Computer Security

Network Security / 33. DNSSEC

33. DNSSEC

DNSSEC is an extension to regular DNS that provides integrity and authentication on all DNS
messages sent. Sanity check: Why do we not care about the confidentiality of DNSSEC?’

33.1. Signing records

We want every DNS record to have integrity and authenticity, and we want everyone to be able to
verify the integrity and authenticity of records. Digital signatures are a good fit in this situation,
because only someone with the private key can create signatures, and everyone can use the public

key to verify signatures.

To ensure integrity and authenticity, let's have every name server generate a public/private key pair
and sign every record it sends with its private key. When the name server receives a DNS request, it
sends the records, along with a signature on the records and the public key, to the resolver. The
resolver uses the public key to verify the signature on the records.

Because of the signatures, a network attacker (MITM, on-path, off-path) cannot tamper with the
data or inject malicious data without being detected (integrity). Also, the resolver can cache the
signatures and the public key, and check at any time that the records actually came from the name

server (authenticity).

You might see a flaw in this design: what if a name server is malicious? Then the malicious name
server could return valid signatures on malicious records. How do we modify our design to prevent
this?

33.2. Delegating trust

The main issue in our design so far is we lack a trust anchor. We want DNSSEC to defend against
malicious name servers, so we cannot implicitly trust the name servers. However, if we don't trust
anybody, then DNSSEC will never work (we'll never trust any records we get), so we must first
choose a trust anchor, an entity that we implicitly trust. In DNSSEC, the root servers are the trust
anchor: every computer automatically assumes that the root server is honest and uncompromised.

In real life, this is a safe assumption, because the organizations overseeing the Internet hold



painstakingly formal ceremonies to ensure that the root server is uncompromised. (If you're

interested, you can read more about the root signing ceremony here.)

Given a trust anchor, we can now delegate trust from the trust anchor to somebody else. If the root
endorses Alice, then you can be sure that Alice is trusted as well, since you implicitly trust the root.
Also, if Alice endorses Bob, then you can be sure that Bob is trusted, since you trust Alice. This trust
delegation starting from the root is how DNSSEC delegates trust from the root to all legitimate

name servers, while protecting against malicious name servers.

Consider two parties, root and Alice, who each have a public key and a private key. You trust root,
because it is the trust anchor. The root can delegate trust to Alice by signing Alice’s public key. The
root’s signature on Alice’s public key effectively says that Alice's public key is trustworthy, and the

root trusts any message signed by Alice using her corresponding private key.

Now, when Alice signs a message, we can use Alice’s public key to verify that the message was
properly signed by Alice. Also, we know that Alice’s public key is trusted, because the root has

signed it, and we implicitly trust the root.

If Alice was malicious, then the root would not delegate trust to her by signing her public key,

because we are trusting that the root is honest and uncompromised.

We can apply this delegation idea to the entire DNS tree. Each name server will sign the public key
of all its trusted children name servers. For example, root signs .edu's public key. We trust root, and
root signed .edu’s public key, so now we trust .edu. Next, .edu signs berkeley.edu's public key. We

trust .edu, and .edu signed berkeley.edu's public key, so now we trust berkeley.edu.

33.3. DNSSEC Intuition

With these ideas in mind, let's revisit the DNS query for eecs.berkeley.edu from earlier and convert it
to a secure DNSSEC query. The DNSSEC additions are italicized.

(root)
1
2
//3/—’/
.edu .0rg .com
You /
\
\ berkeley.edu mit.edu cslél.org piazza.com google.com




1T You to the root name server: Please tell me the IP address of eecs.berkeley.edu.

2 Root server to you: | don't know, but I can redirect you to another name server with more
information. This name server is responsible for the .edu zone. It has human-readable domain
name a.edu-servers.net and IP address 192.5.6.3e. Here is a signature on the next name server’s
public key. If you trust me, then now you trust them too. Finally, here is my public key.

3 You to the .edu name server: Please tell me the IP address of eecs.berkeley.edu.

4 The .edu name server to you: | don't know, but | can redirect you to another name server with
more information. This name server is responsible for the berkeley.edu zone. It has human-
readable domain name adnsi.berkeley.edu and IP address 128.32.136.3. Here is a signature on the
next name server's public key. If you trust me, then now you trust them too. Finally, here is my
public key.

5 You to the berkeley.edu name server: Please tell me the IP address of eecs.berkeley.edu.

6 The berkeley.edu Name server to you: OK, the IP address of eecs.berkeley.edu is 23.185.0.1. Finally,

here is my public key and a signature on the answer.

Note that we implicitly trust all signed messages from the root, because the root is our trust anchor.
In practice, all DNS resolvers have the root’s public key hardcoded, and any messages verified with

that hardcoded key are implicitly trusted.

Congratulations, you now have all the intuition for how DNSSEC works! The rest of this section

shows how we implement this design in DNS.

33.4. New DNSSEC record types

To store cryptographic information in DNS messages, we need to introduce a few new record types.
The bnskey type record encodes a public key.

The rrsic type record is a signature on a set of multiple other records in the message, all of the
same type. For example, if the authority section returns 13 ns type records, you can sign all 13
records at once with one Rrrsie type record. However, to sign the 26 a type records in the additional
section, you would need another rrsie type record. In addition to the actual cryptographic
signature, the Rrrs1iG type record contains the type of the records being signed, the signature
creation and expiration date, and the identity of the signer (information about which public

key/pnskey record should be used to verify this signature).



The ps (Delegated Signer) type record is a hash of the signer's name and a child’s public key. The
ps record, combined with a RrrsiG record that signs the bs record, effectively allows each name
server to sign the public key of its trusted children.

All DNSSEC cryptographic records additionally include some (uninteresting) metadata, such as which
algorithm was used for signing/verifying/hashing.

You might have noticed that the number of additional records is always 1 more than the actual
number of additional records that appear in the response. For example, consider the final query in
our regular DNS query walkthrough:

$ dig +norecurse eecs.berkeley.edu ©128.32.136.3

;5 Got answer:
55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788

;5 flags: gr aa; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIONAL: 1

55 QUESTION SECTION:

;eecs.berkeley.edu. IN A

;5 ANSWER SECTION:

eecs.berkeley.edu. 86400 IN A 23.185.0.1

The response reports 1 additional record but shows no additional records at all. This extra record
corresponds to the opT pseudosection (seen just above the question section). This pseudosection
allows extra space for DNSSEC-specific flags (e.g. the po flag requests DNSSEC information), but in
order to be backwards-compatible with regular DNS, the section is encoded as an additional record
when sent in the request and the reply.

33.5. Key Signing Keys and Zone Signing Keys
There is one final complication in DNSSEC—what if a name server wants to change its key pair? A key

change is necessary if, for example, an attacker steals the private key of a trusted name server,
because now the attacker can impersonate a trusted name server.

In our current DNSSEC design, a name server that wants to change keys must notify its parent name
server so that the parent can change the DS record (which endorses the child’s public key). As it
turns out, this process is difficult to perform securely and can easily go wrong.



To minimize the use of this difficult key change protocol, each DNSSEC name server generates two
public/private key pairs. The key signing key (KSK) is only used to sign the zone signing key, and
the zone signing key (ZSK) is used to sign everything else.
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In our new design with two key pairs, the name server sends (1) the public ZSK, (2) a signature on
the public ZSK, and (3) the public KSK (endorsed by the parent). The DNS resolver uses the public
KSK to verify the signature, and accepts the public ZSK. Note that this is the exact same structure
that was used to sign records before, but in this case, the record is the public ZSK, signed using the
KSK.

Another way to think about this step is to recall that a parent endorses a child by signing its public
key. You can think of the KSK as the “parent” and the ZSK as the “child,” both within one name
server. The parent (KSK) endorses the child (ZSK) by signing the public ZSK.

The result of this first step is that we now have a trusted public ZSK. The second step is the same as
before: the name server sends a set of records, a signature on those records (using the private ZSK),
and the public ZSK (endorsed by the KSK in the previous step).

Trust anchor

Root, KSK

Root, ZSK

.edu, KSK

.edu, ZSK

11. [DNSKEY]  Public KSK
12. [DNSKEY] Public ZSK , berkeley.edu, KSK
13. [RRSIG]  Signature on (12)

Here is a diagram of the entire two-key DNSSEC. Each color (blue, green, orange) represents a name
server. The lighter shade represents records signed with the KSK. The darker shade represents

records signed with the ZSK.
Verification would proceed as follows.

 Light blue: Because of our trust anchor, we trust the KSK of the root (1). The root’s KSK signs its
ZSK, so now we trust the root's ZSK (2-3).



« Dark blue: We trust the root’s ZSK. The root's ZSK signs .edu's KSK (4-5), so now we trust .edu's
KSK.

+ Light green: We trust the .edu’s KSK (6). .edu’s KSK signs .edu's ZSK, so now we trust .edu's ZSK
(7-8).

« Dark green: We trust .edu's ZSK. .edu’'s ZSK signs berkeley.edu's KSK (9-10), so now we trust

berkeley.edu'S|<SK.

« Light orange: We trust the berkeley.edu's KSK (11). berkeley.edu’s KSK signs berkeley.edu's ZSK, so

now we trust berkeley.edu's ZSK (12-13).

« Dark orange: We trust berkeley.edu's ZSK. berkeley.edu's ZSK signs the final answer record (14-15),
so now we trust the final answer.

33.6. DNSSEC query walkthrough

Now we're ready to see a full DNSSEC query in action. As before, you can try this at home with the
dig utility-remember to set the +norecurse flag so you can unravel the recursion yourself, and
remember to set the +dnssec flag to enable DNSSEC.

First, we query the root server for its public keys. Recall that the root's IP address, 198.41.0.4, is
publicly-known and hardcoded.

$ dig +norecurse +dnssec DNSKEY . @198.41.0.4

;5 Got answer:
55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7149

;5 flags: gr aa; QUERY: 1, ANSWER: 3, AUTHORITY: ©, ADDITIONAL: 1

55 OPT PSEUDOSECTION:
; EDNS: version: @, flags: do; udp: 1472
55 QUESTION SECTION:

Sc IN DNSKEY

;; ANSWER SECTION:
172800  IN  DNSKEY 256 {ZSK of root}

172800 IN DNSKEY 257 {KSK of root}



172800 IN RRSIG DNSKEY {signature on DNSKEY records}

In this response, the root has returned its public ZSK, public KSK, and a rrsic type record over the

two pnskey type records. We can use the public KSK to verify the signature on the public ZSK.

Because we implicitly trust the root’'s KSK (trust anchor), and the root’s KSK signs its ZSK, we now
trust the root’s ZSK.

Next, we query the root server for the IP address of eecs.berkeley.edu.

$ dig +norecurse +dnssec eecs.berkeley.edu @198.41.0.4

;5 Got answer:
;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5232

;5 flags: qgr; QUERY: 1, ANSWER: ©, AUTHORITY: 15, ADDITIONAL: 27

;5 OPT PSEUDOSECTION:
; EDNS: version: @, flags: do; udp: 4096
;5 QUESTION SECTION:

;eecs.berkeley.edu. IN A

55 AUTHORITY SECTION:

edu. 172800 IN NS a.edu-servers.net.

edu. 172800 IN NS b.edu-servers.net.

edu. 172800 IN NS c.edu-servers.net.

edu. 86400 IN DS {hash of .edu's KSK}

edu. 86400 IN RRSIG DS {signature on DS record}

5> ADDITIONAL SECTION:

a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30

DNSSEC doesn’t remove any records compared to regular DNS-the question, answer (blank here),

authority, and additional sections all contain the same records from regular DNS. However, DNSSEC



adds a ps record and a resic signature record on the bs record. Together, these two records sign
the KSK of the .edu name server with the root's ZSK. Since we trust the root’'s ZSK (from the previous
step), now we trust the .edu name server's KSK.

Next, we query the .edu name server for its public keys.

$ dig +norecurse +dnssec DNSKEY edu. @192.5.6.30

;5 Got answer:
;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9776

;5 flags: gqr aa; QUERY: 1, ANSWER: 3, AUTHORITY: ©, ADDITIONAL: 1

55 OPT PSEUDOSECTION:
; EDNS: version: @, flags: do; udp: 4096
;5 QUESTION SECTION:

sedu. IN DNSKEY

;3 ANSWER SECTION:
edu. 86408 IN DNSKEY 256 {ZSK of .edu}
edu. 86408 IN DNSKEY 257 {KSK of .edu}

edu. 86400 IN RRSIG DNSKEY {signature on DNSKEY records}

In this response, the .edu name server has returned its public ZSK, public KSK, and a rrsic type
record over the two bnskev type records. We can use the public KSK to verify the signature on the
public ZSK.

Because we trust the .edu name server’s KSK (from the previous step), and the .edu KSK signs its
ZSK, we now trust the .edu name server's ZSK.

Next, we query the .edu name server for the IP address of eecs.berkeley.edu.
$ dig +norecurse +dnssec eecs.berkeley.edu @192.5.6.30
;5 Got answer:
55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60799

;; flags: qr; QUERY: 1, ANSWER: ©, AUTHORITY: 5, ADDITIONAL: 5

;3 OPT PSEUDOSECTION:



; EDNS: version: @, flags: do; udp: 4096

55 QUESTION SECTION:

;eecs.berkeley.edu.

5> AUTHORITY SECTION:
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.

berkeley.edu.

172800

172800

172800

86400

86400

5> ADDITIONAL SECTION:

adnsl.berkeley.edu.
adns2.berkeley.edu.

adns3.berkeley.edu.

In this response, the .edu name server returns nNs and A type records that tell us what name server
to query next, just like in regular DNS.

In addition, the response has a ps type record and an RrsiG signature on the ps record. Sanity
check: which key is used to sign the ps record?? Together, these two records sign the KSK of the
berkeley.edu Name server. Because we trust the .edu name server's ZSK (from the previous step), and

the .edu ZSK signs the berkeley.edu KSK, we now trust the berkeley.edu name server’'s KSK.
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172800
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NS

NS

NS

DS

RRSIG

adnsl.berkeley.edu.
adns2.berkeley.edu.
adns3.berkeley.edu.
{hash of berkeley.edu's KSK}

DS {signature on DS record}

128.32.136.3
128.32.136.14

192.107.102.142

Next, we query the berkeley.edu name server for its public keys.

$ dig +norecurse +dnssec DNSKEY berkeley.edu @128.32.136.3

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4169

;5 flags: gqr aa; QUERY: 1, ANSWER: 5, AUTHORITY: ©, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: @, flags: do; udp: 1220

55 QUESTION SECTION:

;berkeley.edu.

IN DNSKEY



55 ANSWER SECTION:
berkeley.edu. 172800 1IN DNSKEY 256 {ZSK of berkeley.edu}
berkeley.edu. 172800 1IN DNSKEY 257 {KSK of berkeley.edu}

berkeley.edu. 172800 1IN RRSIG DNSKEY {signature on DNSKEY records}

In this response, the berkeley.edu Nname server has returned its public ZSK, public KSK, and a Rrrsic
type record over the two DNskey type records. We can use the public KSK to verify the signature on
the public ZSK.

Because we trust the berkeley.edu name server's KSK (from the previous step), and the berkeley.edu
KSK signs its ZSK, we now trust the berkeley.edu name server's ZSK.

Finally, we query the berkeley.edu name server for the IP address of eecs.berkeley.edu.

$ dig +norecurse +dnssec eecs.berkeley.edu @128.32.136.3

;5 Got answer:
55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21205

;5 flags: gr aa; QUERY: 1, ANSWER: 2, AUTHORITY: ©, ADDITIONAL: 1

;> OPT PSEUDOSECTION:
; EDNS: version: @, flags: do; udp: 1220
55 QUESTION SECTION:

;eecs.berkeley.edu. IN A

;3 ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1

eecs.berkeley.edu. 86400 IN RRSIG A {signature on A record}

This response has the final answer A type record and a signature on the final answer. Because we
trust the berkeley.edu name server's ZSK (from the previous part), we also trust the final answer.

33.7. Nonexistent domains

Remember that DNS is designed to be fast and lightweight. However, public-key cryptography is
slow, because it requires math. As a result, name servers that support DNSSEC sign records offline—
records are signed ahead of time, and the signatures saved in the server along with the records.



When the server receives a DNS query, it can immediately return the saved signature without

computing it.

Offline signing works fine for existing domains, but what if we receive a request for a nonexistent
domain? There are infinitely many nonexistent domains, so we cannot sign them all offline. However,
we cannot sign requests for nonexistent domains online either, because this is too slow. Also, online

cryptography makes name servers vulnerable to an attack. Sanity check: what's the attack?3

DNSSEC has a clever solution to this problem-instead of signing individual nonexistent domains,
name servers pre-compute signatures on ranges of nonexistent domains. Suppose we have a

website with three subdomains:

b.example.com
1.example.com

g.example.com

If we sort every possible subdomain alphabetically, there are three ranges of nonexistent domains:

everything between b and 1, 1 and q, and q and b (wrapping around from z to a).

Now, if someone queries for c.example.com, instead of signing a message proving the nonexistence of
that specific domain, the name server returns a NSEC record saying, “No domains exist between

b.example.com and 1l.example.com. Signed, name server.”

NSEC records have a slight vulnerability - notice that every time we query for a nonexistent domain,
we can discover two valid domains that we might have otherwise not known. By traversing the
alphabet, an attacker can now learn the names of every subdomain of the website:

T Query c.example.com. Receive NSEC saying nothing exists between b and 1. Attacker now knows
b and 1 exist.

2 Query m.example.com. Receive NSEC saying nothing exists between 1 and q. Attacker now knows

q exists.

3 Query r.example.com. Receive NSEC saying nothing exists between q and b. Attacker has already

seen b, so they know they have walked the entire alphabet successfully.

Some argue that this is not really a vulnerability, because hiding a domain name like
admin.example.com is relying on security through obscurity. Nevertheless, an attempt to fix this was
implemented as NSEC3, which simply uses the hashes of every domain name instead of the actual
domain name.



372fbe338b9f3bb6f857352bc4c6a49721d6066f (1.example.com)
6898bc7daf3054daae@5e8763153ee1506e809d5 (q.example.com)

f96a6ec2fbbefbed3002f4cbf124190879424d79 (b.example.com)

The order of the domain names has changed, but the process is the same - if someone queries for
c.example.com, Which hashes tO 8dca64eabse1724fod8ac5c25¢9354d5529abea2 , the NSEC3 record will say, “No
domains exist that hash to values between es9sb... and foeas.... Signed, name server.”

Of course, an attacker could buy a GPU and precompute hashes to learn domain names anyway...
and NSECS5 was born. Fortunately, it's still out of scope for this class.

1 A: DNS responses don't contain sensitive data. Anyone could query the name servers for the
same information.

2 A: The ZSK of the .edu name server.

3 A: Denial of service (DoS). Flood the name server with requests for nonexistent domains, and it
will be forced to sign all of them.



