Computer Security

Network Security / 34. Denial-of-Service (DoS)

34. Denial-of-Service (DoS) &

34.1. Introduction

Since the bandwidth in a network is finite, the number of connections a web server can maintain is
limited. Each connection to a server needs some minimum amount of network capacity in order to
function properly. When a server has used up its bandwidth (the ability of its processors to respond
to requests), any additional attempted connections are dropped. Any attack that is designed to
cause a machine or a piece of software to be unavailable and unable to perform its basic

functionality is known as a denial of service (DoS) attack.

A majority of DoS attacks refer to deliberate attempts to exceed the maximum available bandwidth
of a server usually through exploiting program flaws or resource exhaustion. The underlying concept
is that since different parts of the system might have different resource limits, the attack only needs
to exhaust the part of the system with the least resources (i.e. the bottleneck). Since attackers in a
DoS attack are not concerned with receiving responses from the server, they often spoof the source
IP address in an attempt to obscure the identity of the attacker and make mitigations of the attack
more difficult. Because some servers may stop DoS attacks by dropping all packets from certain
blacklisted IP addresses, attackers can generate a unique source IP address for every packet sent,
thus preventing the target from successfully identifying and blocking the attacker. This use of IP

spoofing therefore makes it more difficult to target the source of a DoS attack.

34.2. Application Level DoS

Application level DoS attacks tend to target the resources that an application uses and exploits
features of the application itself. Some attacks rely on asymmetry wherein a small amount of input
from the attack results in a large amount of consumed resources. Such attacks could include
exhausting the filesystem space by having continuous calls to write, exhausting the RAM by having
continuous calls to malloc, exhausting the processing threads by having continuous calls to fork, or
exhausting the disk 1/O operations. Defense against such attacks usually take on a three-pronged

approach:

1 Identification: You must be able to distinguish requests from different users and require some

method to identify or authenticate them (though this process might be expensive and itself



vulnerable to DoS attacks)
2 Isolation: You must ensure that one user’s actions do not affect another user’s experience

3 Quotas: You must ensure that users can only access a certain proportion of resources. There are
many possible implementations of this. One method to implement this is to place specific limits
on each user such as limiting users to only 4 GB of RAM and 2 CPU cores. Another example of is
to assign specific roles to users such that only trusted people can execute expensive requests.
Another possible "defense” would include proof-of-work (like CAPTCHA) wherein you force users
to spend some resources in order to issue a request. The idea here is that the DoS attack
becomes more expensive for the attacker as they have to now spend extra resources in order to
succeed.

34.3. SYN Flood Attacks

Recall (from Chapter 31) that in order to initiate a TCP session, the client first sends a SYN packet to
the server, in response to which the server replies with a SYN/ACK packet. This handshake is
concluded with the client sending a concluding ACK packet to the server, but if the server does not

receive the ACK packet, it waits for a certain time-out period before discarding the session.

In a SYN flooding attack, the attacker sends a large number of SYN packets to the server, ignores
the SYN/ACK replies, and never sends the ACK response. In fact, an attacker will usually use a
spoofed IP source address in the SYN packets, so any SYN/ACK replies are sent to random IP
addresses. Therefore, if the attacker sends a large number of SYN packets with no corresponding
ACK packets, the server’'s memory will fill up with sequence numbers that it is forced to remember in
order to match up TCP sessions with the expected ACK packets. Since these ACK packets never

actually arrive, this wasted memory will ultimately block out other, legitimate TCP session requests.

Essentially, if the attacker sends a large volume of SYN packets to the server, the server is forced to
send SYN/ACK packets back to the “client” and has to remember the sequence numbers of each of
the packets for when the connections are established. However, if the attacker does not complete
the handshake by sending the ACK packet, the server has wasted a lot of memory by being forced to
remember all the sequence numbers for connections that will never actually happen, thus using up
all of the server’s bandwidth and preventing legitimate connections from taking place.

There are a couple of possible defenses for SYN flooding. The first is a process known as
overprovisioning wherein we ensure that the server has a lot of memory. However, this can be pretty
expensive and usually can still be circumvented depending on your threat model. Perhaps a more
stable defense is to filter packets to ensure that only legitimate connections will create state,
through the use of SYN cookies. In an ideal scenario, the server generates state for the client but
does not save it when it sends the SYN/ACK flag; instead, it sends the state to the client encoded



with a secret. It is then up to the client to store the state on behalf of the server and return the state
in the corresponding ACK packet. Only when the handshake is complete will the server allocate state
for the connection after checking the cookie against the secret. The issue, however, is that TCP does
not have the mechanism to store state. Thus, instead, the server generates state for the client when
it generates the SYN/ACK flag and does not save it; instead, it encodes the state within the sequence
number with a secret. The client remembers the sequence number and returns it in the
corresponding ACK number. Only when the handshake is complete will the server allocate state for
the connection after checking the cookie against the secret.

Essentially, what is happening here is that the server does not create state until the handshake is
completed, so the attacker cannot spoof source addresses.

34.4. Distributed Denial of Service (DDoS)

Today, most standard DoS attacks are impractical to execute from a single machine. Modern server
technology allows websites to handle an enormous amount of bandwidth, much greater than the
bandwidth that is possible from a single machine. However, DoS conditions can still be created by
using multiple attacking machines in what is known as a Distributed Denial of Service (DDoS) attack.
Here, malicious user(s) leverage the power of many machines (the number of machines could be in
the thousands) to direct traffic against a single website in an attempt to create DoS conditions (i.e.
prevent availability). Often, attackers carry out DDoS attacks by using botnets, a series of large
networks of machines that have been compromised and are controllable remotely.

Theoretically, there is no way to completely eliminate the possibility of a DDoS attack since the
bandwidth that a server is able to provide its users is always going to be limited. However, measures
can still be taken to mitigate the risks of DDoS attacks. For example, several servers incorporate
DDoS protection mechanisms that analyze incoming traffic and drop packets from sources that are
consuming too much bandwidth. Unfortunately, IP spoofing makes this defense extremely difficult
by obscuring the identity of the attacker bots and providing inconsistent information on where
network traffic is coming from.



