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Last Time: Denial of Service 

● Availability: Making sure users are able to use a service
○ DoS attacks availability of services

● Application-level DoS: Attacks the high-level applications
○ Algorithmic complexity attacks: Attack using inputs that cause the worst-case runtime of an 

algorithm
○ Defense: Identification, isolation, and quotas
○ Defense: Proof of work

● Network-level DoS: Attacks the network of a service
○ Typically floods either the network bandwidth or the packet processing capacity
○ Distributed DoS: Use multiple computers to flood a network at the same time
○ Amplified DoS: Use an amplifier to turn a small input into a large output, spoofing packets so 

the reply goes to the victim
○ Defense: Packet filtering

● All DoS attacks can be defended against by overprovisioning
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Last Time: SYN Cookies

● SYN flooding: A type of DoS that causes a server to allocate state for 
unfinished TCP connections, upon receiving a SYN packet

○ SYN cookies: Instead of allocating state when receiving a SYN, send the state back to the 
client in the sequence number

○ The client returns the state back to the server, which it only then allocates state for
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Last Time: Firewalls

● Firewalls: Defend many devices by defending the network
○ Security policies dictate how traffic on the network is handled

● Packet filters: Choose to either forward or drop packets
○ Stateless packet filters: Choose depending on the packet only
○ Stateful packet filters: Choose depending on the packet and the history of the connection
○ Attackers can subvert packet filters by splitting key payloads or exploiting the TTL

● Proxy firewalls: Create a connection with both sides instead of forwarding 
packets
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Today: Intrusion Detection

● Path traversal attacks
● Types of detectors

○ Network intrusion detection system 
(NIDS)

○ Host-based intrusion detection system 
(HIDS)

● Detection accuracy
○ False positives and false negatives
○ Base rate fallacy
○ Combining detectors

5

● Styles of detection
○ Signature-based detection
○ Specification-based detection
○ Anomaly-based detection
○ Behavioral detection

● Other intrusion detection 
strategies

○ Vulnerability scanning
○ Honeypots
○ Forensics
○ Intrusion prevention systems
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Today: Intrusion Detection
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● We’ve talked about many ways to prevent attacks
● However, some not all methods are perfect: attacks will slip through our 

defenses
● Recall: “Detect if you can’t prevent”
● How can we detect network attacks when they happen?
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Path Traversal Attacks
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Top 25 Most Dangerous Software Weaknesses (2020)
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Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 46.82
[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47

[4] CWE-125 Out-of-bounds Read 26.50

[5] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 20.69
[7] CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 19.16

[8] CWE-416 Use After Free 18.87

[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29

[10] CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 16.44
[11] CWE-190 Integer Overflow or Wraparound 15.81

[12] CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 13.67

[13] CWE-476 NULL Pointer Dereference 8.35

[14] CWE-287 Improper Authentication 8.17

[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38

[16] CWE-732 Incorrect Permission Assignment for Critical Resource 6.95

[17] CWE-94 Improper Control of Generation of Code (’Code Injection’) 6.53

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/94.html
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Unix File Paths

● A file path points to a file or a directory (folder) on a Unix system
● File paths have special characters

○ / (slash): Separates directories
○ . (one period): Shorthand for the current directory
○ .. (two periods): Shorthand for the parent directory
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Unix File Paths

/home/public/evanbot.jpg

10

home

public private

evanbot.jpg codabot.jpg passwords.txt
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Unix File Paths

./codabot.jpg  (Assume we're currently in public)
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home

public private

evanbot.jpg codabot.jpg passwords.txt
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Unix File Paths

/home/public/../private/passwords.txt
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home

public private

evanbot.jpg codabot.jpg passwords.txt
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Path Traversal Intuition
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Frontend

evanbot.jpg

Enter file name:

Backend

Send this file to the user:
/home/public/evanbot.jpg

home

private

evanbot.jpg codabot.jpg passwords.txt

public

Backend Filesystem
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Path Traversal Intuition

14

Frontend

../private/passwords.txt

Enter file name:

Backend

Send this file to the user:
/home/public/../private/passwords.txt

home

public private

evanbot.jpg codabot.jpg passwords.txt

Backend Filesystem
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Path Traversal Attacks

● Path traversal attack: Accessing unauthorized files on a remote server by 
exploiting Unix file path semantics

○ Often makes use of ../ to enter other directories
○ Vulnerability: User input is interpreted as a file path by the Unix file system

● Defense: Check that user input is not interpreted as a file path
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Types of Detectors
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Types of Detectors

● Three types of detectors
○ Network Intrusion Detection System (NIDS)
○ Host-based Instruction Detection System (HIDS)
○ Logging

● The main difference is where the detector is deployed
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Structure of a Network
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Server

Employee 
Computer

Employee 
Computer

Border 
Router

End hosts in the local network 
send packets to the Internet by 
sending it to the border router 

for forwarding

Internet
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● Network intrusion detection system (NIDS): A detector installed on the 
network, between the local network and the rest of the Internet

○ Monitors network traffic to detect attacks

Network Intrusion Detection System (NIDS)

19

Server

Employee 
Computer

Employee 
Computer

Border 
Router

NIDS: put the detector here

Internet
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Network Intrusion Detection System (NIDS)

● Operation:
○ NIDS has a table of all active connections and maintains state for each connection
○ If the NIDS sees a packet not associated with any known connection, create a new entry in the 

table
■ Example: A connection that started before the NIDS started running

○ NIDS can be used for more sophisticated network monitoring: not only detect attacks, but 
analyze and understand all the network traffic
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NIDS: Benefits

● Cheap: A single detector can cover a lot of systems
● Easy to scale: As the network gets larger, add computing power to the NIDS

○ Linear scaling: Investing twice as much money gives twice as much bandwidth
● Simple management: Easy to install and manage a single detector
● End systems are unaffected

○ Doesn’t consume any resources on end systems
○ Useful for adding security on an existing system

● Smaller trusted computing base (TCB)
○ Only the detector needs to be trusted

21
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NIDS: Drawbacks

● Inconsistent or ambiguous interpretation between the detector and the end 
host

● How does the NIDS monitor encrypted traffic?
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Drawback: Inconsistent Interpretation

23

NIDS

../etc/passwd

● What should the NIDS do if it sees this 
packet?

● This looks like a path traversal attack… 
Maybe it should alert

● What if the packet’s TTL expires before it 
reaches any end host?

● Problem: What the NIDS sees doesn’t 
exactly match what arrives at the end 
system
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Drawback: Inconsistent Interpretation

24

NIDS

%2e%2e%2f%2e%2e%2f

● What should the NIDS do if it sees this 
packet?

● This doesn’t look like a path traversal 
attack...maybe it shouldn’t alert

● This input is using URL percent encoding. If 
you decode it, you get ../etc/passwd!

● Problem: Inputs are interpreted differently 
between the NIDS and the end system
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Drawback: Inconsistent Interpretation
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NIDS

..///.///..////

● What should the NIDS do if it sees this 
packet?

● What file on the file system does this file 
path refer to? It’s hard for the NIDS to know

● Problem: Information needed to interpret 
correctly is missing
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Evasion Attacks

● Problem: Imperfect observability
○ What the NIDS sees doesn’t match what the end system sees
○ Example: The packet’s time-to-live (TTL) might expire before reaching the end host

● Problem: Incomplete analysis (double parsing)
○ Inconsistency: Inputs are interpreted and parsed differently between the NIDS and the end 

system
○ Ambiguity: Information needed to interpret correctly is missing

● Evasion attack: Exploit inconsistency and ambiguity to provide malicious 
inputs that are not detected by the NIDS
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Evasion Attacks: Defenses

● Make sure that the NIDS and the end host are using the same interpretations
○ This can be very challenging
○ How do we detect the URL-encoded attack %2e%2e%2f%2e%2e%2f?

Now the NIDS has to parse URL encodings!
○ How do we detect a more complicated path traversal attack ..///.///..////?

Now the NIDS has to parse Unix file paths!
● Impose a canonical (“normalized”) form for all inputs

○ Example: Force all URLs to expand all URL encodings or not expand all URL encodings
● Analyze all possible interpretations instead of assuming one
● Flag potential evasions so they can be investigated further
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Drawback: Encrypted Traffic

● Recall: TLS is end-to-end secure, so a NIDS can’t read any encrypted traffic
● One possible solution: Give the NIDS access to all the network’s private keys

○ Now the NIDS can decrypt messages to inspect them for attacks
○ Problem: Users have to share their private key with someone else

28
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Recall: Structure of a Network
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Server

Employee 
Computer

Employee 
Computer

Border 
Router

End hosts in the local network 
send packets to the Internet by 
sending it to the border router 

for forwarding

Internet
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Host-Based Intrusion Detection System (HIDS)

30

Server

Employee 
Computer

Employee 
Computer

Border 
Router HIDS: put 

detectors 
here

● Host-based intrusion detection system (HIDS): A detector installed on 
each end system

Internet
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Host-Based Intrusion Detection System (HIDS)

● Benefits
○ Fewer problems with inconsistencies or ambiguities: The HIDS is on the end host, so it will 

interpret packets exactly the same as the end host!
○ Works for encrypted messages
○ Can protect against non-network threats too (e.g. malicious user inside the network)
○ Performance scales better than NIDS: one NIDS is more vulnerable to being overwhelmed 

than many HIDS
● Drawbacks

○ Expensive: Need to install one detector for every end host
○ Evasion attacks are still possible (consider Unix file name parsing)
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Logging

● Logging: Analyze log files generated by end systems
○ Example: Each night, run a script on the log files to analyze them for attacks

● Benefits
○ Cheap: Modern web servers often already have built-in logging systems
○ Fewer problems with inconsistencies or ambiguities: The logging system works on the end 

host, so it will interpret packets exactly the same as the end host!
● Drawbacks

○ Unlike NIDS and HIDS, there is no real-time detection: attacks are only detected after the 
attack has happened

○ Some evasion attacks are still possible (again, consider Unix file name parsing)
○ The attacker could change the logs to erase evidence of the attack
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Detection Accuracy

33
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Detection Errors

● Two main types of detector errors
○ False positive: Detector alerts when there is no attack
○ False negative: Detector fails to alert when there is an attack

● Detector accuracy is often assessed in terms of the rates at which these 
errors occur

○ False positive rate (FPR): The probability the detector alerts, given there is no attack
○ False negative rate (FNR): The probability the detector does not alert, given there is an attack
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Perfect Detectors

● Can we build a detector with a false positive rate of 0%? How about a 
detector with a false negative rate of 0%?

○ Recall false positive rate: The probability the detector alerts, given there is no attack
○ Recall false negative rate: The probability the detector does not alert, given there is an attack

35

void detector_with_no_false_positives(char *input) {
    printf("Nope, not an attack!");
}

void detector_with_no_false_negatives(char *input) {
    printf("Yep, it's an attack!");
}
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Detection Tradeoffs

● The art of a good detector is achieving an effective balance between false 
positives and false negatives

● The quality of the detector depends on the system you’re using it on
○ What is the rate of attacks on your system?
○ How much does a false positive cost in your system?
○ How much does a false negative cost in your system?

● Example of cost analysis: Fire alarms
○ Which is better: a very low false positive rate or a very low false negative rate?
○ Cost of a false positive: The fire department needs to inspect the building
○ Cost of a false negative: The building burns down
○ In this situation, false negatives are much more expensive!
○ We want a detector with a low false negative rate
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Detection Tradeoffs

● Example of changing the base rate of attacks
○ Consider a detector with a 0.1% false positive rate (for every 1,000 non-attacks, there is one 

mistaken alert)
○ Scenario #1: Our server receives 1,000 non-attacks and 5 attacks per day

■ Expected number of false positives per day: 1,000 × 0.1% = 1
○ Scenario #2: Our server receives 10,000,000 non-attacks and 5 attacks per day

■ Expected number of false positives per day: 10,000,000 × 0.1% = 10,000
■ Possibly expensive if the false positives cost money to investigate
■ Example: Maybe a human has to manually examine 10,000 requests per day 

○ Nothing changed about the detector: Only our environment changed
● Takeaway: Accurate detection is very challenging if the base rate of attacks is 

low!
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Detection Tradeoffs

38

Not false positives

False positives

5

95

The proportion of false positives stays 
the same, but when there are more 

requests, the absolute number of false 
positives increases

50

950
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Base Rate Fallacy

39

● Consider the detector from before: 0.1% false positive rate
○ Assume a 0% false negative rate: Every attack is detected
○ Scenario from before: Our server receives 10,000,000 non-attacks and 5 attacks per day
○ Expected number of false positives per day: 10,000,000 × 0.1% = 10,000

● You see the detector alert. What is the probability this is really an attack?
○ Of the 10,005 detections, 5 are real attacks, and 10,000 are false positives
○ There is an approximately 0.05% probability that the detector found a real attack

● Base rate fallacy: Even though the detector alerted, it’s still highly unlikely that 
you found an attack, because of the high false positive rate

● Takeaway: Detecting is hard when the base rate of attacks is low
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Combining Detectors

● Can you combine two independent detectors to create a better detector?
● Parallel composition

○ Alert if either detector alerts
○ Intuition: The combination generates more alerts
○ Reduces false negative rate
○ Increases false positive rate

● Series composition
○ Alert only if both detectors alert
○ Intuition: The combination generates fewer alerts
○ Reduces false positive rate
○ Increases false negative rate

● There is no free lunch: reducing one rate usually increases the other
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Styles of Detection

41
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Styles of Detection

● So far we’ve talked about types of detectors: what the detector is scanning
● Now we’ll talk about styles of detection: how the detector scans data to find 

attacks
● Four main styles of detection

○ Signature-based detection
○ Specification-based detection
○ Anomaly-based detection
○ Behavioral detection

42
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Signature-based Detection

● Signature-based detection: Flag any activity that matches the structure of a 
known attack

● Signature-based detection is blacklisting: Keep a list of patterns that are not 
allowed, and alert if we see something on the list

● Signatures can be at different network layers
○ Example: TCP/IP header fields
○ Example: URLs
○ Example: Payload of the HTTP request

43
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Signature-based Detection: Examples

● Example: Path traversal attacks
○ We know that ../ is often part of a path traversal attack
○ Strategy: Alert if any request contains ../

● Example: Buffer overflows
○ We know that buffer overflows usually contain shellcode
○ Strategy: Keep a list of common shellcodes and alert if any request contains shellcode
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Signature-based Detection: Tradeoffs

● Benefits
○ Conceptually simple
○ Very good at detecting known attacks
○ Easy to share signatures and build up shared libraries of attacks

● Drawbacks
○ Won’t catch new attacks without a known signature
○ Might not catch variants of known attacks if the variant doesn’t match the signature
○ The attacker can modify their attack to avoid matching a signature
○ Simpler versions only look at raw bytes, without parsing them in context

■ May miss variants
■ May generate lots of false positives
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Specification-based Detection

● Specification-based detection: Specify allowed behavior and flag any 
behavior that isn’t allowed behavior

● Specification-based detection is whitelisting: Keep a list of allowed patterns, 
and alert if we see something that is not on the list
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Specification-based Detection: Examples

● Example: Path traversal attacks
○ We have a folder where all filenames are alphanumeric (a-z, A-Z, 0-9)
○ We specify that only alphanumeric characters are allowed as input
○ Strategy: Alert if any request contains something other than alphanumeric characters
○ If an attacker tries a path traversal attack (../), the detector will flag it

● Example: Buffer overflows
○ Consider a program that asks for the user’s age as input
○ We know that ages are numerical, so we specify that only numbers are allowed
○ Strategy: Flag input that isn’t numerical
○ If an attacker tries to input shellcode (not numbers), the detector will flag it

47



Computer Science 161

Specification-based Detection: Tradeoffs

● Benefits
○ Can detect new attacks we’ve never seen before
○ If we properly specify all allowed behavior, can have low false positive rate

● Drawbacks
○ Takes a lot of time and effort to manually specify all allowed behavior
○ May need to update specifications as things change
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Anomaly-based Detection

● Idea: Attacks look unusual
● Anomaly-based detection: Develop a model of what normal activity looks 

like. Alert on any activity that deviates from normal activity.
○ Example: Analyze historical logs to develop the model

● Similar to specification-based detection, but learn a model of normal behavior 
instead of manually specifying normal behavior
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Anomaly-based Detection: Examples

● Example: Path traversal attacks
○ Analyze characters in requests and learn that .. only appears in attacks
○ Strategy: Alert if any request contains ..

● Example: Buffer overflows
○ Study user inputs to a C program
○ Learn that user input usually contains characters that can be typed on a keyboard
○ Strategy: Alert if the input contains characters that can’t be typed on a keyboard
○ If an attacker inputs shellcode (can’t be typed on a keyboard), the detector will alert

50
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Anomaly-based Detection: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before

● Drawbacks
○ Can fail to detect known attacks
○ Can fail to detect new attacks if they don’t look unusual to our model
○ What if our model is trained on bad data (e.g. data with a lot of attacks)?
○ The false positive rate might be high (lots of non-attacks look unusual)
○ If we try to reduce false positives by only flagging the most unusual inputs, the false negative 

rate might be high (we miss slightly unusual attacks)
● Great subject for academic research papers, but not used in practice
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Behavioral Detection

● Behavioral detection: Look for evidence of compromise
● Unlike the other three styles, we are not scanning the input: We’re looking at 

the actions triggered by the input
○ Instead of looking for the exploit, we’re looking for the result of the exploit
○ Behaviors can themselves be analyzed using blacklists (signature-based), whitelists 

(specification-based), or normal behavior (anomaly-based)

52



Computer Science 161

Behavioral Detection: Examples

● Example: Path traversal attacks
○ Strategy: See if any unexpected files are being accessed (e.g. the passwords file)

● Example: Buffer overflows
○ Strategy: See if the program calls unexpected functions
○ Consider a C program that never calls the exec function: if the program starts running exec, 

there is probably an attack in progress!
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Behavioral Detection: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before
○ Can have low false positive rates if we’re looking for behavior that rarely occurs in normal 

programs (e.g. in the exec example, there are probably no false positives!)
○ Can be cheap to implement (e.g. existing tools to monitor system calls for a program)

● Drawbacks
○ Legitimate processes could perform the behavior as well (e.g. accessing a password file)
○ Only detects attacks after they’ve already happened
○ Only detects successful attacks (maybe we want to detect failed attacks as well)
○ The attacker can modify their attack to avoid triggering some behavior
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Other Intrusion Detection Strategies

55
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Vulnerability Scanning

● Idea: Instead of detecting attacks, launch attacks on your own system first, 
and add defenses against any attacks that worked

● Vulnerability scanning: Use a tool that probes your own system with a wide 
range of attacks (and fix any successful attacks)

● Widely used in practice today
○ Often used to complement an intrusion detection system
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Vulnerability Scanning: Tradeoffs

● Benefits
○ Accuracy: If your scanning tool is good, it will find real vulnerabilities
○ Proactive: Prevents attacks before they happen
○ Intelligence: If your intrusion detection system alerts on an attack you know you already fixed, 

you can safely ignore the alert
● Drawbacks

○ Can take a lot of work
○ Not helpful for systems you can't modify
○ Dangerous for disruptive attacks (you might not know which attacks are dangerous before you 

run the scanning tool)
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Honeypots

● Honeypot: a sacrificial system with no real purpose
○ No legitimate systems ever access the honeypot
○ If anyone accesses the honeypot, they must be an intruder
○ False positives: Legitimate systems mistakenly accessing the honeypot

● Similar idea as stack canaries
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Honeypots: Examples

● Example: Hospitals
○ Employees should not read patient records
○ The hospital enters a honeypot record with a celebrity name
○ Catch any staff member who reads the honeypot record

● Example: Unsecured Bitcoin wallet
○ Leave an unsecured Bitcoin wallet on your system with a small amount of money in it
○ If the money is stolen, you know that someone has attacked your system!

● Example: Spamtrap
○ Create a fake email address that is never used for legitimate emails
○ If email gets sent to the address, it's probably spam!
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Honeypots: Tradeoffs

● Benefits
○ Can detect attacks we haven’t seen before
○ Can analyze the attacker's actions

■ Who is the attacker?
■ What are they doing to the system?

○ Can distract the attacker from legitimate targets
● Drawbacks

○ Can be difficult to trick the attacker into accessing the honeypot
○ Building a convincing honeypot might take a lot of work
○ These drawbacks matter less if the honeypot is aimed at automated attacks (e.g. the spam 

detection honeypot)
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Forensics

● Forensics: Analyzing what happened after a successful attack
○ Important complement to detecting attacks

● Tools needed
○ Detailed logs of system activity
○ Tools for analyzing and understanding logs
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Blocking: Intrusion Prevention Systems

● Idea: If we can detect attacks, can we also block them?
● Intrusion prevention system (IPS): An intrusion detection system that also 

blocks attacks
○ Commonly used today

● Drawbacks
○ Not possible for retrospective analysis (e.g. logging)
○ Difficult for a detector that passively monitors traffic (e.g. an on-path NIDS)

■ Dynamically change firewall rules to block attacks?
■ Forge a RST packet to stop an attack?
■ Need to race against the attacker's malicious packets

○ False positives are expensive
■ Blocking a non-attack might affect legitimate users
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Building the Perfect IPS?

Takeaway: You must always have tradeoffs between false positive and false negative rates
63

0% false negative rate 0% false positive rate
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Attacks on Intrusion Detection Systems (IDS)

● The IDS is a system with limited resources, so it is vulnerable to DoS attacks!
○ DoS attack: Exhaust the IDS’s memory

■ IDS needs to track all ongoing activity
■ Attacker generates lots of activity to consume all the IDS's memory
■ Example: Spoof TCP SYN packets to force the IDS to keep track of too many 

connections
○ DoS attack: Exhaust the IDS’s processing power

■ Example: If the IDS uses a hash table to keep track of connections, create hash 
collisions to trigger worst-case complexity (algorithmic complexity attack)

● The IDS analyzes outside input, so it is vulnerable to code injection attacks!
○ Attacker supplies malicious input to exploit the IDS
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Inside A Modern IDS

65

● Employ defense in depth
● To cover all devices, use a modern NIDS:

○ Single entry point with a simple packet filter
■ Simple but effective filters can handle 1,000 

Gbps
○ Parallel processing using multiple NIDS nodes

■ A single server rack slot can handle 1–5 
Gbps, and scales linearly

○ In-depth detection techniques
■ Protocol analysis
■ Signature analysis on content and behavior
■ Shadow execution (execute unknown content 

found on the network)
■ Extensive logging
■ Automatic updates

Internet Network

Packet Filter

NIDS 
unit

NIDS 
unit

NIDS 
unit

NIDS 
unit
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Inside A Modern IDS

66

● Cover individual devices using a HIDS on each device
○ Antivirus software is a kind of HIDS used by many corporations!
○ Block access to blacklisted sites (e.g. malware sites)
○ Detection techniques

■ Protocol analysis
■ Signature analysis on networking traffic
■ Signature analysis on memory and filesystem
■ Query a cloud database to see if a payload has been seen by other devices running the 

same HIDS
■ Sandboxed execution (execute a payload in a safe, inescapable environment)

● Analyze the behavior of the program while in the sandbox
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Path Traversal Attacks: Summary

● Path traversal attack: Accessing unauthorized files on a remote server by 
exploiting Unix file path semantics

○ Often makes use of ../ to enter other directories
○ Vulnerability: User input is interpreted as a file path by the Unix file system

● Defense: Check that user input is not interpreted as a file path
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Types of Detectors: Summary

● Network Intrusion Detection System (NIDS): Installed on the network
○ Benefits: Cheap, easy to scale, simple management, end systems unaffected, small TCB
○ Drawbacks: Inconsistent interpretation (leads to evasion attacks), encrypted traffic

● Host-based Intrusion Detection System (HIDS): Installed on the end host
○ Benefits: Fewer inconsistencies, works with encrypted traffic, works inside the network, 

performance can scale
○ Drawbacks: Expensive, evasion attacks still possible

● Logging: Analyze logs generated by servers
○ Benefits: Cheap, fewer inconsistencies
○ Drawbacks: Only detects attacks after they happen, evasion attacks still possible, attacker 

could change the logs
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Detection Accuracy: Summary

● Two main types of detector errors
○ False positive: Detector alerts when there is no attack
○ False negative: Detector fails to alert when there is an attack

● Detector accuracy
○ False positive rate (FPR): The probability the detector alerts, given there is no attack
○ False negative rate (FNR): The probability the detector does not alert, given there is an attack

● Designing a good detector involves considering tradeoffs
○ What is the rate of attacks on your system?
○ How much does a false positive cost in your system?
○ How much does a false negative cost in your system?

● Accurate detection is very challenging if the base rate of attacks is low
● Detectors can be combined

○ Parallel: Fewer false negatives, more false positives
○ Series: Fewer false positives, more false negatives 69
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Styles of Detection: Summary

● Signature-based
○ Flag any activity that matches the structure of a known attack (blacklisting)
○ Good at detecting known attacks, but bad at detecting unknown attacks

● Specification-based
○ Specify allowed behavior and flag any behavior that isn’t allowed behavior (whitelisting)
○ Can detect unknown attacks, but requires work to manually write specifications

● Anomaly-based
○ Develop a model of what normal activity looks like. Alert on any activity that deviates from 

normal activity.
○ Mostly seen in research papers, not in practice

● Behavioral
○ Look for evidence of compromise
○ Can cheaply detect new attacks with few false positives, but only detects after the attack
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Other Intrusion Detection Strategies: Summary

● Vulnerability scanning: Use a tool that probes your own system with a wide 
range of attacks (and fix any successful attacks)

○ Can accurately prevent attacks before they happen, but can be expensive
● Honeypot: a sacrificial system with no real purpose

○ Can detect attackers and analyze their actions, but may take work to trick the attacker into 
using the honeypot

● Forensics: Analyzing what happened after a successful attack
● Intrusion Prevention System (IPS): An intrusion detection system that also 

blocks attacks
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