
Computer Science 161

Intrusion Detection
CS 161 Spring 2024 - Lecture 22

Computer Science 161

Last Time: Denial of Service

● Availability: Making sure users are able to use a service
○ DoS attacks availability of services

● Application-level DoS: Attacks the high-level applications
○ Algorithmic complexity attacks: Attack using inputs that cause the worst-case runtime of an

algorithm
○ Defense: Identification, isolation, and quotas
○ Defense: Proof of work

● Network-level DoS: Attacks the network of a service
○ Typically floods either the network bandwidth or the packet processing capacity
○ Distributed DoS: Use multiple computers to flood a network at the same time
○ Amplified DoS: Use an amplifier to turn a small input into a large output, spoofing packets so

the reply goes to the victim
○ Defense: Packet filtering

● All DoS attacks can be defended against by overprovisioning
2

Computer Science 161

Last Time: SYN Cookies

● SYN flooding: A type of DoS that causes a server to allocate state for
unfinished TCP connections, upon receiving a SYN packet

○ SYN cookies: Instead of allocating state when receiving a SYN, send the state back to the
client in the sequence number

○ The client returns the state back to the server, which it only then allocates state for

3

Computer Science 161

Last Time: Firewalls

● Firewalls: Defend many devices by defending the network
○ Security policies dictate how traffic on the network is handled

● Packet filters: Choose to either forward or drop packets
○ Stateless packet filters: Choose depending on the packet only
○ Stateful packet filters: Choose depending on the packet and the history of the connection
○ Attackers can subvert packet filters by splitting key payloads or exploiting the TTL

● Proxy firewalls: Create a connection with both sides instead of forwarding
packets

4

Computer Science 161

Today: Intrusion Detection

● Path traversal attacks
● Types of detectors

○ Network intrusion detection system
(NIDS)

○ Host-based intrusion detection system
(HIDS)

● Detection accuracy
○ False positives and false negatives
○ Base rate fallacy
○ Combining detectors

5

● Styles of detection
○ Signature-based detection
○ Specification-based detection
○ Anomaly-based detection
○ Behavioral detection

● Other intrusion detection
strategies

○ Vulnerability scanning
○ Honeypots
○ Forensics
○ Intrusion prevention systems

Computer Science 161

Today: Intrusion Detection

6

● We’ve talked about many ways to prevent attacks
● However, some not all methods are perfect: attacks will slip through our

defenses
● Recall: “Detect if you can’t prevent”
● How can we detect network attacks when they happen?

Computer Science 161

Path Traversal Attacks

7

Computer Science 161

Top 25 Most Dangerous Software Weaknesses (2020)

8

Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 46.82
[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47

[4] CWE-125 Out-of-bounds Read 26.50

[5] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 20.69
[7] CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 19.16

[8] CWE-416 Use After Free 18.87

[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29

[10] CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 16.44
[11] CWE-190 Integer Overflow or Wraparound 15.81

[12] CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 13.67

[13] CWE-476 NULL Pointer Dereference 8.35

[14] CWE-287 Improper Authentication 8.17

[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38

[16] CWE-732 Incorrect Permission Assignment for Critical Resource 6.95

[17] CWE-94 Improper Control of Generation of Code (’Code Injection’) 6.53

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/94.html

Computer Science 161

Unix File Paths

● A file path points to a file or a directory (folder) on a Unix system
● File paths have special characters

○ / (slash): Separates directories
○ . (one period): Shorthand for the current directory
○ .. (two periods): Shorthand for the parent directory

9

Computer Science 161

Unix File Paths

/home/public/evanbot.jpg

10

home

public private

evanbot.jpg codabot.jpg passwords.txt

Computer Science 161

Unix File Paths

./codabot.jpg (Assume we're currently in public)

11

home

public private

evanbot.jpg codabot.jpg passwords.txt

Computer Science 161

Unix File Paths

/home/public/../private/passwords.txt

12

home

public private

evanbot.jpg codabot.jpg passwords.txt

Computer Science 161

Path Traversal Intuition

13

Frontend

evanbot.jpg

Enter file name:

Backend

Send this file to the user:
/home/public/evanbot.jpg

home

private

evanbot.jpg codabot.jpg passwords.txt

public

Backend Filesystem

Computer Science 161

Path Traversal Intuition

14

Frontend

../private/passwords.txt

Enter file name:

Backend

Send this file to the user:
/home/public/../private/passwords.txt

home

public private

evanbot.jpg codabot.jpg passwords.txt

Backend Filesystem

Computer Science 161

Path Traversal Attacks

● Path traversal attack: Accessing unauthorized files on a remote server by
exploiting Unix file path semantics

○ Often makes use of ../ to enter other directories
○ Vulnerability: User input is interpreted as a file path by the Unix file system

● Defense: Check that user input is not interpreted as a file path

15

Computer Science 161

Types of Detectors

16

Computer Science 161

Types of Detectors

● Three types of detectors
○ Network Intrusion Detection System (NIDS)
○ Host-based Instruction Detection System (HIDS)
○ Logging

● The main difference is where the detector is deployed

17

Computer Science 161

Structure of a Network

18

Server

Employee
Computer

Employee
Computer

Border
Router

End hosts in the local network
send packets to the Internet by
sending it to the border router

for forwarding

Internet

Computer Science 161

● Network intrusion detection system (NIDS): A detector installed on the
network, between the local network and the rest of the Internet

○ Monitors network traffic to detect attacks

Network Intrusion Detection System (NIDS)

19

Server

Employee
Computer

Employee
Computer

Border
Router

NIDS: put the detector here

Internet

Computer Science 161

Network Intrusion Detection System (NIDS)

● Operation:
○ NIDS has a table of all active connections and maintains state for each connection
○ If the NIDS sees a packet not associated with any known connection, create a new entry in the

table
■ Example: A connection that started before the NIDS started running

○ NIDS can be used for more sophisticated network monitoring: not only detect attacks, but
analyze and understand all the network traffic

20

Computer Science 161

NIDS: Benefits

● Cheap: A single detector can cover a lot of systems
● Easy to scale: As the network gets larger, add computing power to the NIDS

○ Linear scaling: Investing twice as much money gives twice as much bandwidth
● Simple management: Easy to install and manage a single detector
● End systems are unaffected

○ Doesn’t consume any resources on end systems
○ Useful for adding security on an existing system

● Smaller trusted computing base (TCB)
○ Only the detector needs to be trusted

21

Computer Science 161

NIDS: Drawbacks

● Inconsistent or ambiguous interpretation between the detector and the end
host

● How does the NIDS monitor encrypted traffic?

22

Computer Science 161

Drawback: Inconsistent Interpretation

23

NIDS

../etc/passwd

● What should the NIDS do if it sees this
packet?

● This looks like a path traversal attack…
Maybe it should alert

● What if the packet’s TTL expires before it
reaches any end host?

● Problem: What the NIDS sees doesn’t
exactly match what arrives at the end
system

Computer Science 161

Drawback: Inconsistent Interpretation

24

NIDS

%2e%2e%2f%2e%2e%2f

● What should the NIDS do if it sees this
packet?

● This doesn’t look like a path traversal
attack...maybe it shouldn’t alert

● This input is using URL percent encoding. If
you decode it, you get ../etc/passwd!

● Problem: Inputs are interpreted differently
between the NIDS and the end system

Computer Science 161

Drawback: Inconsistent Interpretation

25

NIDS

..///.///..////

● What should the NIDS do if it sees this
packet?

● What file on the file system does this file
path refer to? It’s hard for the NIDS to know

● Problem: Information needed to interpret
correctly is missing

Computer Science 161

Evasion Attacks

● Problem: Imperfect observability
○ What the NIDS sees doesn’t match what the end system sees
○ Example: The packet’s time-to-live (TTL) might expire before reaching the end host

● Problem: Incomplete analysis (double parsing)
○ Inconsistency: Inputs are interpreted and parsed differently between the NIDS and the end

system
○ Ambiguity: Information needed to interpret correctly is missing

● Evasion attack: Exploit inconsistency and ambiguity to provide malicious
inputs that are not detected by the NIDS

26

Computer Science 161

Evasion Attacks: Defenses

● Make sure that the NIDS and the end host are using the same interpretations
○ This can be very challenging
○ How do we detect the URL-encoded attack %2e%2e%2f%2e%2e%2f?

Now the NIDS has to parse URL encodings!
○ How do we detect a more complicated path traversal attack ..///.///..////?

Now the NIDS has to parse Unix file paths!
● Impose a canonical (“normalized”) form for all inputs

○ Example: Force all URLs to expand all URL encodings or not expand all URL encodings
● Analyze all possible interpretations instead of assuming one
● Flag potential evasions so they can be investigated further

27

Computer Science 161

Drawback: Encrypted Traffic

● Recall: TLS is end-to-end secure, so a NIDS can’t read any encrypted traffic
● One possible solution: Give the NIDS access to all the network’s private keys

○ Now the NIDS can decrypt messages to inspect them for attacks
○ Problem: Users have to share their private key with someone else

28

Computer Science 161

Recall: Structure of a Network

29

Server

Employee
Computer

Employee
Computer

Border
Router

End hosts in the local network
send packets to the Internet by
sending it to the border router

for forwarding

Internet

Computer Science 161

Host-Based Intrusion Detection System (HIDS)

30

Server

Employee
Computer

Employee
Computer

Border
Router HIDS: put

detectors
here

● Host-based intrusion detection system (HIDS): A detector installed on
each end system

Internet

Computer Science 161

Host-Based Intrusion Detection System (HIDS)

● Benefits
○ Fewer problems with inconsistencies or ambiguities: The HIDS is on the end host, so it will

interpret packets exactly the same as the end host!
○ Works for encrypted messages
○ Can protect against non-network threats too (e.g. malicious user inside the network)
○ Performance scales better than NIDS: one NIDS is more vulnerable to being overwhelmed

than many HIDS
● Drawbacks

○ Expensive: Need to install one detector for every end host
○ Evasion attacks are still possible (consider Unix file name parsing)

31

Computer Science 161

Logging

● Logging: Analyze log files generated by end systems
○ Example: Each night, run a script on the log files to analyze them for attacks

● Benefits
○ Cheap: Modern web servers often already have built-in logging systems
○ Fewer problems with inconsistencies or ambiguities: The logging system works on the end

host, so it will interpret packets exactly the same as the end host!
● Drawbacks

○ Unlike NIDS and HIDS, there is no real-time detection: attacks are only detected after the
attack has happened

○ Some evasion attacks are still possible (again, consider Unix file name parsing)
○ The attacker could change the logs to erase evidence of the attack

32

Computer Science 161

Detection Accuracy

33

Computer Science 161

Detection Errors

● Two main types of detector errors
○ False positive: Detector alerts when there is no attack
○ False negative: Detector fails to alert when there is an attack

● Detector accuracy is often assessed in terms of the rates at which these
errors occur

○ False positive rate (FPR): The probability the detector alerts, given there is no attack
○ False negative rate (FNR): The probability the detector does not alert, given there is an attack

34

Computer Science 161

Perfect Detectors

● Can we build a detector with a false positive rate of 0%? How about a
detector with a false negative rate of 0%?

○ Recall false positive rate: The probability the detector alerts, given there is no attack
○ Recall false negative rate: The probability the detector does not alert, given there is an attack

35

void detector_with_no_false_positives(char *input) {
 printf("Nope, not an attack!");
}

void detector_with_no_false_negatives(char *input) {
 printf("Yep, it's an attack!");
}

Computer Science 161

Detection Tradeoffs

● The art of a good detector is achieving an effective balance between false
positives and false negatives

● The quality of the detector depends on the system you’re using it on
○ What is the rate of attacks on your system?
○ How much does a false positive cost in your system?
○ How much does a false negative cost in your system?

● Example of cost analysis: Fire alarms
○ Which is better: a very low false positive rate or a very low false negative rate?
○ Cost of a false positive: The fire department needs to inspect the building
○ Cost of a false negative: The building burns down
○ In this situation, false negatives are much more expensive!
○ We want a detector with a low false negative rate

36

Computer Science 161

Detection Tradeoffs

● Example of changing the base rate of attacks
○ Consider a detector with a 0.1% false positive rate (for every 1,000 non-attacks, there is one

mistaken alert)
○ Scenario #1: Our server receives 1,000 non-attacks and 5 attacks per day

■ Expected number of false positives per day: 1,000 × 0.1% = 1
○ Scenario #2: Our server receives 10,000,000 non-attacks and 5 attacks per day

■ Expected number of false positives per day: 10,000,000 × 0.1% = 10,000
■ Possibly expensive if the false positives cost money to investigate
■ Example: Maybe a human has to manually examine 10,000 requests per day

○ Nothing changed about the detector: Only our environment changed
● Takeaway: Accurate detection is very challenging if the base rate of attacks is

low!

37

Computer Science 161

Detection Tradeoffs

38

Not false positives

False positives

5

95

The proportion of false positives stays
the same, but when there are more

requests, the absolute number of false
positives increases

50

950

Computer Science 161

Base Rate Fallacy

39

● Consider the detector from before: 0.1% false positive rate
○ Assume a 0% false negative rate: Every attack is detected
○ Scenario from before: Our server receives 10,000,000 non-attacks and 5 attacks per day
○ Expected number of false positives per day: 10,000,000 × 0.1% = 10,000

● You see the detector alert. What is the probability this is really an attack?
○ Of the 10,005 detections, 5 are real attacks, and 10,000 are false positives
○ There is an approximately 0.05% probability that the detector found a real attack

● Base rate fallacy: Even though the detector alerted, it’s still highly unlikely that
you found an attack, because of the high false positive rate

● Takeaway: Detecting is hard when the base rate of attacks is low

Computer Science 161

Combining Detectors

● Can you combine two independent detectors to create a better detector?
● Parallel composition

○ Alert if either detector alerts
○ Intuition: The combination generates more alerts
○ Reduces false negative rate
○ Increases false positive rate

● Series composition
○ Alert only if both detectors alert
○ Intuition: The combination generates fewer alerts
○ Reduces false positive rate
○ Increases false negative rate

● There is no free lunch: reducing one rate usually increases the other

40

Computer Science 161

Styles of Detection

41

Computer Science 161

Styles of Detection

● So far we’ve talked about types of detectors: what the detector is scanning
● Now we’ll talk about styles of detection: how the detector scans data to find

attacks
● Four main styles of detection

○ Signature-based detection
○ Specification-based detection
○ Anomaly-based detection
○ Behavioral detection

42

Computer Science 161

Signature-based Detection

● Signature-based detection: Flag any activity that matches the structure of a
known attack

● Signature-based detection is blacklisting: Keep a list of patterns that are not
allowed, and alert if we see something on the list

● Signatures can be at different network layers
○ Example: TCP/IP header fields
○ Example: URLs
○ Example: Payload of the HTTP request

43

Computer Science 161

Signature-based Detection: Examples

● Example: Path traversal attacks
○ We know that ../ is often part of a path traversal attack
○ Strategy: Alert if any request contains ../

● Example: Buffer overflows
○ We know that buffer overflows usually contain shellcode
○ Strategy: Keep a list of common shellcodes and alert if any request contains shellcode

44

Computer Science 161

Signature-based Detection: Tradeoffs

● Benefits
○ Conceptually simple
○ Very good at detecting known attacks
○ Easy to share signatures and build up shared libraries of attacks

● Drawbacks
○ Won’t catch new attacks without a known signature
○ Might not catch variants of known attacks if the variant doesn’t match the signature
○ The attacker can modify their attack to avoid matching a signature
○ Simpler versions only look at raw bytes, without parsing them in context

■ May miss variants
■ May generate lots of false positives

45

Computer Science 161

Specification-based Detection

● Specification-based detection: Specify allowed behavior and flag any
behavior that isn’t allowed behavior

● Specification-based detection is whitelisting: Keep a list of allowed patterns,
and alert if we see something that is not on the list

46

Computer Science 161

Specification-based Detection: Examples

● Example: Path traversal attacks
○ We have a folder where all filenames are alphanumeric (a-z, A-Z, 0-9)
○ We specify that only alphanumeric characters are allowed as input
○ Strategy: Alert if any request contains something other than alphanumeric characters
○ If an attacker tries a path traversal attack (../), the detector will flag it

● Example: Buffer overflows
○ Consider a program that asks for the user’s age as input
○ We know that ages are numerical, so we specify that only numbers are allowed
○ Strategy: Flag input that isn’t numerical
○ If an attacker tries to input shellcode (not numbers), the detector will flag it

47

Computer Science 161

Specification-based Detection: Tradeoffs

● Benefits
○ Can detect new attacks we’ve never seen before
○ If we properly specify all allowed behavior, can have low false positive rate

● Drawbacks
○ Takes a lot of time and effort to manually specify all allowed behavior
○ May need to update specifications as things change

48

Computer Science 161

Anomaly-based Detection

● Idea: Attacks look unusual
● Anomaly-based detection: Develop a model of what normal activity looks

like. Alert on any activity that deviates from normal activity.
○ Example: Analyze historical logs to develop the model

● Similar to specification-based detection, but learn a model of normal behavior
instead of manually specifying normal behavior

49

Computer Science 161

Anomaly-based Detection: Examples

● Example: Path traversal attacks
○ Analyze characters in requests and learn that .. only appears in attacks
○ Strategy: Alert if any request contains ..

● Example: Buffer overflows
○ Study user inputs to a C program
○ Learn that user input usually contains characters that can be typed on a keyboard
○ Strategy: Alert if the input contains characters that can’t be typed on a keyboard
○ If an attacker inputs shellcode (can’t be typed on a keyboard), the detector will alert

50

Computer Science 161

Anomaly-based Detection: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before

● Drawbacks
○ Can fail to detect known attacks
○ Can fail to detect new attacks if they don’t look unusual to our model
○ What if our model is trained on bad data (e.g. data with a lot of attacks)?
○ The false positive rate might be high (lots of non-attacks look unusual)
○ If we try to reduce false positives by only flagging the most unusual inputs, the false negative

rate might be high (we miss slightly unusual attacks)
● Great subject for academic research papers, but not used in practice

51

Computer Science 161

Behavioral Detection

● Behavioral detection: Look for evidence of compromise
● Unlike the other three styles, we are not scanning the input: We’re looking at

the actions triggered by the input
○ Instead of looking for the exploit, we’re looking for the result of the exploit
○ Behaviors can themselves be analyzed using blacklists (signature-based), whitelists

(specification-based), or normal behavior (anomaly-based)

52

Computer Science 161

Behavioral Detection: Examples

● Example: Path traversal attacks
○ Strategy: See if any unexpected files are being accessed (e.g. the passwords file)

● Example: Buffer overflows
○ Strategy: See if the program calls unexpected functions
○ Consider a C program that never calls the exec function: if the program starts running exec,

there is probably an attack in progress!

53

Computer Science 161

Behavioral Detection: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before
○ Can have low false positive rates if we’re looking for behavior that rarely occurs in normal

programs (e.g. in the exec example, there are probably no false positives!)
○ Can be cheap to implement (e.g. existing tools to monitor system calls for a program)

● Drawbacks
○ Legitimate processes could perform the behavior as well (e.g. accessing a password file)
○ Only detects attacks after they’ve already happened
○ Only detects successful attacks (maybe we want to detect failed attacks as well)
○ The attacker can modify their attack to avoid triggering some behavior

54

Computer Science 161

Other Intrusion Detection Strategies

55

Computer Science 161

Vulnerability Scanning

● Idea: Instead of detecting attacks, launch attacks on your own system first,
and add defenses against any attacks that worked

● Vulnerability scanning: Use a tool that probes your own system with a wide
range of attacks (and fix any successful attacks)

● Widely used in practice today
○ Often used to complement an intrusion detection system

56

Computer Science 161

Vulnerability Scanning: Tradeoffs

● Benefits
○ Accuracy: If your scanning tool is good, it will find real vulnerabilities
○ Proactive: Prevents attacks before they happen
○ Intelligence: If your intrusion detection system alerts on an attack you know you already fixed,

you can safely ignore the alert
● Drawbacks

○ Can take a lot of work
○ Not helpful for systems you can't modify
○ Dangerous for disruptive attacks (you might not know which attacks are dangerous before you

run the scanning tool)

57

Computer Science 161

Honeypots

● Honeypot: a sacrificial system with no real purpose
○ No legitimate systems ever access the honeypot
○ If anyone accesses the honeypot, they must be an intruder
○ False positives: Legitimate systems mistakenly accessing the honeypot

● Similar idea as stack canaries

58

Computer Science 161

Honeypots: Examples

● Example: Hospitals
○ Employees should not read patient records
○ The hospital enters a honeypot record with a celebrity name
○ Catch any staff member who reads the honeypot record

● Example: Unsecured Bitcoin wallet
○ Leave an unsecured Bitcoin wallet on your system with a small amount of money in it
○ If the money is stolen, you know that someone has attacked your system!

● Example: Spamtrap
○ Create a fake email address that is never used for legitimate emails
○ If email gets sent to the address, it's probably spam!

59

Computer Science 161

Honeypots: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before
○ Can analyze the attacker's actions

■ Who is the attacker?
■ What are they doing to the system?

○ Can distract the attacker from legitimate targets
● Drawbacks

○ Can be difficult to trick the attacker into accessing the honeypot
○ Building a convincing honeypot might take a lot of work
○ These drawbacks matter less if the honeypot is aimed at automated attacks (e.g. the spam

detection honeypot)

60

Computer Science 161

Forensics

● Forensics: Analyzing what happened after a successful attack
○ Important complement to detecting attacks

● Tools needed
○ Detailed logs of system activity
○ Tools for analyzing and understanding logs

61

Computer Science 161

Blocking: Intrusion Prevention Systems

● Idea: If we can detect attacks, can we also block them?
● Intrusion prevention system (IPS): An intrusion detection system that also

blocks attacks
○ Commonly used today

● Drawbacks
○ Not possible for retrospective analysis (e.g. logging)
○ Difficult for a detector that passively monitors traffic (e.g. an on-path NIDS)

■ Dynamically change firewall rules to block attacks?
■ Forge a RST packet to stop an attack?
■ Need to race against the attacker's malicious packets

○ False positives are expensive
■ Blocking a non-attack might affect legitimate users

62

Computer Science 161

Building the Perfect IPS?

Takeaway: You must always have tradeoffs between false positive and false negative rates
63

0% false negative rate 0% false positive rate

Computer Science 161

Attacks on Intrusion Detection Systems (IDS)

● The IDS is a system with limited resources, so it is vulnerable to DoS attacks!
○ DoS attack: Exhaust the IDS’s memory

■ IDS needs to track all ongoing activity
■ Attacker generates lots of activity to consume all the IDS's memory
■ Example: Spoof TCP SYN packets to force the IDS to keep track of too many

connections
○ DoS attack: Exhaust the IDS’s processing power

■ Example: If the IDS uses a hash table to keep track of connections, create hash
collisions to trigger worst-case complexity (algorithmic complexity attack)

● The IDS analyzes outside input, so it is vulnerable to code injection attacks!
○ Attacker supplies malicious input to exploit the IDS

64

Computer Science 161

Inside A Modern IDS

65

● Employ defense in depth
● To cover all devices, use a modern NIDS:

○ Single entry point with a simple packet filter
■ Simple but effective filters can handle 1,000

Gbps
○ Parallel processing using multiple NIDS nodes

■ A single server rack slot can handle 1–5
Gbps, and scales linearly

○ In-depth detection techniques
■ Protocol analysis
■ Signature analysis on content and behavior
■ Shadow execution (execute unknown content

found on the network)
■ Extensive logging
■ Automatic updates

Internet Network

Packet Filter

NIDS
unit

NIDS
unit

NIDS
unit

NIDS
unit

Computer Science 161

Inside A Modern IDS

66

● Cover individual devices using a HIDS on each device
○ Antivirus software is a kind of HIDS used by many corporations!
○ Block access to blacklisted sites (e.g. malware sites)
○ Detection techniques

■ Protocol analysis
■ Signature analysis on networking traffic
■ Signature analysis on memory and filesystem
■ Query a cloud database to see if a payload has been seen by other devices running the

same HIDS
■ Sandboxed execution (execute a payload in a safe, inescapable environment)

● Analyze the behavior of the program while in the sandbox

Computer Science 161

Path Traversal Attacks: Summary

● Path traversal attack: Accessing unauthorized files on a remote server by
exploiting Unix file path semantics

○ Often makes use of ../ to enter other directories
○ Vulnerability: User input is interpreted as a file path by the Unix file system

● Defense: Check that user input is not interpreted as a file path

67

Computer Science 161

Types of Detectors: Summary

● Network Intrusion Detection System (NIDS): Installed on the network
○ Benefits: Cheap, easy to scale, simple management, end systems unaffected, small TCB
○ Drawbacks: Inconsistent interpretation (leads to evasion attacks), encrypted traffic

● Host-based Intrusion Detection System (HIDS): Installed on the end host
○ Benefits: Fewer inconsistencies, works with encrypted traffic, works inside the network,

performance can scale
○ Drawbacks: Expensive, evasion attacks still possible

● Logging: Analyze logs generated by servers
○ Benefits: Cheap, fewer inconsistencies
○ Drawbacks: Only detects attacks after they happen, evasion attacks still possible, attacker

could change the logs

68

Computer Science 161

Detection Accuracy: Summary

● Two main types of detector errors
○ False positive: Detector alerts when there is no attack
○ False negative: Detector fails to alert when there is an attack

● Detector accuracy
○ False positive rate (FPR): The probability the detector alerts, given there is no attack
○ False negative rate (FNR): The probability the detector does not alert, given there is an attack

● Designing a good detector involves considering tradeoffs
○ What is the rate of attacks on your system?
○ How much does a false positive cost in your system?
○ How much does a false negative cost in your system?

● Accurate detection is very challenging if the base rate of attacks is low
● Detectors can be combined

○ Parallel: Fewer false negatives, more false positives
○ Series: Fewer false positives, more false negatives 69

Computer Science 161

Styles of Detection: Summary

● Signature-based
○ Flag any activity that matches the structure of a known attack (blacklisting)
○ Good at detecting known attacks, but bad at detecting unknown attacks

● Specification-based
○ Specify allowed behavior and flag any behavior that isn’t allowed behavior (whitelisting)
○ Can detect unknown attacks, but requires work to manually write specifications

● Anomaly-based
○ Develop a model of what normal activity looks like. Alert on any activity that deviates from

normal activity.
○ Mostly seen in research papers, not in practice

● Behavioral
○ Look for evidence of compromise
○ Can cheaply detect new attacks with few false positives, but only detects after the attack

70

Computer Science 161

Other Intrusion Detection Strategies: Summary

● Vulnerability scanning: Use a tool that probes your own system with a wide
range of attacks (and fix any successful attacks)

○ Can accurately prevent attacks before they happen, but can be expensive
● Honeypot: a sacrificial system with no real purpose

○ Can detect attackers and analyze their actions, but may take work to trick the attacker into
using the honeypot

● Forensics: Analyzing what happened after a successful attack
● Intrusion Prevention System (IPS): An intrusion detection system that also

blocks attacks

71

