Computer Security

Network Security / 32. DNS

32. DNS

The Internet is commonly indexed in two different ways. Humans refer to websites using human-
readable names such as google.com and eecs.berkeley.edu, While computers refer to websites using IP
addresses such as 172.217.4.174 and 23.195.69.168. DNS, or the Domain Name System, is the

protocol that translates between the two.

32.1. Name servers

It would be great if there was single server that stored a mapping from every domain to every IP
address that everyone could query, but unfortunately, there is no server big enough to store the IP
address of every domain on the Internet and fast enough to handle the volume of DNS requests
generated by the entire world. Instead, DNS uses a collection of many name servers, which are

servers dedicated to replying to DNS requests.

Each name server is responsible for a specific zone of domains, so that no single server needs to
store every domain on the Internet. For example, a name server responsible for the .com zone only
needs to answer queries for domains that end in .com. This name server doesn't need to store any
DNS information related to wikipedia.org. Likewise, a name server responsible for the berkeley.edu

zone doesn’t need to store any DNS information related to stanford.edu.

Even though it has a special purpose (responding to DNS requests), a name server is just like any
other server you can contact on the Internet-each one has a human-readable domain name (e.g.
a.edu-servers.net) and a computer-readable IP address (e.g. 192.5.6.30). Be careful not to confuse the
domain name with the zone. For example, this name server has .net in its domain, but it responds

to DNS requests for .edu domains.

32.2. Name server hierarchy

You might notice two problems with this design. First, the .com zone may be smaller than the entire
Internet, but it is still impractical for one name server to store all domains ending in .com. Second, if
there are many name servers, how does your computer know which one to contact?

DNS solves both of these problems by introducing a new idea: when you query a name server,
instead of always returning the IP address of the domain you queried, the name server can also

direct you to another name server for the answer. This allows name servers with large zones such as
.edu to redirect your query to other name servers with smaller zones such as berkeley.edu. Now, the
name server for the .edu zone doesn’t need to store any information about eecs.berkeley.edu,
math.berkeley.edu, etc. Instead, the .edu name server stores information about the berkeley.edu name
server and redirects requests for eecs.berkeley.edu, math.berkeley.edu, €tC. tO @ berkeley.edu hame

Server.

DNS arranges all the name servers in a tree hierarchy based on their zones:

(root)
.edu .0rg .com
berkeley.edu mit.edu csl6l.org piazza.com google.com

The root server at the top level of the tree has all domains in its zone (this zone is usually written as
.). Name servers at lower levels of the tree have smaller, more specific zones. Each name server is
only responsible for storing information about their children, except for the name servers at the
bottom of the tree, which are responsible for storing the actual mappings from domain names to IP
addresses.

DNS queries always start at the root. The root will direct your query to one of its children name
servers. Then you make a query to the child name server, and that name server redirects you to one
of its children. The process repeats until you make a query to a name server at the bottom of the

tree, which will return the IP address corresponding to your domain.

To redirect you to a child name server, the parent name server must provide the child’s zone,
human-readable domain name, and IP address, so that you can contact that child name server for
more information.

As an example, a DNS query for eecs.berkeley.edu might have the following steps. (A comic version

of this query is available at https://howdns.works/.)

(root)

1
2
//3/—’/
.edu .0rg .com
You /
\
\ berkeley.edu mit.edu cslél.org piazza.com google.com

T You to the root name server: Please tell me the IP address of eecs.berkeley.edu.

2 Root server to you: | don't know, but | can redirect you to another name server with more
information. This name server is responsible for the .edu zone. It has human-readable domain

name a.edu-servers.net and IP address 192.5.6.30.
3 You to the .edu name server: Please tell me the IP address of eecs.berkeley.edu.

4 The .edu name server to you: | don't know, but | can redirect you to another name server with
more information. This name server is responsible for the berkeley.edu zone. It has human-

readable domain name adnsi.berkeley.edu and IP address 128.32.136.3.
5 You to the berkeley.edu name server: Please tell me the IP address of eecs.berkeley.edu.
6 The berkeley.edu name server to you: OK, the IP address of eecs.berkeley.edu iS 23.185.0.1.

A note on who is actually sending the DNS queries in this example: Your computer can manually
perform DNS lookups, but in practice, your local computer usually delegates the task of DNS
lookups to a DNS Recursive Resolver provided by your Internet service provider (ISP), which sends
the queries, processes the responses, and maintains an internal cache of records. When performing
a lookup, the DNS Stub Resolver on your computer sends a query to the recursive resolver, lets it
do all the work, and receives the response. When thinking about DNS requests, you can usually
focus on the messages being sent between the recursive resolver and the name server.

Congratulations, you now understand how DNS translates domains to IP addresses! The rest of this
section describes the specific implementation details of DNS.

32.3 DNS Message Format

Since every website lookup must start with a DNS query, DNS is designed to be very lightweight and
fast - it uses UDP (best-effort packets, no TCP handshakes) and has a fairly simple message format.

32 Bits

d » »
L |

Bit 0 Bit 15 Bit 16 Bit 31
ID Number Flags w)
Z
()]
Question count Answer count c:lla:
Q
o
Authority count Additional count Q
Question Records (variable number)
2
Answer Records (variable number) wn
o
e
Authority Records (variable number) o
Q
o
Additional Records (variable number)

The first field is a 16 bit identification field that is randomly selected per query and used to match
requests to responses. When a DNS query is sent, the ID field is filled with random bits. Since UDP is
stateless, the DNS response must send back the same bits in the ID field so that the original query

sender knows which DNS query the response corresponds to.

Sanity check: Which type(s) of adversary can read this ID field? Which type(s) of adversary cannot
read the ID field and must guess it when attacking DNS?"

The next 16 bits are reserved for flags, which specify whether the message is a query or a response,
as well as whether the query was successful (e.g. the noerror flag is set in the reply if the query
succeeded, the nxoomain flag is set in the reply if the query asked about a non-existent name).

The next field specifies the number of questions asked (in practice, this is always 1). The three fields
after that are used in response messages and specify the number of resource records (RRs)
contained in the message. We'll describe each of these categories of RRs in depth later.

The rest of the message contains the actual content of the DNS query/response. This content is
always structured as a set of RRs, where each RR is a key-value pair with an associated type.

For completeness, a DNS record key is formally defined as a 3-tuple <name, class, Type>, where nName
is the actual key data, class is always 1IN for Internet (except for special queries used to get
information about DNS itself), and Type specifies the record type. A DNS record value contains «<Tt,
value>, where TTL is the time-to-live (how long, in seconds, the record can be cached), and value is

the actual value data.

There are two main types of records in DNS. A type records map domains to IP addresses. The key
is a domain, and the value is an IP address. NS type records map zones to domains. The key is a

zone, and the value is a domain.

Important takeaways from this section: Each DNS packet has a 16-bit random ID field, some
metadata, and a set of resource records. Each record falls into one of four categories (question,
answer, authority, additional), and each record contains a type, a key, and a value. There are A type
records and NS type records.

32.4. DNS Lookup

Now, let's walk through a real DNS query for the IP address of eecs.berkeley.edu. You can try this at
home with the dig utility-remember to set the +norecurse flag so you can unravel the recursion
yourself.

Every DNS query begins with the root server. For redundancy, there are actually 13 root servers
located around the world. We can look up the IP addresses of the root servers, which are public and

well-known. In a real recursive resolver, these addresses are usually hardcoded.

The first root server has domain a.root-servers.net and IP address 198.41.0.4. We can use dig to
send a DNS request to this address, asking for the IP address of eecs.berkeley.edu.

$ dig +norecurse eecs.berkeley.edu @198.41.0.4
;5 Got answer:
;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114

;5 Tlags: qr; QUERY: 1, ANSWER: ©, AUTHORITY: 13, ADDITIONAL: 27

55 QUESTION SECTION:

;eecs.berkeley.edu. IN A

55 AUTHORITY SECTION:

edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.

;5 ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30

b.edu-servers.net. 172800 IN A 192.33.14.30

c.edu-servers.net. 172800 IN A 192.26.92.30

In the first section of the answer, we can see the header information, including the ID field (26114),

the return flags (NoErroR), and the number of records returned in each section.

The question section contains 1 record (you can verify by seeing querv: 1 in the header). It has key
eecs.berkeley.edu, type A, and a blank value. This represents the domain we queried for (the value is

blank because we don’t know the corresponding IP address).

The answer section is blank (answer: o in the header), because the root server didn't provide a

direct answer to our query.

The authority section contains 13 records. The first one has key .edu, type ns, and value a.edu-
servers.net . This is the root server giving us the zone and the domain name of the next name server
we should contact. Each record in this section corresponds to a potential name server we could ask

next.

The additional section contains 27 records. The first one has key a.edu-servers.net, type A, and
value 192.5.6.30. This is the root server giving us the IP address of the next name server by mapping

a domain from the authority section to an IP address.

Together, the authority section and additional section combined give us the zone, domain name,
and IP address of the next name server. This information is spread across two sections to maintain

the key-value structure of the DNS message.

For completeness: 172800 is the TTL (time-to-live) for each record, set at 172,800 seconds = 48 hours
here. The 1n is the Internet class and can basically be ignored. Sometimes you will see records of
type aasa, which correspond to IPv6 addresses (the usual a type records correspond to IPv4

addresses).

Sanity check: What name server do we query next? How do we know where that name server is
located? What do we query that name server for??

$$ dig +norecurse eecs.berkeley.edu @192.5.6.30

;5 Got answer:
;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36257

;5 Tlags: qr; QUERY: 1, ANSWER: ©, AUTHORITY: 3, ADDITIONAL: 5

55 QUESTION SECTION:

;eecs.berkeley.edu. IN A

55 AUTHORITY SECTION:

berkeley.edu. 172800 IN NS adnsl.berkeley.edu.
berkeley.edu. 172800 IN NS adns2.berkeley.edu.
berkeley.edu. 172800 IN NS adns3.berkeley.edu.

;5 ADDITIONAL SECTION:
adnsl.berkeley.edu. 172800 IN A 128.32.136.3
adns2.berkeley.edu. 172800 IN A 128.32.136.14

adns3.berkeley.edu. 172800 IN A 192.107.102.142

The next query also has an empty answer section, with ns records in the authority section and a

records in the additional section which give us the domains and IP addresses of name servers

responsible for the berkeley.edu zone.
$ dig +norecurse eecs.berkeley.edu @128.32.136.3
;5 Got answer:
;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788

;5 flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIONAL: 1

55 QUESTION SECTION:

;eecs.berkeley.edu. IN A

;; ANSWER SECTION:

eecs.berkeley.edu. 86400 IN A 23.185.0.1

Finally, the last query gives us the IP address corresponding to eecs.berkeley.edu in the form of a

single A type record in the answer section.

In practice, because the recursive resolver caches as many answers as possible, most queries can

skip the first few steps and used cached records instead of asking root servers and high-level name

servers like .edu every time. Caching helps speed up DNS, because fewer packets need to be sent

across the network to translate a domain name to an IP address. Caching also helps reduce request

load on the highest-level name servers.

32.5. DNS Security: Bailiwick

DNS is insecure against a malicious name server. For example, if a berkeley.edu Name server was

taken over by an attacker, it could send answer records that point to malicious IP addresses.

However, a more dangerous exploit is using the additional section to poison the cache with even
more malicious IP addresses. For example, this malicious DNS response would cause the resolver to
associate google.com with an attacker-owned IP address 6.6.6.6.

$ dig +norecurse eecs.berkeley.edu @192.5.6.30

;5 ADDITIONAL SECTION:
adnsl.berkeley.edu. 172800 IN A 128.32.136.3

www. google.com 999999 IN A 6.6.6.6

To prevent any malicious name server from doing too much damage, resolvers implement bailiwick
checking. With bailiwick checking, a name server is only allowed to provide records in its zone. This
means that the berkeley.edu Name server can only provide records for domains under berkeley.edu
(not stanford.edu), the .edu name server can only provide records for domains under .edu (not

google.com), and the root name servers can provide records for anything.

32.6. DNS Security: On-path attackers and off-path attackers

Against an on-path attacker, DNS is completely insecure - everything is sent over plaintext, so an
attacker can read the request, construct a malicious response message with malicious records and
the correct ID field, and race to send the malicious reply before the legitimate response. If the time-
to-live (TTL) of the malicious records is set to a very high number, then the victim will cache those
malicous records for a very long time.

For both on-path and off-path attackers, if the legitimate response arrives before the fake response,
it is cached. Caching limits the attacker to only a few tries per week, because future requests for that
domain can reference the cache, so no DNS queries are sent. Since off-path attackers must guess
the ID field with a 1/216 probability of success, and they only get a few tries per week, DNS was
believed to be secure against off-path attackers, until Dan Kaminsky discovered a flaw in the DNS
protocol in 2008. This attack was so severe that Kaminsky was awarded with a Wikipedia article.

32.7. DNS Security: Kaminsky attack

The Kaminsky attack relies on querying for nonexistent domains. Remember that the legitimate
response for a nonexistent domain is an nxooMAIN status with no other records, which means that
nothing is cached! This allows the attacker to repeatedly race until they win, without having to wait

for cached records to expire.

An attacker can now include malicious additional records in the fake response for the nonexistent

fakel6l.berkeley.edu :

$$ dig fakel6l.berkeley.edu

;5 Got answer:
55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29439

;5 flags: gqr aa; QUERY: 1, ANSWER: ©, AUTHORITY: 1, ADDITIONAL: 1

55 QUESTION SECTION:

; fakel6l.berkeley.edu. IN A

55 ADDITIONAL SECTION:

berkeley.edu. 999999 IN A 6.6.6.6

If the fake response arrives first, the resolver will cache the malicious additional record. Notice that
this doesn't violate bailiwick checking, since the name server responsible for answering

fake161.berkeley.edu can provide a record for berkeley.edu.

Now that the attacker can try as many times as they want, all that's left is to force a victim to make
thousands of DNS queries for nonexistent domains. This can be achieved by tricking the victim into

visiting a website that tries to load lots of nonexistent domains:

This HTML snippet will cause the victim’'s browser to try and fetch images from
http://fake00l.berkeley.edu/image.jpg, http://fake002.berkeley.edu/image.jpg, etc. To fetch ﬂweseirnag;es,
the browser will first make a DNS request for the domains fakeee1.berkeley.edu, fake@02.berkeley.edu,

etc. For each request, if the legitimate response arrives before the malicious response, or if the off-

path attacker incorrectly guesses the ID field, nothing is cached, so the attacker can immediately try

again when the victim makes the next DNS request to the next non-existent domain.

The Kaminsky attack allows on-path attackers to race until their fake response arrives first and off-
path attackers to race until they successfully guess the ID field. There is no way to completely
eliminate the Kaminsky attack in regular DNS, although modern DNS protocols add UDP source
port randomization to make it much harder.

Recall that UDP is a transport-layer protocol like TCP, so a UDP packet requires a source port and
destination port. The destination port must be well-known and constant (in practice, it is always 53),
so everyone can send UDP packets to the correct port on the name server. However, DNS doesn't
specify what source port the resolver uses to send queries, so source port randomization uses a
random 16-bit source port for each query. The name server must send the response packet back to
the correct source port of the resolver, so it must include the source port number in the destination
port field of the response. Now, an attacker must guess the 16-bit ID field and the 16-bit source port
in order to successfully forge a response packet. This decreases an off-path attacker’s probability of
success to 1/232, which is much harder, but certainly not impossible.

Resolver Name Server

Source Destination
——— Query || Random 16-bit # 53
eSOl —— 53 Random 16-bit #

Sanity check: How much extra security does source port randomization provide against on-path
attackers??

T A: MITM and on-path can read the ID field. Off-path must guess the ID field.

2 Query a.edu-servers.net, Whose location we know because of the records in the additional
section. Query for the IP address of eecs.berkeley.edu just like before.

3 A: None, on-path attackers can see the source port value.

