Computer Security

Network Security / 38. Malware

38. Malware

38.1. Overview

Malware, or malicious software (also known as malcode), is any type of attacker code that runs on
victim computers. One of the primary ways that malware is able to propagate is through self-
replicating code, which is a code snippet that outputs a copy of itself (usually to send to other
people). For example, suppose a piece of malware runs on your computer; in addition to, say
deleting all your files or turning on your webcam, the malware also outputs a copy of itself and

sends it to other computers, thereby infecting other devices.

Viruses and worms are two categories of self-propagating malware wherein the malicious code
sends copies of itself to other users. A virus is a piece of malware or malcode that requires some
user action to propagate, meaning that the user has to take some action in order for the virus to
spread. Usually, once the computer gets infected, a piece of code is stored somewhere on the
infected computer. Then, when the user runs the code, the virus gets spread to other users.

On the other hand, a worm is a piece of malware or malcode that does not require user action to
propagate. Usually, rather than the infection happening on code that is stored on the computer that
gets run later, it instead infects a computer by altering some already-running code. As such, no user
interaction is required for the worm to spread to other users.

One possible application of malware is to construct a botnet. A botnet is a set of compromised
machines, or bots, that are under centralized control, allowing the owner of the botnet to own a
huge amount of resources that could be used for other attacks (like DoS). An attacker could use a
virus or a worm to infect a large number of machines, causing every infected machine to now be

under the control of the attacker.

38.2. Viruses

Recall that viruses are forms of malware that require user action to propagate, meaning that it
usually infects a computer by altering some stored code and when the user runs the code, the
malicious code spreads to other users. For example, an attacker could infect the start-up code of an
application, meaning that when the user tries to open the application, the malcode will run and look



for opportunities to infect more systems (i.e. forward itself to other users, copy itself onto a USB

drive, etc.).

One common approach to detecting viruses is through signature-based detection. Since viruses are
self-propagating, they often use copies of the same code. Since signature-based detection uses
patterns of known attacks, a signature can be created on the virus (since the virus has been infecting
several computers in the same manner using the same code snippet). So, the signature-based
detection system will capture a virus on one system (usually through a sacrificial computer which
opens a bunch of malicious files on purpose) and look for bytes corresponding to the malcode on
other systems. Antivirus software performs these checks for you by usually including a checklist of
common viruses. Most antiviruses will incorporate some form of signature-based detection and will
use the signatures of these viruses to ensure that your computer is not infected. Stronger antivirus
softwares will likely have a greater number of virus signatures than weaker ones, ensuring that your
computer is protected from a wider range of attacks.

Viruses have existed for several decades, and there is a constant race that exists between attackers
writing viruses and antivirus companies detecting viruses. As this arms race continues, propagation
strategies of modern malware have evolved. Attackers tend to look for evasion strategies as they
don't want to be detected by the antivirus software. As such, they could change the appearance of
the virus so that each copy looks different, thus making signature-based detection much harder.
Rather than changing the virus's appearance manually, certain evasion strategies attempt to
automate this process through polymorphic code. In this arms race, since the attacker can see what
detection strategies the antivirus software is using, but the antivirus cannot see what attacks the
attacker is planning, the attackers often have a slight advantage. In other words, the attackers can
see the defense strategies employed by the antivirus companies and therefore write evasion
strategies to get around them (namely, the attacker knows the system). Therefore, since the
detectors have to usually publish their code first, they are at a bit of a disadvantage.

38.3. Polymorphic and Metamorphic Code

In an attempt to continuously change the virus's appearance to avoid signature-based detection,
attacks employ polymorphic code wherein each time the virus propagates, it inserts an encrypted
copy of the malcode. This code also includes the key and the decryptor, so when the code runs, it
uses the key and decryptor to obtain the original, plaintext malcode. Since encryption schemes
produce different looking outputs on repeated encryptions (with IND-CPA secure schemes), the
attacker is able to change the appearance of the virus to help avoid signature-based detections.
However, note that encryption is being used for obfuscation and not for confidentiality. Namely, the
attacker is not trying to hide the contents of the virus (rather, the malcode is going to get run

eventually and the decoder and the key are sent in plaintext), but simply avoid detection by making



every copy of the virus look different. As such, this also means that weaker encryption algorithms,
like ECB, can be used (since our goal is not confidentiality) and the decryption keys can be sent in
plaintext.

One possible defense against polymorphic code is to simply add a signature for detecting the
decryptor code. For example, a possible signature could be a key being used to decrypt a certain
piece of code. However, this raises a lot of false positives since there are a lot of pieces of code that
are not malware, which use a key to decrypt other pieces of code. Furthermore, another issue arises
if the decryptor code is scattered across different parts of memory as matching several small
instructions is a lot harder than matching one big block of code. Another possible defense is to run
the potentially dangerous code in a sandbox, or an isolated environment, where if something goes
terribly wrong, nothing outside of the sandbox is affected. For example, if a piece of code performs
a decryption mechanism, the machine could execute the code in a sandbox (like a VM), thus
allowing us to analyze the code structure without actually executing the code in a dangerous

environment.

In addition to polymorphic code, metamorphic code is another way to try to avoid signature-based
detection. Here, each time the virus propagates, it generates a semantically different version of the
code. In other words, the code performs the same high-level action, but with minor differences in
execution, like changing variable names or changing the order of certain operations or using a for
loop instead of a while loop. Usually included in metamorphic code is a code rewriter which changes
the code randomly each time. Note that the rewriter can also change the rewriter code in addition

to the virus code before propagating the virus to ensure that the entire malcode looks different.

Because the code is now changing, there is now no easy pattern to find the malcode, meaning that
signature-based detection is extremely difficult. However, it does let us use behavioral-detection
instead, wherein we analyze the behavior of the code instead of the syntax (since the syntax is
continuously changing). As such, we now look at the effect of the instructions rather than the
appearance of the instructions. However, viruses can subvert behavioral detection; for example, the
virus could delay analysis by waiting a long time before executing the malicious code or it could
detect that the code is being analyzed (run in a debugger or a sandbox) and could choose different,

“normal” behavior.

Theoretically however, it is pretty much impossible to write a perfect algorithm to separate malicious
code from safe code (though if you do manage to write something that accomplishes this task, you
would have solved the halting problem!). Rather, antivirus softwares usually try to simply look for
new and unfamiliar code. The software company keeps a central repository of previously-seen code
and if some code has never been seen before, it treats that piece of code as malicious. Flagging
unfamiliar code is a powerful defense as it employs a signature-based detection system to detect



malicious behavior as well as a strategy for people avoiding the first detector. In other words, if the
attacker does not modify the code for each propagation, it will have a detectable signature and if
the attacker modifies the code each time, it always appears as new, and therefore suspicious.

38.4. Worms

Worms are pieces of code that, unlike viruses, do not require user action to propagate; instead, they
usually infect a computer by altering some already-running code. Since worms want to run
immediately, they usually randomly choose machines by randomly generating 32-bit IP addresses
and try connecting to them in an attempt to propagate. Essentially, worms want to directly inject
malcode into a lot of different computers very quickly. To find the different computers to inject, the

worm will either try to connect to random machines or will use a pre-generated "hit-list".

Worms can potentially spread extremely quickly since they parallelize the process of propagation
and replication. As more computers are infected, more computers are available to spread the worm
further. While viruses have the same property, they usually spread more slowly since user action is
needed to activate the virus. As such, worm propagation can be modeled as an infectious epidemic
and computer scientists often use the same models that biologists use to model their spread of
infectious diseases. Similar to epidemics, the spread of the worm depends on the size of the
population, the proportion of the population that is vulnerable to the infection, the number of
infected hosts, and the contact rate, or how often the infected host communicates with other hosts.
The number of infected hosts grows logistically, meaning that the initial growth is exponential, since
as more hosts are infected, there are more opportunities to infect, but later growth slows down as it
becomes harder to find new non-infected hosts to infect.



