
Computer Science 161

DNSSEC
CS 161 Spring 2024 - Lecture 21

Computer Science 161

Last Time: DNS

● DNS (Domain Name System): An Internet protocol for translating
human-readable domain names to IP addresses

○ DNS name servers on the Internet provide answers to DNS queries
○ Name servers are arranged in a domain hierarchy tree
○ Lookups proceed down the domain tree: name servers will direct you down the tree until you

receive an answer
○ The stub resolver tells the recursive resolver to perform the lookup

2

. (root)

.edu .org .com

google.compiazza.comcs161.orgmit.eduberkeley.edu

Computer Science 161

Last Time: DNS

● DNS message structure
○ DNS uses UDP for efficiency
○ DNS packets include a random 16-bit ID field to match requests to responses
○ Data is encoded in records, which are name-value pairs with a type

■ A (answer) type records: Maps a domain name to an IPv4 address
■ NS (name server) type records: Designates another DNS server to handle a domain

○ Records are separated into four sections
■ Question: Contains query
■ Answer: Contains direct answer to query
■ Authority: Directs the resolver to the next name server
■ Additional: Provides extra information (e.g. the location of the next name server)

○ Resolvers cache as many records as possible (until their time-to-live expires)

3

Computer Science 161

Last Time: DNS Security

● Cache poisoning attack: Send a malicious record to the resolver, which
caches the record

○ Causes packets to be sent to the wrong place (e.g. to the attacker, who becomes a MITM)
● Risk: Malicious name servers

○ Defense: Bailiwick checking: Resolver only accepts records in the name server’s zone
● Risk: Network attackers

○ MITM attackers can poison the cache without detection
○ On-path attackers can race the legitimate response to poison the cache
○ Off-path attackers must guess the ID field (Defense: Make the ID field random)

■ Kaminsky attack: Query non-existent domains and put the poisoned record in the
additional section (which will still be cached). Lets the off-path attacker try repeatedly
until succeeding

■ Defense: Source port randomization (more bits for the off-path attacker to guess)
4

Computer Science 161

Outline

● DNS over TLS
○ Issues

● DNSSEC
○ High-level design
○ Design details
○ Implementation details
○ Key-signing keys and zone-signing keys
○ NSEC: Signing non-existent domains
○ In practice

5

“I know a guy who knows a
guy, who knows a guy, who
knows a guy…”

Computer Science 161

DNS over TLS

6

Computer Science 161

Securing DNS Lookups

7

● Recall: DNS is not secure against several threats
○ Malicious name servers
○ Network attackers (MITM, on-path, off-path)

● We want integrity on the response
○ Recall: Integrity means an attacker can’t tamper with the results
○ Prevents cache poisoning attacks

● We do not need confidentiality on the response
○ DNS results are public: The attacker can always look up the results themselves!
○ Even if the attacker couldn’t see the DNS response, they can still see which IP you connect to

later

Computer Science 161

DNS over TLS

8

● Idea: TLS is end-to-end secure, so
let’s send all DNS requests and
responses over TLS

. (root)

.edu

berkeley.edu

Stub
Resolver

Recursive
Resolver

6

7

4

5

1

3

8
2

Computer Science 161

DNS over TLS: Issues

9

● Performance: DNS needs to be lightweight and fast. TLS is slow.
○ Recall: TLS requires a long cryptographic handshake before any messages can be sent

● Caching: DNS records are cached. TLS doesn’t help us with caching.
○ What if someone changes the record while it’s stored in the cache?

● Security: DNS over TLS doesn’t defend against malicious name servers.
○ A malicious name server can still poison the cache

● Security: DNS over TLS doesn’t defend against malicious recursive resolvers.
○ The recursive resolver is a full MITM: a malicious recursive resolver can poison the cache

before returning the result to the user
○ The recursive resolver is the most common MITM adversary in DNS

Computer Science 161

Object Security and Channel Security

● Main problem: DNS over TLS secures the communication channel, but
doesn’t help you trust who you’re talking to

○ Example: TLS secures your communication with the recursive resolver, but you still need to
implicitly trust the recursive resolver. What if the recursive resolver is malicious?

● Channel security: Securing the communication channel between two end
hosts

● Object security: Securing a piece of data (in transit or in storage)
● TLS provides channel security, but to secure DNS, we need object security

10

Computer Science 161

DNS over TLS in Practice

● Recently introduced by Firefox
○ Enabled by default in the United States

● Benefits
○ The added security is worth the slower performance
○ The performance impact is less noticeable now that network speeds are faster

● Drawbacks
○ Only defends against network attackers, not malicious name servers
○ Network attackers can perform a downgrade attack: Block the TLS connection, forcing the

browser to fall back on ordinary DNS
● DNS over TLS traffic is routed through Cloudflare

○ Cloudflare is a full MITM
○ The only protection is contractual: Cloudflare promises not to misuse your data

● Takeaway: DNS over TLS is not enough to fully secure DNS
11

Computer Science 161

DNSSEC: High-Level Design

12

Computer Science 161

DNSSEC

● DNSSEC (DNS Security Extensions): An extension of the DNS protocol that
ensures integrity on the results

○ Designed to cryptographically prove that returned answers are correct
○ Uses a hierarchical, distributed trust system to validate records

● DNSSEC is backwards-compatible
○ Some, but not all name servers support DNSSEC
○ DNSSEC is built on top of ordinary DNS

13

Computer Science 161

Warning: Unfiltered DNSSEC Ahead

● What you’re about to see is the full DNSSEC protocol used in practice, with
few simplifications

● Why show complete DNSSEC?
○ DNSSEC is a well-thought-out cryptographic protocol designed to solve a real-world problem
○ DNSSEC is an example of a real-world PKI (public-key infrastructure) that delegates trust

using real-world business relationships
○ DNSSEC lets you appreciate what it’s like to build real-world security

14

Computer Science 161

Scratchpad: Let’s Design It Together

● Question 1: What kind of cryptographic primitive should we use to ensure
integrity on the records?

○ We should use a scheme that provides integrity: either MACs (symmetric-key) or digital
signatures (public-key)

○ Digital signatures are the best solution here: We want everyone to be able to verify integrity
(not just the people with the symmetric key)

● Question 2: How do we ensure the returned record is correct and has not
been tampered?

○ Recall digital signatures: Only the owner of the private key can sign records, and everyone
with the public key can verify

○ The name server should sign the record with their private key
○ We should verify the record with their public key

15

Computer Science 161

Scratchpad: Let’s Design It Together

● Question 3: What does the name server need to send in order to ensure
integrity on a record?

○ The record
○ A signature over the record, signed with the private key
○ The public key

16

Recursive
Resolver

berkeley.edu
name server

What is the IP address of eecs.berkeley.edu?

“The IP address of eecs.berkeley.edu is 23.185.0.1.”
Here is a signature on the above record.
Here is my public key so you can verify the signature.

Computer Science 161

Scratchpad: Let’s Design It Together

● What are some issues with this design?
○ What if the name server is malicious? They could still return malicious records and sign them.
○ How do we make sure nobody tampered with the public key?
○ Do these sound like problems that we’ve solved before in this class? Yes: certificates!

17

Recursive
Resolver

berkeley.edu
name server

What is the IP address of eecs.berkeley.edu?

“The IP address of eecs.berkeley.edu is 23.185.0.1.”
Here is a signature on the above record.
Here is my public key so you can verify the signature.

Computer Science 161

Scratchpad: Let’s Design It Together

● Question 4: How does a name server delegate trust to a child name server?
○ Just like in a certificate chain, the parent must sign the child’s public key.

● Question 5: PKIs need a trust anchor. Who do we implicitly trust in DNSSEC?
○ We implicitly trust the top of the certificate hierarchy, which is the root name server.

18

Recursive
Resolver root name server

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the .edu name server.

Here is a signature on the the public key of the .edu name
server. If you trust me, then now you trust them too.

Here is my public key so you can verify the signature.

Computer Science 161

DNSSEC: Design Details

19

Computer Science 161

Idea #1: Sign Records

● Digital signatures provide integrity
○ Only the name server with the private key can generate signatures
○ Everybody can verify signatures with the public key

● Digital signatures defeat network attackers
○ An off-path, on-path, or MITM attacker can no longer tamper with records
○ The recursive resolver can no longer tamper with records

● Signatures can be cached with the records for object security
○ Any time we fetch a record from the cache, we can verify its integrity

20

Computer Science 161

Idea #2: Public-Key Infrastructure (PKI)

● Name servers are arranged in a hierarchy, as in ordinary DNS
● Parents can delegate trust to children

○ The parent signs the child’s public key to delegate trust to the child
○ If you trust the parent name server, then now you trust the child name server

● Trust anchor: We implicitly trust the root name server
○ The root name server’s public key is hard-coded into resolvers

● PKI defeats malicious name servers
○ A malicious name server (assuming they don’t have access to the private key, only the

signatures) won’t have a valid chain of trust back to the root

21

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #1)

22

Recursive
Resolver root name server

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the .edu name server.

Here is a signature on the public key of the .edu name
server. If you trust me, then now you trust them too.

Here is my public key so you can verify the signature.

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #1)

23

Recursive
Resolver

.edu name
server

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the berkeley.edu name server.

Here is a signature on the public key of the berkeley.edu name
server. If you trust me, then now you trust them too.

Here is my public key so you can verify the signature.

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #1)

24

Recursive
Resolver

berkeley.edu
name server

What is the IP address of eecs.berkeley.edu?

A record: “The IP address of eecs.berkeley.edu is
23.185.0.1.”

Here is a signature on the above record.

Here is my public key so you can verify the signature.

Computer Science 161

DNSSEC: Implementation

25

Computer Science 161

Warning: Unfiltered DNSSEC Ahead

● We’re now going to show you the entire DNSSEC protocol, with all its
implementation details and edge cases.

● Some parts are less important for the intuition of DNSSEC and won’t be
tested on exams. We’re going to highlight these parts in blue.

26

Computer Science 161

Review: DNS Packet Format

● The DNS header contains metadata about
the query (e.g. ID number, flags)

● There are 8 bits for flags

27

Source Port Destination Port

Checksum Length

ID number Flags

Question count Answer count

Authority count Additional count

Question Records

Answer Records

Authority Records

Additional Records

D
N

S
 P

ayload
U

D
P

H
eader

D
N

S
 H

eader

Computer Science 161

OPT Pseudosection

28

● Ordinary DNS has size limits
○ 8 bits for flags
○ Messages are limited to 512 bytes

● DNSSEC messages exceed these limits
○ Additional flags needed in DNSSEC

■ DO flag indicates we support DNSSEC and want DNSSEC records
■ CD flag indicates we support DNSSEC, but we don’t want to verify the DNSSEC

signatures for now
○ Messages are larger than 512 bytes

● Remember: We want DNSSEC to be backwards-compatible
○ We can’t modify the existing DNS limits! What should we do?

Computer Science 161

OPT Pseudosection

● Solution: Encode extra flags in a record called the OPT Pseudosection
○ This record has type OPT
○ This record is sent in the additional section

● EDNS0 (Extension Mechanisms for DNS): The protocol that adds the OPT
pseudosection

○ If DNSSEC is enabled, the resolver sends the OPT record in the request, and the name server
sends the OPT record in the reply

○ The OPT pseudosection can be used to specify the size of larger UDP replies
● Takeaway: We found a way to add extra functionality to DNSSEC while

supporting ordinary DNSSEC (backwards compatibility)

29

Computer Science 161

Resource Record Sets (RRSETs)

30

● Recall: A DNS record has a name, type, and value
● A group of DNS records with the same name and type form a resource

record set (RRSET)
○ Example: All the AAAA records for a given domain

● RRSETs will be useful for simplifying signatures
○ Instead of signing every record separately, we can sign an entire RRSET at once

Computer Science 161

New DNSSEC Record Types

● We need new record types to send cryptographic information in DNSSEC
packets

○ RRSIG (resource record signature): encode signatures on records
○ DNSKEY: encode public keys
○ DS (delegated signer): encode the child’s public key (used to delegate trust)

31

Computer Science 161

New DNSSEC Record Types: RRSIG

● RRSIG type records encode a signature on records
○ One RRSIG record (with one signature) can sign an entire RRSET

● RRSIG type records contain some additional metadata
○ Type: What type of DNS record we’re signing
○ Algorithm: What algorithm we’re using to create the signature
○ Label: Number of segments in the DNS name
○ Original TTL: The TTL for the records in the RRSET
○ Signature expiration time (in Unix time: seconds since January 1, 1970)
○ Signature inception time: When the signature was created (in Unix time)
○ Key tag: What key was used (roughly, a checksum on key bits)
○ The name of the signer

32

Computer Science 161

New DNSSEC Record Types: DNSKEY

● DNSKEY type records encode the name server’s own public keys
● DNSKEY type records contain some additional metadata too

○ 16 bits of flags
○ Protocol identifier (currently not in use, so always set to 3)
○ Algorithm identifier

33

Computer Science 161

New DNSSEC Record Types: DS

● DS type records encode the hash of the child’s public keys
○ Used to delegate trust

● DS type records contain some additional metadata too
○ The key tag
○ The algorithm identifier
○ The hash function used (we’ll see this next)

● Takeaway: Real-world protocols like DNSSEC require a lot of metadata to
function correctly!

○ It’s usually pretty uninteresting, though, which is why we abstract it away for you

34

Computer Science 161

New DNSSEC Record Types: DS

● Recall delegating trust: The parent signs the child’s public key to delegate
trust to the child

● DNSSEC delegates trust with two records:
○ A DS type record with the hash of the signer’s name and the child’s public key
○ An RRSIG type record with a signature on the DS record

35

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #2)

36

Recursive
Resolver root name server

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the .edu name server.
● NS record: Domain of the .edu name server
● A record: IP address of the .edu name server

Here is a signature on the public key of the .edu name
server. If you trust me, then now you trust them too.

● DS record: Hash of the .edu name server’s public key
● RRSIG DS record: Signature on the DS record

Here is my public key so you can verify the signature.
● DNSKEY record: The root name server’s public key

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #2)

37

Recursive
Resolver

.edu name
server

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the berkeley.edu name server.
● NS record: Domain of the berkeley.edu name server
● A record: IP address of the berkeley.edu name server

Here is a signature on the public key of the berkeley.edu name
server. If you trust me, then now you trust them too.

● DS record: Hash of the berkeley.edu name server’s
public key

● RRSIG DS record: Signature on the DS record

Here is my public key so you can verify the signature.
● DNSKEY record: The .edu name server’s public key

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #2)

38

Recursive
Resolver

berkeley.edu
name server

What is the IP address of eecs.berkeley.edu?

● A record: “The IP address of
eecs.berkeley.edu is 23.185.0.1.”

Here is a signature on the above record.
● RRSIG A record: Signature on the A record

Here is my public key so you can verify the signature.
● DNSKEY record: The berkeley.edu name

server’s public key

Computer Science 161

Key-Signing Keys and Zone-Signing Keys

39

Computer Science 161

Motivation: Recovering from Key Compromise

40

● What if a name server wants to change the keys it uses to sign records?
○ Example: This is necessary if the attacker compromises a private key

● The name server needs to inform its parent, since the parent must change its
DS record too!

○ This process is complicated and can go wrong in many ways
○ We want to avoid this process whenever possible

● Solution: Divide each name server into an upper half and lower half
○ If we need to change the keys in the lower half, we don’t need to contact another name server:

the parent is the upper half of the same name server!

Computer Science 161

Key-Signing Keys and Zone-Signing Keys

41

● Each name server has two kinds of public-private key pairs
● The key-signing key (KSK) is used to sign only the zone-signing key

○ Intuition: The KSK is the “upper half” of the name server.
○ The “upper half” endorses the “lower half”

● The zone-signing key (ZSK) is used to sign all other records
○ Intuition: The ZSK is the “lower half” of the name server
○ The “lower half” endorses the “upper half” of the next name server (or the final answer)

● Example
○ Now, the berkeley.edu name server has two key pairs (KSK and ZSK)
○ The private KSK is used to sign the public ZSK
○ The private ZSK is used to sign the final A record

Computer Science 161

Path of Trust (without KSKs and ZSKs)

42

KSK

.

KSK

org
DS

cs161.orgDS

A MX

Root of trust

NS

NS
H(KSK)

H(KSK) KSK

Computer Science 161

Path of Trust (with KSKs and ZSKs)

43

KSK

ZSK ZSK

DNSKEY DNSKEY

.

KSK

ZSK ZSK

DNSKEY DNSKEY

orgDS

KSK

ZSK ZSK

DNSKEY DNSKEY

cs161.org
DS

A MX

Root of trust

NS

NS

H(KSK)

H(KSK)

The thick arrows represented authenticated data

Notice: We don’t need to authenticate NS records.
As long as the final A record is authenticated by the

chain of trust, it doesn’t matter which server we got it
from!

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

44

Recursive
Resolver

root name server

(“upper half”)

What are your public keys?

Here are my public keys.
● DNSKEY record: The root name server’s public KSK
● DNSKEY record: The root name server’s public ZSK

Here is a signature on my ZSK. If you trust my KSK, then now
you trust my ZSK.

● RRSIG DNSKEY record: Signature on the DNSKEY
records (signed with root’s private KSK)

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

45

Recursive
Resolver

root name server

(“lower half”)

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the .edu name server.
● NS record: Domain of the .edu name server
● A record: IP address of the .edu name server

Here is a signature on the public KSK of the .edu name
server. If you trust my ZSK, then now you trust them too.

● DS record: Hash of the .edu name server’s public KSK
● RRSIG DS record: Signature on the DS record

(signed with root’s private ZSK)

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

46

Recursive
Resolver

.edu name server

(“upper half”)

What are your public keys?

Here are my public keys.
● DNSKEY record: The .edu name server’s public KSK
● DNSKEY record: The .edu name server’s public ZSK

Here is a signature on my ZSK. If you trust my KSK, then now
you trust my ZSK.

● RRSIG DNSKEY record: Signature on the DNSKEY
records (signed with .edu’s private KSK)

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

47

Recursive
Resolver

.edu name server

(“lower half”)

What is the IP address of eecs.berkeley.edu?

I don’t know, but you should ask the berkeley.edu name server.
● NS record: Domain of the berkeley.edu name server
● A record: IP address of the berkeley.edu name server

Here is a signature on the public KSK of the berkeley.edu name
server. If you trust my ZSK, then now you trust them too.

● DS record: Hash of the berkeley.edu name server’s
public KSK

● RRSIG record: Signature on the DS record
(signed with .edu’s private ZSK)

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

48

Recursive
Resolver

berkeley.edu
name server

(“upper half”)

What are your public keys?

Here are my public keys.
● DNSKEY record: The berkeley.edu name server’s

public KSK
● DNSKEY record: The berkeley.edu name server’s

public ZSK

Here is a signature on my ZSK. If you trust my KSK, then now
you trust my ZSK.

● RRSIG record: Signature on the DNSKEY records
(signed with berkeley.edu’s private KSK)

Computer Science 161

Steps of a DNSSEC Lookup (Attempt #3)

49

Recursive
Resolver

What is the IP address of eecs.berkeley.edu?

● A record: “The IP address of
eecs.berkeley.edu is 23.185.0.1.”

Here is a signature on the above record.
● RRSIG record: Signature on the A record

(signed with berkeley.edu’s private ZSK)

berkeley.edu
name server

(“lower half”)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

50

You can try this at home! Use the dig
utility in your terminal, and remember to

set the +norecurse flag so you can
traverse the name server hierarchy

yourself and the +dnssec flag so that
you receive DNSSEC responses.

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

51

The first step is to query the root name
server for its public keys.

The chain of trust

Name Type

. DNSKEY (KSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7149
;; flags: qr aa; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1472
;; QUESTION SECTION:
;. IN DNSKEY

;; ANSWER SECTION:
. 172800 IN DNSKEY 256 {ZSK of root}
. 172800 IN DNSKEY 257 {KSK of root}
. 172800 IN RRSIG DNSKEY {signature on DNSKEY records}
...

52

The chain of trust

Name Type

. DNSKEY (KSK)

The header says there’s 1 record in the additional
section, but the additional section is empty! What

happened?

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7149
;; flags: qr aa; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1472
;; QUESTION SECTION:
;. IN DNSKEY

;; ANSWER SECTION:
. 172800 IN DNSKEY 256 {ZSK of root}
. 172800 IN DNSKEY 257 {KSK of root}
. 172800 IN RRSIG DNSKEY {signature on DNSKEY records}
...

53

The additional record is actually the OPT pseudosection, which dig
lists separately for us.

Note the do flag, which indicates that DNSSEC is supported.

The chain of trust

Name Type

. DNSKEY (KSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7149
;; flags: qr aa; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1472
;; QUESTION SECTION:
;. IN DNSKEY

;; ANSWER SECTION:
. 172800 IN DNSKEY 256 {ZSK of root}
. 172800 IN DNSKEY 257 {KSK of root}
. 172800 IN RRSIG DNSKEY {signature on DNSKEY records}
...

54

The root’s KSK signs the root’s ZSK. If
you trust the root’s KSK (trust anchor),

now you trust the root’s ZSK.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @198.41.0.4

55

Next, we ask the root name server
about the IP address of
eecs.berkeley.edu.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @198.41.0.4

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5232
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 15, ADDITIONAL: 27

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
...
edu. 86400 IN DS {hash of .edu's KSK}
edu. 86400 IN RRSIG DS {signature on DS record}

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
... 56

The records are all the same as ordinary
DNS, except for these two extra records

endorsing the .edu name server’s
public KSK.

If you trust the root’s ZSK, now you trust
the .edu name server’s KSK.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY edu. @192.5.6.30

57

Next, we query the .edu name
server for its public keys.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY edu. @192.5.6.30

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9776
;; flags: qr aa; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;edu. IN DNSKEY

;; ANSWER SECTION:
edu. 86400 IN DNSKEY 256 {ZSK of .edu}
edu. 86400 IN DNSKEY 257 {KSK of .edu}
edu. 86400 IN RRSIG DNSKEY {signature on DNSKEY records}
...

58

The .edu name server’s KSK signs the .edu
name server’s ZSK. If you trust .edu’s KSK,

now you trust .edu’s ZSK.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @192.5.6.30

59

Next, we ask the .edu name
server about the IP address of

eecs.berkeley.edu.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @192.5.6.30

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60799
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 5, ADDITIONAL: 5

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; AUTHORITY SECTION:
berkeley.edu. 172800 IN NS adns1.berkeley.edu.
berkeley.edu. 172800 IN NS adns2.berkeley.edu.
berkeley.edu. 172800 IN NS adns3.berkeley.edu.
berkeley.edu. 86400 IN DS {hash of berkeley.edu's KSK}
berkeley.edu. 86400 IN RRSIG DS {signature on DS record}

;; ADDITIONAL SECTION:
adns1.berkeley.edu. 172800 IN A 128.32.136.3
adns2.berkeley.edu. 172800 IN A 128.32.136.14
adns3.berkeley.edu. 172800 IN A 192.107.102.142
...

60

Again, the records are all the same as ordinary DNS,
except for these two extra records endorsing the
berkeley.edu name server’s public KSK.

If you trust the .edu name server’s ZSK, now you
trust the berkeley.edu name server’s KSK.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

berkeley.edu. DS

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY berkeley.edu @128.32.136.3

61

Next, we query the berkeley.edu
name server for its public keys.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

berkeley.edu. DS

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec DNSKEY berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4169
;; flags: qr aa; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1220
;; QUESTION SECTION:
;berkeley.edu. IN DNSKEY

;; ANSWER SECTION:
berkeley.edu. 172800 IN DNSKEY 256 {ZSK of berkeley.edu}
berkeley.edu. 172800 IN DNSKEY 257 {KSK of berkeley.edu}
berkeley.edu. 172800 IN RRSIG DNSKEY {signature on DNSKEY records}
...

62

The berkeley.edu name server’s KSK signs the
berkeley.edu name server’s ZSK. If you trust

berkeley.edu’s KSK, now you trust berkeley.edu’s ZSK.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

berkeley.edu. DS

berkeley.edu. DNSKEY (KSK)

berkeley.edu. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @128.32.136.3

63

Finally, we ask the berkeley.edu
name server about the IP address of

eecs.berkeley.edu.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

berkeley.edu. DS

berkeley.edu. DNSKEY (KSK)

berkeley.edu. DNSKEY (ZSK)

Computer Science 161

DNSSEC Lookup Walkthrough

$ dig +norecurse +dnssec eecs.berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21205
;; flags: qr aa; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1220
;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1
eecs.berkeley.edu. 86400 IN RRSIG A {signature on A record}

64

Here’s the final answer record, signed by berkeley.edu’s
public ZSK. If you trust berkeley.edu’s ZSK, then now

you trust the final answer.

The chain of trust

Name Type

. DNSKEY (KSK)

. DNSKEY (ZSK)

edu. DS

edu. DNSKEY (KSK)

edu. DNSKEY (ZSK)

berkeley.edu. DS

berkeley.edu. DNSKEY (KSK)

berkeley.edu. DNSKEY (ZSK)

eecs.berkeley.edu. A

Computer Science 161

NSEC: Signing Non-Existent Domains

65

Computer Science 161

Nonexistent Domains

● The DNSSEC structure works great for domains which exist
○ We have signatures over records stating that they exist

● What if the user queries for a domain that doesn’t exist?
○ Option #1: Don’t authenticate nonexistent domain (NXDOMAIN) responses

■ Issue: If NXDOMAIN responses don’t have to be signed, the attacker can still spoof
NXDOMAIN responses and cause denial-of-service (DoS)

○ Option #2: Keep the private key in the name server itself, so it signs NXDOMAIN responses
■ Issue: Name servers have access to the private key, which is an issue if they are

malicious or hacked
■ Issue: Signing in real time is slow

○ We need a way that can prove that a domain doesn’t exist ahead of time

66

Computer Science 161

NSEC: Authenticated Denial of Existence

● Prove nonexistence of a record type
○ Sign a record stating that no record of a given type exists
○ Useful for proving that a domain doesn’t support DNSSEC (“No DS records exist”)

● Prove nonexistence of a domain
○ Provide two adjacent domains alphabetically, so that you know that no domain in the middle

exists
○ Example: If I query for nonexistent.google.com, I can receive a signed NSEC response

saying “No domains exist between maps.google.com and one.google.com.”
○ We can sign all pairs of adjacent records ahead of time and keep them as NSEC records,

along with their RRSIGs

67
maps one web

Computer Science 161

Issues with NSEC

● Domain enumeration: It is easy for an attacker to find every single
subdomain of a domain

○ Start by querying a.google.com
○ Receive an NSEC record stating that “No domains exist between web.google.com and

ap.google.com
■ Now we have learned two domain names!

○ Repeat by querying apa.google.com (alphabetically immediately after ap.google.com)
○ Receive an NSEC record stating that “No domains exist between ap.google.com and

apps.google.com”
○ Repeat until you loop back around to the beginning

68
web ap apps

Computer Science 161

NSEC3: Hashed Authenticated Denial of Existence

● Idea: Instead of storing pairs of adjacent domain names, store pairs of
adjacent hashes

○ Example: If I query for nonexistent.google.com, which hashes to d48678…, I receive a
signed NSEC3 saying “There exist no domains which hash to values between c612f3… and
d810de…

69
c612f3 d810de

Computer Science 161

Issues with NSEC3

● Domain enumeration is still possible since most people choose short domain
names

○ Possible to brute-force through all reasonable domain names!
○ Only prevents attackers from learning long, random domain names, which would make

brute-force difficult
● The only real way to prevent enumeration is online signature generation with

the private key
○ Coming down the pipeline: NSEC5

70

Computer Science 161

DNSSEC in Practice

71

Computer Science 161

Offline Signature Generation

72

● Offline signatures: The application that computes signatures is separate from
the application that serves the signatures

● Benefit: Efficiency
○ Records are signed ahead of time, and the signature is stored and served on request
○ Generating a signature each time a user requests it is slow (and can lead to DoS attacks)

● Benefit: Security
○ An attacker must compromise the signature generation system (e.g. steal the private signing

key) to perform an attack
○ If the signature generation system is separate from the name server, compromising the name

server is not enough!
○ Redundancy: One secure signature generation system, and many mirrored name servers

providing the same records and signatures

Computer Science 161

Efficiency: Parallelization

● Requests can be made in parallel to improve performance
○ Example: Request DNSKEY records from every name server in parallel

● Signatures can be validated in parallel
○ Example: Validate the parent’s DS record while waiting for the child’s DNSKEY record

73

Computer Science 161

Implementation Errors

● Implementation errors from the name servers
○ Example: A name server claims to support DNSSEC, even though it doesn’t
○ Example: Changing your key but presenting old signatures signed with an old key
○ Example: Present expired signatures

● Implementation errors from the resolvers
○ The resolver can’t access DNSSEC records
○ The resolver can’t process DNSSEC records correctly

74

Computer Science 161

Implementation Errors: Examples

● The launch of HBO Go (a streaming service) was broken for Comcast users
and users using Google Public DNS

○ The DNS servers reported that they supported DNSSEC when they didn’t
● Google Public DNS and Comcast provide recursive resolvers

○ When a name server messes up, Comcast and Google are often blamed
○ Fortunately, this is getting less common

● An educational network had several mirrors of a name server
○ 3 mirrors supported DNSSEC. All other mirrors didn’t support DNSSEC

● Wi-Fi hotspots (e.g. at Starbucks) often proxy DNS
○ Proxy: Receive a DNS request and replace it with its own DNS request
○ The proxy often doesn’t support DNSSEC

75

Computer Science 161

Implementation Error: Incomplete Validation

● Most DNSSEC implementations only validate records at the recursive
resolver, not the client (stub resolver)

● If the client doesn’t validate records, the recursive resolver can poison the
cache!

○ Recall: The recursive resolver is the biggest threat in DNS
● If the client doesn’t validate records, network attackers can still poison the

cache!
○ Example: An on-path attacker between the recursive resolver and the client

● Result: If the client doesn’t validate records, DNSSEC provides very little
practical security

76

Computer Science 161

DNSSEC: Summary

● DNSSEC: An extension of the DNS protocol that ensures integrity on the
results

○ Provides object security (unlike DNS over TLS, which would provide channel security)
○ Uses signatures to cryptographically verify records
○ Uses a hierarchical public key infrastructure to delegate trust from the trust anchor (root)

● DNSSEC Implementation
○ Each name server replies with its public key (DNSKEY type)
○ When delegating trust, each name server signs the public key of the next name server

(DS and RRSIG types)
○ When providing a final answer, the name server signs the final answer (RRSIG type)
○ Zones are split into key-signing keys and zone-signing keys
○ NSEC signs a message saying no domains exist alphabetically between two records

77

