
Computer Science 161

DNS
CS 161 Spring 2024 - Lecture 20

Computer Science 161

Last Time: TLS

● TLS Handshake
○ Nonces make every handshake different

(prevents replay attacks across connections)
○ Certificate proves server’s public key
○ RSA or DHE proves that the server owns the

private key
○ RSA or DHE helps client and server agree on a

shared secret key
○ MAC exchange ensures no one tampered with

the handshake
○ Messages are sent with symmetric encryption

and MACs
○ Record numbers prevent replay attacks within a

connection
2

Client Server
ClientHello

ServerHello

Certificate

{ga mod p}K-1server

gb mod p
{M, MAC(IB, M)}CB

{M, MAC(IS, M)}CS

Or RSA exchange

Computer Science 161

Last Time: TLS

● Security properties
○ DHE TLS: Forward secrecy
○ RSA TLS: No forward secrecy
○ End-to-end security: Secure even if all intermediate parties are malicious
○ Not anonymous: Attackers can determine who you’re talking to
○ No availability: Connections can be dropped or censored

● Can be used by the application layer (e.g. HTTPS)
● Trusting certificate authorities can be hard

3

Computer Science 161

Outline

● Domain Name System (DNS)
○ DNS name servers
○ Steps of a DNS lookup
○ Stub resolvers and recursive resolvers
○ DNS message format
○ DNS records
○ DNS lookup walkthrough

● DNS Security
○ Cache poisoning attacks
○ Risk: Malicious name servers
○ Defense: Bailiwick checking
○ Risk: Network attackers (MITM, on-path, off-path)
○ Kaminsky attack
○ Defense: Source port randomization 4

Computer Science 161

DNS

5

Computer Science 161

Domain Names

● Recall: Computers are addressed by IP address on the Internet
○ Example: 74.125.25.99
○ Useful for machines: Can be used to route packets to the correct destination
○ Not useful for humans: Numbers are not meaningful to humans, hard to remember

● More useful to humans: Human-readable domain names
○ Example: www.google.com
○ Not useful for machines: Contains no relevant routing information
○ Useful for humans: Meaningful words and phrases, easy to remember
○ Note: Domain names are not URLs. Domain names are part of a URL:

https://www.google.com/index.html

6

Computer Science 161

DNS: Definition

● DNS (Domain Name System): An Internet protocol for translating
human-readable domain names to IP addresses

● Usage
○ You want to send a packet to a certain domain (e.g. you type a domain into your browser)
○ Your computer performs a DNS lookup to translate the domain name to an IP address
○ Your computer sends the packet to the corresponding IP address

7

74.125.25.99www.google.com
DNS

Computer Science 161

DNS Name Servers

● Name server: A server on the Internet responsible for answering DNS
requests

○ Name servers have domain names and IP addresses too
○ Example: Domain a.edu-servers.net with IP 192.5.6.30 is a name server

● Usage:
○ To perform a DNS lookup, your computer sends a DNS query (e.g. “What is the IP address of

www.google.com?”)
○ The name server sends a DNS response with the answer (e.g. “The IP address of

www.google.com is 74.125.25.99”)
● Issues

○ One name server won’t be able to handle every DNS request from the entire Internet
○ If there are many name servers, how do you know which one to contact?

8

Computer Science 161

DNS Name Server Hierarchy

● Idea #1: If one name server doesn’t know the answer to your query, the name
server can direct you to another name server

○ Analogy: If I don't know the answer to your question, I will direct you to a friend who can help
● Idea #2: Arrange the name servers in a tree hierarchy

○ Intuition: Name servers will direct you down the tree until you receive the answer to your query

9

. (root)

.edu .org .com

google.compiazza.comcs161.orgmit.eduberkeley.edu

Computer Science 161

DNS Name Server Hierarchy

10

Each box is a name server. The label
represents which queries the name
server is responsible for answering.

. (root)

.edu .org .com

google.compiazza.comcs161.orgmit.eduberkeley.edu

For example, this name server is
responsible for .edu queries like
eecs.berkeley.edu, but not a
query like mail.google.com.

Computer Science 161

Steps of a DNS Lookup

11

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

Let's walk through a DNS query for the
IP address of eecs.berkeley.edu.

Computer Science 161

Steps of a DNS Lookup

12

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

DNS queries always start with a
request to the root name server,

which is responsible for all requests.

1
“What is the IP address of
eecs.berkeley.edu?”

Computer Science 161

Steps of a DNS Lookup

13

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

The root name server responds by
directing you to the correct child
name server (in this case, the

.edu name server).

1

2 “I don’t know, but I have
delegated authority to the .edu

name server.”

Computer Science 161

Steps of a DNS Lookup

14

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

1

2

3
“What is the IP address of
eecs.berkeley.edu?”

Computer Science 161

Steps of a DNS Lookup

15

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You 3

4 “I don’t know. But I have
delegated authority to the

berkeley.edu name server.”

1

2

Computer Science 161

Steps of a DNS Lookup

16

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

“What is the IP address of
eecs.berkeley.edu?”

3

4

1

2

5

Computer Science 161

Steps of a DNS Lookup

17

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

You

5

6

“The IP address of
eecs.berkeley.edu is 23.185.0.1.”

3

4

1

2

Computer Science 161

Stub Resolvers and Recursive Resolvers

● In practice, your computer usually tells another resolver to perform the query
for you

● Stub resolver: The resolver on your computer
○ Only contacts the recursive resolver and receives the answer

● Recursive resolver: The resolver that makes the actual DNS queries
○ Usually one recursive resolver per local network
○ Benefits: The recursive resolver can cache common requests for the network

18

Computer Science 161

Steps of a DNS Lookup

19

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

Stub
Resolver

The stub resolver sends the query to
the recursive resolver.

1

Recursive
Resolver

Computer Science 161

Steps of a DNS Lookup

20

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

Stub
Resolver

The recursive resolver contacts
all the name servers to answer
the query, as we saw earlier.

Recursive
Resolver

1

6

7

4

5

3

2

Computer Science 161

Steps of a DNS Lookup

21

. (root)

.edu .org

cs161.orgmit.eduberkeley.edu

Stub
Resolver

The recursive resolver returns the final
answer to the stub resolver.

Recursive
Resolver

1 8

6

7

4

5

3

2

Computer Science 161

DNS Message Format

22

Computer Science 161

DNS Uses UDP

23

● Recall UDP vs. TCP
○ UDP: No delivery guarantees, packets can be reordered or dropped, faster
○ TCP: Packets guaranteed to arrive in order, slower

● DNS is designed to be lightweight and fast
○ Any access that involves a domain name (websites, email, etc.) is preceded by a DNS query,

so we want DNS lookups to be fast
● DNS uses UDP instead of TCP for better performance

○ No 3-way handshake!

Computer Science 161

DNS Packet Format: UDP Header

● Source port (16 bits): Chosen by the client
○ Can be randomized for security, as we’ll see later

● Destination port (16 bits): Usually 53
○ DNS name servers answer requests on Port 53

● Checksum: Code to check the UDP
payload was not corrupted in transit

○ You don’t need to worry about this
● Length: Length of the UDP payload

○ You don’t need to worry about this

24

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

U
D

P P
ayload

U
D

P
H

eader

Computer Science 161

DNS Packet Format: DNS Payload

● ID number (16 bits): Used to associate
queries with responses

○ Client picks an ID number in the query
○ Name server uses the same ID number in the

response
○ Should be random for security, as we’ll see later

● Counts: The number of records of each
type in the DNS payload

25

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

D
N

S
 P

ayload
U

D
P

H
eader

D
N

S
 H

eader

Computer Science 161

DNS Packet Format: DNS Header

● The DNS payload contains a variable
number of resource records (RRs)

● Each RR is a name-value pair
● RRs are sorted into four sections

○ Question section
○ Answer section
○ Authority section
○ Additional section

26

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

D
N

S
 P

ayload
U

D
P

H
eader

D
N

S
 H

eader

Computer Science 161

27

DNS Record Format

● Each record is a name-value pair with a type
○ A (answer) type records: Maps a domain name to an IPv4 address
○ NS (name server) type records: Designates another DNS server to handle a domain
○ Other types exist, but these are the two you need to know for now

● Each record also contains some metadata
○ Time to live (TTL): How long the record can be cached
○ Other metadata fields exist, but you don’t need to worry about them

Computer Science 161

DNS Record Types

● Other record types you might encounter:
○ AAAA type record: Maps a domain name to an IPv6 address
○ CNAME type record: Maps one domain name to another domain name. Used for aliases.
○ MX type record: Used for mail servers
○ SOA: Contains information about the operator/administrator of a zone
○ Other types for text records, cryptographic information, etc. exist too
○ You don’t need to know about any of these

28

Computer Science 161

● Question section: What is being asked
○ Included in both requests and responses
○ Usually an A type record with the domain being looked up

● Answer section: A direct response to the question
○ Empty in requests
○ Used if the name server responds with the answer
○ Usually an A type record with the IP address of the domain being looked up

● Authority section: A delegation of authority for the question
○ Empty in requests
○ Used to direct the resolver to the next name server
○ Usually an NS type record with the zone and domain of the child name server

DNS Record Sections

29

Computer Science 161

● Additional section: Additional information to help with the response,
sometimes called glue records

○ Empty in requests
○ Provides helpful, non-authoritative records for domains
○ Usually an A type record with the domain and IP address of the child name server (since the

NS record provides the child name server as a domain)

DNS Record Sections

30

Computer Science 161

DNS Record Caching

● For performance, resolvers cache as many records as possible
○ Records returned by name servers are cached until their time-to-live expires
○ No DNS requests need to be sent for recently-seen queries
○ Makes response time faster for clients
○ Reduces load on name servers

31

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

32

You can try this at home! Use
the dig utility in your terminal,

and remember to set the
+norecurse flag so you can

traverse the name server
hierarchy yourself.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

33

We are performing a DNS
lookup for the IP address of
eecs.berkeley.edu.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

34

DNS queries always start with a
request to the root name server.
The IP address of the root name
server is usually hard-coded into

recursive resolvers.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

35

Here’s the DNS
response from the
root name server.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

36

Here’s the DNS header.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

37

Here’s the 16-bit ID
number in the DNS

header.

Computer Science 161

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

DNS Lookup Walkthrough

38

Here are the flags in the
DNS header.

Here are the record counts
in the DNS header.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

39

Here’s the DNS payload. It’s a
collection of resource records
(one per line), sorted into four

sections.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

40

Here’s the question section.
The name is

eecs.berkeley.edu, the
type is A, and the value is
blank. It shows that we are

looking for the IP address of
eecs.berkeley.edu.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

41

The answer section is blank,
because the root name
server did not return the
answer we’re looking for.

We can confirm this by
checking the header, which
says there are 0 records in

the answer section.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

42

The authority and additional
sections tell the resolver

where to look next.

Note that there are multiple
.edu name servers for

redundancy.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

43

For redundancy, there are
usually several name

servers for each zone. Any
of them will usually work.

Let’s pick the first one.

This NS record says that
a.edu-servers.net is a

.edu name server.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
...

44

This A record helpfully tells
us the IP address of the

next name server we mean
to contact.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @192.5.6.30

45

Next, we query the .edu name
server. We know the IP address

of the .edu name server
because the root name server

gave the information to us.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @192.5.6.30

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36257
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 5

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
berkeley.edu. 172800 IN NS adns1.berkeley.edu.
berkeley.edu. 172800 IN NS adns2.berkeley.edu.
berkeley.edu. 172800 IN NS adns3.berkeley.edu.

;; ADDITIONAL SECTION:
adns1.berkeley.edu. 172800 IN A 128.32.136.3
adns2.berkeley.edu. 172800 IN A 128.32.136.14
adns3.berkeley.edu. 172800 IN A 192.107.102.142
...

46

The answer section is blank
again. The authority and

additional section tell us to query
a berkeley.edu name server,

and provide us with the IP
address of the next name

server.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @128.32.136.3

47

Next, we query the
berkeley.edu name

server for the IP address of
eecs.berkeley.edu. We
know the IP address of the
berkeley.edu name
server because the root
name server gave the

information to us.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1

48

The answer section has one A type
record. It tells us that the IP

address of eecs.berkeley.edu
is 23.185.0.1.

Computer Science 161

DNS Lookup Walkthrough

$ dig +norecurse eecs.berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1

49

Here’s the time-to-live (TTL) field in the
record. It tells us that we can cache this
answer for 86,400 seconds (24 hours).

Computer Science 161

50

DNS Security

Computer Science 161

Cache Poisoning Attacks

● Cache poisoning attack: Returning a malicious record to the client
○ The victim will cache the malicious records, “poisoning” it

● Example: Supply a malicious A record mapping the attacker’s IP address to a
legitimate domain

○ Now when the victim visits eecs.berkeley.edu, they’ll actually be sending packets to the
attacker (6.6.6.6), who can act as a MITM!

51

Computer Science 161

Security Risk: Malicious Name Servers

● Malicious name servers can lie and supply a malicious answer
● Malicious records could also poison the cache with other records

52

$ dig +norecurse eecs.berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1

;; ADDITIONAL SECTION:
www.google.com. 172800 IN A 6.6.6.6

We made a query to a
malicious berkeley.edu

name server...

...and it returned a
malicious record for
www.google.com!

Computer Science 161

Defense: Bailiwick Checking

● Idea: Limit the amount of damage a malicious name server can do
● Bailiwick checking: the resolver only accepts records if they are in the name

server’s zone
○ Bailiwick: “one’s sphere of operations or particular area of interest”
○ Example: The berkeley.edu name server can provide a record for eecs.berkeley.edu,

but not mit.edu
○ Example: The .edu name server can provide a record for mit.edu and berkeley.edu, but

not google.com
○ Example: The root name server can provide a record for any domain (everything is in bailiwick

for the root)

53

Computer Science 161

Security Risk: Man-in-the-middle (MITM) Attackers

● DNS is not secure against MITM attackers
● MITM attackers can poison the cache by adding, removing, or changing any

record in the DNS response

54

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1 6.6.6.6

Computer Science 161

Security Risk: On-Path Attackers

55

● DNS is not secure against on-path attackers
● On-path attackers can poison the cache by sending a spoofed response

○ If the spoofed response arrives before the legitimate response, the victim will cache the
attacker’s malicious records

○ The on-path attacker can see every field in the unencrypted DNS request. Nothing to guess!

Recursive
Resolver

berkeley.edu
name server

Attacker

Computer Science 161

Security Risk: Off-Path Attackers

● The off-path attacker needs to guess the ID
field to spoof a response

○ If the ID in the response doesn’t match the ID in
the request, the resolver won’t accept the
response

● If the ID number is randomly generated:
○ Probability of guessing correctly = 1/216

○ Recall: The ID number is 16 bits long
○ Requires approximately 65,000 tries to

successfully send a spoofed packet
○ This is too small!

56

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

D
N

S
 P

ayload
U

D
P

H
eader

D
N

S
 H

eader

Computer Science 161

57

Security Risk: Off-Path Attackers

● What if the ID field is incremented by 1 for every request?
● Off-path attacker can spoof a packet as follows:

○ Trick the victim into visiting the attacker’s website
○ Include this HTML on the attacker’s website:
○ The victim’s browser will make a DNS query for www.attacker.com
○ If the attacker controls the attacker.com DNS name server, they can see the request and

learn the ID field
○ Include this HTML on the attacker’s website:
○ The victim’s browser will make a DNS query for www.google.com
○ The attacker knows the ID is 1 more than the previous ID, so they can spoof a response!

● ID numbers need to be random in DNS requests

Computer Science 161

Kaminsky Attack

● Notice: If the attacker places
multiple times on their website, the browser will only make 1 DNS query

○ The browser caches address of www.google.com
○ The attacker only gets one try

● Dan Kaminsky, security researcher, noticed that DNS clients would cache
additional glue records as if they were authoritative answers, even though
they aren’t

58

Computer Science 161

Kaminsky Attack

● Now, the attacker can gain more tries at once:
○ The attacker includes

■
■
■
■

○ For each, the client makes a request for the domain name
○ The attacker’s spoofed response contains:

■ Authority: fake1.google.com. 172800 IN NS www.google.com.
■ Additional: www.google.com. 172800 IN A 6.6.6.6

○ The client now caches the record for www.google.com, and the cache is poisoned!
● See here for draft extra slides.

59

https://docs.google.com/presentation/d/1uzwEoB1Wf_vmfyDRzkO3K7ocTu6XHLmyz7tlnjwkXiU

Computer Science 161

Defense: Source Port Randomization

● Randomize the source port of the DNS
query

○ The attacker must guess the destination port of the
response in addition to the query ID

○ This adds 16 bits to guess, to total 232 possibilities
● Other ways to increase entropy:

○ Randomly capitalize the domain, since the question
is copied in the response

6060

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

D
N

S
 P

ayload
U

D
P

H
eader

D
N

S
 H

eader

Computer Science 161

Defense: Glue Validation

● Don’t cache glue records as part of DNS lookups
○ They are necessary, since NS records are given in terms of domain names, not IP addresses
○ If you want to cache, you can perform a separate recursive DNS lookup to validate the glue

record authoritatively
● Issue: This was not implemented by all DNS software

○ Unbound, a major DNS implementation, implemented validation
○ BIND, the oldest and most common implementation, did not

■ Mainly for political reasons: They supported DNSSEC, which uses cryptography to
validate DNS records (we’ll look at this next time)

61

Computer Science 161

Profiting from DNS Attacks

● Suppose you take over a lot of home routers… How do you make money from
your attack?

● Change the DNS server settings
○ Each router is programmed with the IP address of the recursive resolver
○ Replace the IP address of the recursive resolver with the attacker’s IP address
○ Cache poisoning attacks are now possible!

● Redirect all DNS requests for ads to an attacker-controlled domain and serve
attacker-chosen ads to the victim

○ The attacker can now sell this advertising space!
● TLS can defend against this (recall: end-to-end security)

62

Computer Science 161

DNS: Summary

● DNS (Domain Name System): An Internet protocol for translating
human-readable domain names to IP addresses

○ DNS name servers on the Internet provide answers to DNS queries
○ Name servers are arranged in a domain hierarchy tree
○ Lookups proceed down the domain tree: name servers will direct you down the tree until you

receive an answer
○ The stub resolver tells the recursive resolver to perform the lookup

63

. (root)

.edu .org .com

google.compiazza.comcs161.orgmit.eduberkeley.edu

Computer Science 161

DNS: Summary

● DNS message structure
○ DNS uses UDP for efficiency
○ DNS packets include a random 16-bit ID field to match requests to responses
○ Data is encoded in records, which are name-value pairs with a type

■ A (answer) type records: Maps a domain name to an IPv4 address
■ NS (name server) type records: Designates another DNS server to handle a domain

○ Records are separated into four sections
■ Question: Contains query
■ Answer: Contains direct answer to query
■ Authority: Directs the resolver to the next name server
■ Additional: Provides extra information (e.g. the location of the next name server)

○ Resolvers cache as many records as possible (until their time-to-live expires)

64

Computer Science 161

DNS Security: Summary

● Cache poisoning attack: Send a malicious record to the resolver, which
caches the record

○ Causes packets to be sent to the wrong place (e.g. to the attacker, who becomes a MITM)
● Risk: Malicious name servers

○ Defense: Bailiwick checking: Resolver only accepts records in the name server’s zone
● Risk: Network attackers

○ MITM attackers can poison the cache without detection
○ On-path attackers can race the legitimate response to poison the cache
○ Off-path attackers must guess the ID field (Defense: Make the ID field random)

■ Kaminsky attack: Query non-existent domains and put the poisoned record in the
additional section (which will still be cached). Lets the off-path attacker try repeatedly
until succeeding

■ Defense: Source port randomization (more bits for the off-path attacker to guess)
65

