA no longer supported (only DHE)

○ Guarantees forward secrecy
● Performance optimization: The client sends gb mod p in ClientHello

○ If the server agrees to use DHE, the server sends ga mod p (with signature) in ServerHello
○ Potentially saves two messages later in the handshake

● Only supports AEAD mode encryption
○ Recall AEAD (authenticated encryption with additional data): a block cipher mode that

guarantees confidentiality and integrity at the same time
○ Eliminates attacks associated with the insecure MAC-then-encrypt pattern

21

Computer Science 161

TLS in Practice

22Textbook Chapter 31.3

Computer Science 161

TLS: Efficiency

● Public-key cryptography: Minor costs
○ Client and server must perform Diffie-Hellman key exchange or RSA encryption/decryption

● Symmetric-key cryptography: Effectively free
○ Modern hardware has dedicated support for symmetric-key cryptography
○ Performance impact is negligible

● Latency: Extra waiting time before the first message
○ Must perform the entire TLS handshake before sending the first message

23

Computer Science 161

TLS Provides End-to-End Security

● TLS provides end-to-end security: Secure communication between the two
endpoints, with no need to trust intermediaries

○ Even if everybody between the client and the server is malicious, TLS provides a secure
communication channel

○ End-to-end security does not help if one of the endpoints is malicious (e.g. communicating
with a malicious server)

○ Example: An local network attacker (on-path) tries to read our Wi-Fi session, but can’t read
TLS messages

○ Example: A man-in-the-middle tries to inject TCP packets, but packets will be rejected because
the MAC won’t be correct

● Using TLS defends against most lower-level network attacks

24

Computer Science 161

TLS Does Not Provide Anonymity

● Anonymity: Hiding the client’s and server’s identities from attackers
● An attacker can figure out who is communicating with TLS

○ The certificate is sent during the TLS handshake, containing the server’s name
○ The client may also indicate the name of the server in the ClientHello (called Server Name

Indication, or SNI)
○ An attacker can see IP addresses and ports of the underlying IP and TCP protocols

25

Computer Science 161

TLS Does Not Provide Availability

● Availability: Keeping the connection open in the face of attackers
● An attacker can stop a TLS connection

○ MITM can drop encrypted TLS packets
○ On-path attacker can still do RST injection to abort the underlying TCP connection

● Result: A TLS connection can still be censored
○ The censor can block TLS connections

26

Computer Science 161

TLS for Applications

● Recall Internet layering: TLS provides services to higher layers (the
application layer)

● HTTPS: The HTTP protocol run over TLS
○ In contrast, HTTP runs over plain TCP, with no TLS added

● Other secure application-layer protocols besides HTTPS exist
○ Pretty much anything that runs over TCP can also run over TLS, since the bytestream

abstraction is maintained
○ Example: Email protocol can use the STARTTLS command to uses TLS to secure

communications
● TLS does not defend against application-layer vulnerabilities

○ Example: SQL injection, XSS, CSRF, and buffer overflow vulnerabilities in the application are
still exploitable over TLS

27

Computer Science 161

SSL Stripping Attacks

● Browsers often default to using unencrypted HTTP
○ If a user types google.com into the browser, the browser opens http://www.google.com
○ To mitigate this, websites will often redirect from the HTTP to the HTTPS version of its site
○ This requires the client to first receive the unprotected HTTP redirect response

● SSL stripping: Forcing a user to use unencrypted HTTP instead of HTTPS
○ A MITM attacker intercepts the first HTTP request and creates their own HTTPS connection to

the server
○ The user never receives a redirect to HTTPS, so it believes the site wants them to use HTTP
○ Defense: HTTP Strict-Transport-Security (HSTS) header tells browsers to only access the

server with HTTPS

28

User Attacker Server
HTTP HTTPS

Computer Science 161

TLS in Browsers

● Original design:
○ When your browser communicates with a server over TLS, your browser displays a lock icon
○ If TLS is not used, there is no lock icon

● What the lock icon means
○ Communication is encrypted (TLS guarantee)
○ You are talking to the legitimate server (TLS guarantee)
○ Any external images or scripts are also fetched over TLS

29

This website uses HTTP: no lock icon

This website uses HTTPS: lock icon

Computer Science 161

TLS in Browsers

● What users think the lock icon means
○ This website is trustworthy, no matter where the lock icon actually appears

● Attack: The attacker adds their own lock icon somewhere on the page
○ The user thinks they’re using TLS, but actually is not using TLS

● Attack: The user might be communicating with an attacker’s website over TLS
○ The lock icon appears, but the user is actually vulnerable!

30

Computer Science 161

TLS in Browsers

● Modern design: Add a “not secure” icon to connections that don’t use TLS
○ Adds a signal on unencrypted sites
○ Encourages websites to stop supporting all unencrypted, HTTP traffic and redirect to HTTPS

31

This website uses HTTP: insecure icon

This website uses HTTPS: lock icon

Computer Science 161

TLS Attack: PRNG Sabotage

● Consider TLS with Diffie-Hellman
○ An attacker who learns the DHE secret a can derive the PS gab mod p (recall gb mod p is sent

over the channel)
○ An attacker who knows the PS can derive the symmetric keys (recall RC and RS are sent over

the channel)
● Consider using a PRNG to generate all random values

○ Includes the server DHE secret a and the client DHE secret b
● What if the PRNG is sabotaged and doesn’t have rollback resistance?

○ Example of sabotage: Dual_EC DRBG with knowledge of the secret used to create the
generator

○ Example of sabotage: ANSI X9.31: An AES-based PRNG with a secret key
● Attack: See subsequent PRNG output and work backwards to learn the DHE

secret
32

Computer Science 161

TLS Trust Issues: Certificate Authorities

33

Computer Science 161

Recall: Certificates in TLS

● The server sends its certificate
○ Certificate: The server’s domain name and public key, signed by a certificate authority

● The browser verifies the server’s certificate
○ The browser checks the domain name in the URL matches the domain name in the certificate
○ The certificate authority’s public key is hardwired into the browser (trust anchor)
○ The browser uses the CA’s public key to verify the signature

● If the certificate is verified, the browser now knows the server’s public key

34

Computer Science 161

Issues: Unknown Certificate Authority

35

Computer Science 161

Issues: Unknown Certificate Authority

● What if the browser doesn’t have the certificate authority’s public key for
verification?

● Warn the user that the website is not verified
○ The TLS connection can still proceed, but there is no guarantee that the user is talking to the

legitimate server
● What if the user is not talking to the legitimate server?

○ No more end-to-end security
○ An attacker can read and modify messages
○ An attacker can impersonate the server

36

Computer Science 161

37

Verifying Certificates

Computer Science 161

Verifying Certificates

38

Computer Science 161

39

Issues: Revocation

● What if an attacker steals a server’s private key?
○ The certificate with the corresponding public key is no longer valid
○ TLS certificates have an expiration date, but they often don’t expire for years

● Solution: Certificate revocation lists
○ The CA occasionally sends out lists of certificates that are no longer valid
○ The browser occasionally downloads the lists

● Solution: Online Certificate Status Protocol (OCSP)
○ The browser queries the CA whether a given certificate is still valid
○ The CA responds either “good” or “revoked,” signed with the CA’s private key

Computer Science 161

Issues: Trust Anchors

● How many certificate authorities do we need to implicitly trust?
○ Modern browsers implicitly trust 100–200 root certificate authorities

● A CA might issue a malicious certificate (e.g. stating that attacker’s public key
belongs to Google) because:

○ The CA is hacked
○ An attacker pays the CA to issue a malicious certificate

40

Computer Science 161

Issues: Trust Anchors

Takeaway: Trust certificate authorities can be compromised by hackers
41

Link

Solo Iranian hacker takes credit for Comodo certificate attack
Gregg Keizer March 27, 2011

Security researchers split on whether 'ComodoHacker' is the real deal

A solo Iranian hacker on Saturday claimed responsibility for stealing multiple SSL certificates belonging to
some of the Web's biggest sites, including Google, Microsoft, Skype and Yahoo.

Early reaction from security experts was mixed, with some believing the hacker's claim, while others were
dubious.

https://www.computerworld.com/article/2507258/solo-iranian-hacker-takes-credit-for-comodo-certificate-attack.html

Computer Science 161

Issues: Trust Anchors

Takeaway: Trust certificate authorities can be compromised by hackers
42

Link

Fraudulent Google certificate points to Internet attack
Elinor Mills August 29, 2011

Is Iran behind a fraudulent Google.com digital certificate? The situation is similar to one that happened in
March in which spoofed certificates were traced back to Iran.

A Dutch company appears to have issued a digital certificate for Google.com to someone other than
Google, who may be using it to try to re-direct traffic of users based in Iran.

Yesterday, someone reported on a Google support site that when attempting to log in to Gmail the browser
issued a warning for the digital certificate used as proof that the site is legitimate, according to this thread
on a Google support forum site.

https://www.cnet.com/news/fraudulent-google-certificate-points-to-internet-attack/
http://www.google.co.uk/support/forum/p/gmail/thread?tid=2da6158b094b225a&hl=en

Computer Science 161

Issues: Trust Anchors

Takeaway: Trust certificate authorities can be compromised by hackers
43

Link

Final Report on DigiNotar Hack Shows Total Compromise of CA Servers
Dennis Fisher October 31, 2012

The attacker who penetrated the Dutch CA DigiNotar last year had complete control of all eight of the
company’s certificate-issuing servers during the operation and he may also have issued some rogue
certificates that have not yet been identified.

https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/

Computer Science 161

Issues: Trust Anchors

Takeaway: Trust certificate authorities can be compromised by hackers
44

Link

Evidence Suggests DigiNotar, Who Issued Fraudulent
Google Certificate, Was Hacked Years Ago
Mike Masnick August 30, 2011

The big news in the security world, obviously, is the fact that a fraudulent Google certificate made its way
out into the wild, apparently targeting internet users in Iran. The Dutch company DigiNotar has put out a
statement saying that it discovered a breach back on July 19th during a security audit, and that fraudulent
certificates were generated for "several dozen" websites. The only one known to have gotten out into the
wild is the Google one.

https://www.techdirt.com/articles/20110830/13243615741/evidence-suggests-diginotar-who-issued-fraudulent-google-certificate-was-hacked-years-ago.shtml

Computer Science 161

Issues: Trust Anchors

45

● DigiNotar: A certificate authority that was hacked
○ All web browsers removed DigiNotar from the list of trusted CAs

● WoSign: An untrustworthy certificate authority
○ Also removed by all browsers
○ A user who controls nweaver.github.com can create certificates for any subdomain of

github.com

● Takeaway: It is hard to implicitly trust the root CAs (trust anchors) in TLS

Computer Science 161

Solving Trust Issues

● Certificate pinning: The browser restricts which CAs are allowed to issue a
certificate for each website

○ Example: Only the Google CA is allowed to sign certificates for Google websites
○ Now creating a fake certificate for a specific website requires attacking a particular CA

● Certificate transparency: Public logs provided by CAs
○ Specifics are out of scope
○ High-level idea: Use hash chains to keep a record of all issued certificates
○ The server can tell the browser to only accept certificates from CAs implementing

transparency

46

Computer Science 161

Solving Trust Issues

● Other solutions implementing to “trust but verify” the certificate you received
○ EFF’s SSL Observatory: Check against certificates seen by other dedicated computers, called

“observatories,” placed around the Internet
○ ICSI’s Certificate Notary: Check against certificates used in common Internet traffic, by tapping

into common Internet channels

47

Computer Science 161

Certificate Authority Example: Let’s Encrypt

● TLS requires every website to obtain and maintain certificates
○ Cost overhead: Certificates might cost money
○ Some management overhead involved

● Let’s Encrypt: The world’s largest certificate authority
○ Issues certificates for free
○ Tries to make obtaining certificates as easy as possible

● Steps of issuing a certificate (can all be automated with a script)
○ The server requests a certificate
○ Let’s Encrypt gives the server a file and tells the server to upload the file
○ The server uploads the file to the website
○ Let’s Encrypt verifies that the file has appeared on the website (thus verifying the server’s

identity) and issues the certificate to the server

48

Computer Science 161

TLS: Summary

● TLS Handshake
○ Nonces make every handshake different

(prevents replay attacks across connections)
○ Certificate proves server’s public key
○ RSA or DHE proves that the server owns the

private key
○ RSA or DHE helps client and server agree on a

shared secret key
○ MAC exchange ensures no one tampered with

the handshake
○ Messages are sent with symmetric encryption

and MACs
○ Record numbers prevent replay attacks within a

connection
49

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

TLS: Summary

● Security properties
○ DHE TLS: Forward secrecy
○ RSA TLS: No forward secrecy
○ End-to-end security: Secure even if all intermediate parties are malicious
○ Not anonymous: Attackers can determine who you’re talking to
○ No availability: Connections can be dropped or censored

● Can be used by the application layer (e.g. HTTPS)
● Trusting certificate authorities can be hard

50

