
Computer Science 161

x86 Assembly and Call Stack
CS 161 Spring 2024 - Lecture 2

Computer Science 161

Last Time

● What is security? Why is it important?
● Security principles

2

Computer Science 161

Today

3

● Half CS 61C review
○ How do computers represent numbers as bits and bytes?
○ How do computers interpret and run the programs we write?
○ How do computers organize segments of memory?

● Half new content
○ How does x86 assembly work?
○ How do you call a function in x86?

Computer Science 161

Number Representation

4
Textbook Chapter 2.1

Computer Science 161

Units of Measurement

5

● In computers, all data is represented as bits
○ Bit: a binary digit, 0 or 1

● Names for groups of bits
○ 4 bits = 1 nibble
○ 8 bits = 1 byte

● 0b1000100010001000: 16 bits, or 4 nibbles, or 2 bytes

Computer Science 161

Hexadecimal

● 4 bits can be represented as 1 hexadecimal digit (base 16)

6

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

Binary Hexadecimal

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Computer Science 161

Hexadecimal

● The byte 0b11000110 can be written as 0xC6 in hex
● For clarity, we add 0b in front of bits and 0x in front of hex

7

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

Binary Hexadecimal

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Computer Science 161

Running C Programs

8
Textbook Chapter 2.2

Computer Science 161

CALL (Compiler, Assembler, Linker, Loader)

9

int add_one(int a) {
 int added = a + 1;
 return added;
}

C code

add_one:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %eax
 movl %eax, -4(%ebp)
 incl -4(%ebp)
 movl -4(%ebp), %eax
 leave
 ret

Assembly code
(RISC-V, x86)

0x55 0x89 0xe5 0x83
0xec 0x04 0x8b 0x45
0x08 0x89 0x45 0xfc
0x45 0x89 0xe8 0xc9
0xc3

Machine code
(raw bits)

Compiler Assembler

Computer Science 161

CALL (Compiler, Assembler, Linker, Loader)

10

● Compiler: Converts C code into assembly code (RISC-V, x86)
● Assembler: Converts assembly code into machine code (raw bits)

○ Think 61C’s RISC-V “green sheet”
● Linker: Deals with dependencies and libraries

○ You can ignore this part for 161
● Loader: Sets up memory space and runs the machine code

Computer Science 161

C Memory Layout

● At runtime, the loader tells your OS to give your program a big blob of
memory

● On a 32-bit system, the memory has 32-bit addresses
○ On a 64-bit system, memory has 64-bit addresses
○ We use 32-bit systems in this class

● Each address refers to one byte, which means you have 232 bytes of memory

11

address 0x00000000 address 0xFFFFFFFF

Computer Science 161

C Memory Layout

12

address 0x00000000

address 0xFFFFFFFF● Often drawn vertically for ease of viewing
○ But memory is still just a long array of bytes

Higher addresses

Lower addresses

4 bytes

Computer Science 161

Endianness

13
Textbook Chapter 2.4

Computer Science 161

C memory layout

● On each row of the grid, we put 4 bytes = 1
word.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44address 0x00000000

address 0xFFFFFFFF

Computer Science 161

C memory layout

● On each row of the grid, we put 4 bytes = 1
word.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44address 0x00000001

address 0xFFFFFFFF

Computer Science 161

C memory layout

● On each row of the grid, we put 4 bytes = 1
word.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44

address 0x00000004

address 0xFFFFFFFF

Computer Science 161

Little-endian words

● On each row of the grid, we put 4 bytes = 1
word.

● We can combine all the bytes on a row to
form a word.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44address 0x00000000

address 0xFFFFFFFF

Computer Science 161

Quick detour: How do we write dates?

● You want to communicate three dates to your friend:
○ August 28, 2023 (the day of this lecture)
○ October 6, 2023 (the day of your midterm)
○ December 15, 2023 (the day of your final exam)

● Challenge: You can only write down nine numbers (no slashes or dashes).
● One sequence you could try is year-month-day:

○ 23 08 28 23 10 06 23 12 15
● Another sequence you could try is day-month-year:

○ 28 08 23 06 10 23 15 12 23
● Does it matter which one you use?

○ No, as long as your friend knows which one you’re using

Computer Science 161

Quick detour: How do we write dates?

● 23 08 28 23 10 06 23 12 15 (year-month-day) is the big-endian version
○ Because you start with the biggest unit (year)

● 28 08 23 06 10 23 15 12 23 (day-month-year) is the little-endian version
○ Because you start with the smallest unit (day)

● In both versions, each group of three numbers is a date. The only difference
is how you read those three numbers.

Computer Science 161

Little-endian words

● We can combine four bytes on a row to form
a word.

● However, x86 is little-endian, which means
the word formed from the first four bytes is
actually 0x44332211!

● This is just like the dates: each group of 4
bytes is a word. The only difference is how
you read those bytes.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44address 0x00000000

Computer Science 161

Quick detour: How do we write dates?

● Let’s look at the little-endian
(day-month-year) sequence:

○ 28 08 23 06 10 23 15 12 23
● If I ask you for the first date in this

sequence, you would say:
August 28, 2023

● If I ask you for the first number in this
sequence, you would say: 28

Computer Science 161

Little-endian words

● If I ask for the byte at address 0x00000000,
you should say 0x11.

● If I ask for the word at that same address,
you should say 0x44332211.

0xDE 0xAD 0xBE 0xEF
0x11 0x22 0x33 0x44address 0x00000000

Computer Science 161

Notation

● Usually, we work with words on the stack, so
we write each set of 4 bytes as a word.

● But remember that under the hood, the
memory is storing the word in “backwards”
order.

● This is one of the trickiest parts of the entire
unit, so don’t worry if you don’t get it right
away.

0xDE 0xAD 0xBE 0xEF
0x44332211word at 0x00000000

bytes at 0x00000004

Computer Science 161

Memory Layout

24
Textbook Chapter 2.3 & 2.5

Computer Science 161

x86 Memory Layout

● Code
○ The program code itself (also called “text”)

● Data
○ Static variables, allocated when the program is

started
● Heap

○ Dynamically allocated memory using malloc and
free

○ As more and more memory is allocated, it grows
upwards

● Stack:
○ Local variables and stack frames
○ As you make deeper and deeper function calls, ti

grows downwards
25

Higher addresses

Lower addresses

Stack

Heap

Data

Code

Grows downwards

Grows upwards

Computer Science 161

Registers

● Recall registers from CS 61C
○ Examples of RISC-V registers: a0, t0, ra, sp

● Registers are located on the CPU
○ This is different from the memory layout
○ Memory: addresses are 32-bit numbers
○ Registers are referred to by names (ebp, esp,

eip), not addresses

26

Higher addresses

Lower addresses

Stack

Heap

Data

Code

Grows downwards

Grows upwards

Computer Science 161

Intro to x86 Architecture

27
Textbook Chapter 2.4 & 2.7

Computer Science 161

Why x86?

● It’s the most commonly used instruction set architecture in consumer
computers!

○ You are probably using an x86 computer right now…unless you’re on a phone, tablet, or
recent Mac

● You only need enough to be able to read it and know what is going on
○ We will make comparisons to RISC-V, but it’s okay if you haven’t taken 61C and don’t know

RISC-V; you don’t need to understand the comparisons to understand x86

28

Computer Science 161

x86 Fact Sheet

● Little-endian
○ The least-significant byte of multi-byte numbers is placed at the first/lowest memory address
○ Same as RISC-V

● Variable-length instructions
○ When assembled into machine code, instructions can be anywhere from 1 to 16 bytes long
○ Contrast with RISC-V, which has fixed-length, 4-byte instructions

29

Computer Science 161

● Storage units as part of the CPU architecture (not part of memory)
● Only 8 main general-purpose registers:

○ EAX, EBX, ECX, EDX, ESI, EDI: General-purpose
○ ESP: Stack pointer (similar to sp in RISC-V)
○ EBP: Base pointer (similar to fp in RISC-V)
○ We will discuss ESP and EBP in more detail later

● Instruction pointer register: EIP
○ Similar to PC in RISC-V

x86 Registers

30

Computer Science 161

● Register references are preceded with a percent sign %
○ Example: %eax, %esp, %edi

● Immediates are preceded with a dollar sign $
○ Example: $1, $161, $0x4

● Memory references use parentheses and can have immediate offsets
○ Example: 8(%esp) dereferences memory 8 bytes above the address contained in ESP

x86 Syntax

31

Computer Science 161

● Instructions are composed of an opcode and zero or more operands.
● add $0x8, %ebx

● Pseudocode: EBX = EBX + 0x8
● The destination comes last

○ Contrast with RISC-V assembly, where the destination (RD) is first
● The add instruction only has two operands; and the destination is an input

○ Contrast with RISC-V, where the two source operands are separate (RS1 and RS2)
● This instruction uses a register and an immediate

x86 Assembly

32

Opcode Source Destination

Computer Science 161

● xorl 4(%esi), %eax

● Pseudocode: EAX = EAX ^ *(ESI + 4)
● This is a memory reference, where the value at 4 bytes above the address in

ESI is dereferenced, XOR’d with EAX, and stored back into EAX

x86 Assembly

33

Opcode Source Destination

Computer Science 161

Stack Layout

34
Textbook Chapter 2.6

Computer Science 161

Stack Frames

● When your code calls a function, space is made on the stack for local
variables

○ This space is known as the stack frame for the function
○ The stack frame goes away once the function returns

● The stack starts at higher addresses. Every time your code calls a function,
the stack makes extra space by growing down

○ Note: Data on the stack, such as a string, is still stored from lowest address to highest
address. “Growing down” only happens when extra memory needs to be allocated.

35

Computer Science 161

Stack Frames

● To keep track of the current stack frame, we
store two pointers in registers

○ The EBP (base pointer) register points to the top of
the current stack frame

■ Equivalent to RISC-V fp
○ The ESP (stack pointer) register points to the

bottom of the current stack frame
■ Equivalent to RISC-V sp

36

...

...

...

...

EBP

ESP
Current stack frame

Computer Science 161

Quick detour: storing pointers

● In this diagram, the ebp
and esp registers are
drawn as arrows. What is
actually being stored in the
register?

● The register is storing the
address of where the
arrow is pointing.

● This works because
registers are 32 bits, and
addresses are 32 bits.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Current stack frame

Computer Science 161

Quick detour: storing pointers

● This is what storing pointers
actually looks like, but we’ll use
arrows because it’s easier to
look at.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Current stack frame

0xbffff320

0xbffff314
0xbffff320

0xbffff314

Computer Science 161

39

Pushing and Popping

● The push instruction adds an element to the stack
○ Decrement ESP to allocate more memory on the stack
○ Save the new value on the lowest value of the stack

EBP

ESP
Current stack frame

0xcafef00d

EBP

ESP

Current stack frame

Before push %eax After push %eaxEAX = 0xcafef00d
EBX = ...

EAX = 0xcafef00d
EBX = ...

Computer Science 161

40

Pushing and Popping

● The pop instruction removes an element from the stack
○ Load the value from the lowest value on the stack and store it in a register
○ Increment ESP to deallocate the memory on the stack

0xcafef00d

EBP

ESPCurrent stack frame

0xcafef00d

EBP

ESP

Current stack frame

Before pop %eax After pop %eaxEAX = 0x00000000
EBX = ...

EAX = 0xcafef00d
EBX = ...

Computer Science 161

x86 Stack Layout

● In this class, assume local variables are always allocated on the stack
○ Contrast with RISC-V, which has plenty of registers that can be used for variables

● Individual variables within a stack frame are stored with the first variable at
the highest address

● Members of a struct are stored with the first member at the lowest address
● Global variables (not on the stack) are stored with the first variable at the

lowest address

41

Computer Science 161

Stack Layout

struct foo {
 long long f1; // 8 bytes
 int f2; // 4 bytes
 int f3; // 4 bytes
};

void func(void) {
 int a; // 4 bytes
 struct foo b;
 int c; // 4 bytes
}

42

a

b.f3

b.f2

b.f1

b.f1

c

How would you fill out the boxes in
this stack diagram?

Options:
a b.f1 b.f2 b.f3 c

Higher addresses

Lower addresses

4 bytes

Computer Science 161

Calling Convention

43
Textbook Chapter 2.6

Computer Science 161

Function Calls

44

int main() {
 int a = 1;
 foo();
 return 0;
}

Caller

void foo() {
 int b = 0;
 return;
}

Callee

int main() {
 int a = 1;
 foo();
 return 0;
}

Caller

The caller function (main) calls
the callee function (foo).

The callee function executes and
then returns control to the caller

function.

Before function call During function call After function returns

Computer Science 161

x86 Calling Convention

● An understood way for functions to call other functions and know what state
the processor will return in

● How to pass arguments
○ Arguments are pushed onto the stack in reverse order, so func(val1, val2, val3) will

place val3 at the highest memory address, then val2, then val1
○ Contrast with RISC-V, which passes arguments in argument registers (a0-a7)

● How to receive return values
○ Return values are passed in EAX
○ Similar to RISC-V, which passes return values in a0-a1

● Which registers are caller-saved or callee-saved
○ Callee-saved: The callee must not change the value of the register when it returns
○ Caller-saved: The callee may overwrite the register without saving or restoring it

45

Computer Science 161

Calling a Function in x86

● When calling a function, the ESP and EBP need to shift to create a new stack
frame, and the EIP must move to the callee’s code

● When returning from a function, the ESP, EBP, and EIP must return to their
old values

46

caller code

callee code

caller code

callee code

caller code

callee code

EBP

Caller frame
ESP

Before function call

EIP

S
tack

C
ode

EBP

ESP

During function call

Caller frame

Callee frame

EIP

S
tack

C
ode

Caller frame

After function call

EBP

ESP

EIP

S
tack

C
ode

Computer Science 161

x86 Calling Convention Design

47
Textbook Chapter 2.6

Computer Science 161

Review: stack, registers

● Any time your code calls a
function, space is made on
the stack for local variables.
The space goes away once
the function returns.

● The stack starts at higher
addresses and grows down.

● Registers are 32-bit (or
4-byte, or 1-word) units of
memory located on CPU.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

The stack grow
s this w

ay

Computer Science 161

Review: words, code section

● The code section contains
raw bytes that represent
assembly instructions.

● We omit the static and heap
sections to save space.

● Each row of the diagram is
1 word = 4 bytes = 32 bits.

● Addresses increase as you
move up the diagram.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

A
ddresses increase this w

ay

Computer Science 161

Stack frames

● We’ll use two pointers to tell
us which part of the stack is
being used by the current
function.

● On the stack, this is called a
stack frame. One stack
frame corresponds to one
function being called.

● You might recall stack frames
from environment diagrams in
CS 61A.

...

...

Code for foo

Code for main

C
O

D
E

Registers
ebp

esp

eip

S
TA

C
K

Computer Science 161

ebp and esp

● We store two pointers to
remind us the extent of
the current stack frame.

● ebp is used for the top of
the stack frame, and esp
is used for the bottom of
the stack frame.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Current stack frame

Computer Science 161

esp

● esp also denotes the
current lowest value on the
stack.

● Everything below esp is
undefined

● If you ever push a value
onto the stack, esp must
adjust to match the lowest
value on the stack.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Current stack frame

Computer Science 161

eip

● We need some way to
keep track of what step
we’re at in the
instructions.

● We use the eip register
to store a pointer to the
current instruction.

...

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Current stack frame

Computer Science 161

Designing the stack: requirements

● Every time a function is
called, a new stack frame
must be created. When the
function returns, the stack
frame must be discarded.

● Each stack frame needs to
have space for local
variables.

● We also need to figure out
how to pass arguments to
functions using the stack.

Stack frame for main

...

Code for foo

Code for main

C
O

D
E

Registers
ebp

esp

eip

S
TA

C
K

Computer Science 161

Designing the stack: requirements

● For example, this is what the
stack might look like after a
function foo is called.

● The ebp and esp registers
should adjust to give us a
stack frame for foo with the
correct size.

● The eip register should
adjust to let us execute the
instructions for foo.

Stack frame for main

...

Code for foo

Code for main

C
O

D
E

Registers
ebp

esp

eip

S
TA

C
K

Computer Science 161

Designing the stack: requirements

● Then after foo returns, the
stack should look exactly
like it did before foo was
called.

Stack frame for main

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Computer Science 161

Remember to save your work as you go

● Don’t forget calling
convention: if we ever
overwrite a saved register,
we should remember its old
value by putting it on the
stack.

Stack frame for main

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Computer Science 161

1. Arguments

● First, we push the
arguments onto the stack.

● Remember to adjust esp to
point to the new lowest
value on the stack.

● Arguments are added to
the stack in reverse order.

Stack frame for main

Argument #2

Argument #1

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Computer Science 161

2. Remember eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

● Next, push the current value
of eip on the stack.

○ This tells us what code to
execute next after the function
returns

○ Similar to putting a return
address in ra in RISC-V

● Remember to adjust esp to
point to the new lowest
value on the stack.

Registers
ebp

esp

eip

Computer Science 161

2. Remember eip

● This value is sometimes
known as the rip (return
instruction pointer),
because when we’re
finished with the function,
this pointer tells us where in
the instructions to go next.

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Computer Science 161

3. Remember ebp

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

● Next, push the current value
of ebp on the stack.

○ This will let us restore the top of
the previous stack frame when
we return

○ Alternate interpretation: ebp is a
saved register. We store its old
value on the stack before
overwriting it.

● Remember to adjust esp to
point to the new lowest value
on the stack.

Registers
ebp

esp

eip

Computer Science 161

3. Remember ebp

● This value is sometimes
known as the sfp (saved
frame pointer), because it
reminds us where the
previous frame was.

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Computer Science 161

4. Adjust the stack frame

● To adjust the stack frame,
we need to update all three
registers.

● We can safely do this
because we’ve just saved
the old values of ebp and
eip. (esp will always be the
bottom of the stack, so
there’s no need to save it).

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for main

Computer Science 161

4. Adjust the stack frame

● ebp now points to the top of
the current stack frame,
which is always the sfp.
(Easy way to remember this:
ebp points to old value of
ebp.)

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for maindashed line = ebp pointer before this step

Computer Science 161

4. Adjust the stack frame

● esp now points to the bottom
of the current stack frame.
The compiler determines the
size of the stack frame by
checking how much space the
function needs (how many
local variables it has).

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for maindashed line = esp pointer before this step

Computer Science 161

4. Adjust the stack frame

● eip now points to the
instructions for foo.

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

...

Code for foo

Code for maindashed line = eip pointer before this step

Computer Science 161

5. Execute the function

● Now the stack frame is ready
to do whatever the function
instructions say to do.

● Any local variables can be
moved onto the stack now.

C
O

D
E

S
TA

C
K

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variable

Local variable

...

Code for foo

Code for main

Computer Science 161

6. Restore everything
C

O
D

E
S

TA
C

K

● After the function is finished,
we put all three registers back
where they were.

● We use the addresses stored
in rip and sfp to restore eip
and ebp to their old values.

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variable

Local variable

...

Code for foo

Code for main

Computer Science 161

6. Restore everything
C

O
D

E
S

TA
C

K

● esp naturally moves back to
its old place as we undo all
our work, which involves
popping values off the stack.

● Note that the values we
pushed on the stack are still
there (we don’t overwrite
them to save time), but they
are below esp so they cannot
be accessed by memory.

Registers
ebp

esp

eip

Stack frame for main

Argument #2

Argument #1

Old eip (rip)

Old ebp (sfp)

Local variable

Local variable

...

Code for foo

Code for main

Computer Science 161

Review: steps of a function call

1. Push arguments on the stack
2. Push old eip (rip) on the stack
3. Push old ebp (sfp) on the stack
4. Adjust the stack frame
5. Execute the function
6. Restore everything

Computer Science 161

Steps of a function call (complete)

1. Push arguments on the stack
2. Push old eip (rip) on the stack
3. Move eip
4. Push old ebp (sfp) on the stack
5. Move ebp
6. Move esp
7. Execute the function
8. Move esp
9. Restore old ebp (sfp)

10. Restore old eip (rip)
11. Remove arguments from stack

Computer Science 161

Steps of a function call (complete)

1. Push arguments on the stack
2. Push old eip (rip) on the stack
3. Move eip
4. Push old ebp (sfp) on the stack
5. Move ebp
6. Move esp
7. Execute the function
8. Move esp
9. Restore old ebp (sfp)

10. Restore old eip (rip)
11. Remove arguments from stack

main

foo

main

Moving eip transfers control
from main to foo.

Restoring eip transfers
control back to main.

Computer Science 161

x86 Calling Convention Walkthrough

73
Textbook Chapter 2.6

Computer Science 161

x86 Function Call

74

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

Here is a snippet of C code

Here is the code compiled
into x86 assembly

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

75

The instruction that was
just executed is in red

The EIP points to the
address of the next

instruction!

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

x86 Function Call

76

Here is a diagram of the
stack. Remember, each row
represents 4 bytes (32 bits).

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

77

caller stack frame
● The EBP and ESP

registers point to the
top and bottom of the
current stack frame.

EBP
ESP EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

78

EBP
caller stack frame

2

1. Push arguments on the
stack

● The push instruction
decrements the ESP
to make space on the
stack

● Arguments are pushed
in reverse order

ESP EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

79

caller stack frame

2

1

1. Push arguments on the
stack

● The push instruction
decrements the ESP
to make space on the
stack

● Arguments are pushed
in reverse order

EBP

ESP
EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

80

caller stack frame

2

1

RIP of callee

2. Push old EIP (RIP) on the
stack
3. Move EIP

● The call instruction
does 2 things

● First, it pushes the
current value of EIP (the
address of the next
instruction in caller) on
the stack.

● The saved EIP value on
the stack is called the
RIP (return instruction
pointer).

● Second, it changes EIP
to point to the instructions
of the callee.

EBP

ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

81

caller stack frame

2

1

RIP of callee
Function prologue

● The next 3 steps set
up a stack frame for
the callee function.

● These instructions are
sometimes called the
function prologue,
because they appear
at the start of every
function.

EBP

ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

82

caller stack frame

2

1

RIP of callee

SFP of callee

4. Push old EBP (SFP) on
the stack

● We need to restore the
value of the EBP when
returning, so we push
the current value of the
EBP on the stack.

● The saved value of the
EBP on the stack is
called the SFP (saved
frame pointer).

EBP

ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

83

caller stack frame

2

1

RIP of callee

SFP of callee

5. Move EBP

● This instruction moves
the EBP down to
where the ESP is
located.

EBP ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

84

caller stack frame

2

1

RIP of callee

SFP of callee

6. Move ESP

● This instruction moves
esp down to create
space for a new stack
frame.

EBP
ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

85

caller stack frame

2

1

RIP of callee

SFP of callee

local

7. Execute the function

● Now that the stack
frame is set up, the
function can begin
executing.

● This function just
returns 42, so we put
42 in the EAX register.
(Recall the return
value is placed in
EAX.)

EBP
ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

86

caller stack frame

2

1

RIP of callee

SFP of callee

local

Function epilogue
leave
ret

● The next 3 steps
restore the caller’s
stack frame.

● These instructions are
sometimes called the
function epilogue,
because they appear
at the end of every
function.

● Sometimes the mov
and pop instructions
are replaced with the
leave instruction.

EBP
ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

87

caller stack frame

2

1

RIP of callee

SFP of callee

local

8. Move ESP

● This instruction moves
the ESP up to where
the EBP is located.

● This effectively deletes
the space allocated for
the callee stack frame.

ESP EBP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

88

caller stack frame

2

1

RIP of callee

SFP of callee

local

9. Pop (restore) old EBP
(SFP)

● The pop instruction
puts the SFP (saved
EBP) back in EBP.

● It also increments ESP
to delete the popped
SFP from the stack.

EBP

ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

89

caller stack frame

2

1

RIP of callee

SFP of callee

local

10. Pop (restore) old EIP
(RIP)

● The ret instruction
acts like pop %eip.

● It puts the next value
on the stack (the RIP)
into the EIP, which
returns program
execution to the caller.

● It also increments ESP
to delete the popped
RIP from the stack.

EBP

ESP EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

caller:
 ...
 push $2
 push $1
 call callee
 add $8, %esp
 ...

callee:
 push %ebp
 mov %esp, %ebp
 sub $4, %esp

 mov $42, %eax

 mov %ebp, %esp
 pop %ebp
 ret

x86 Function Call

90

caller stack frame

2

1

RIP of callee

SFP of callee

local

11. Remove arguments
from stack

● Back in the caller, we
increment ESP to
delete the arguments
from the stack.

● The stack has returned
to its original state
before the function
call!

EBP
ESP

EIP

void caller(void) {
 callee(1, 2);
}

int callee(int a, int b) {
 int local;
 return 42;
}

Computer Science 161

Summary: x86 Assembly and Call Stack

● C memory layout
○ Code section: Machine code (raw bits) to be executed
○ Static section: Static variables
○ Heap section: Dynamically allocated memory (e.g. from malloc)
○ Stack section: Local variables and stack frames

● x86 registers
○ EBP register points to the top of the current stack frame
○ ESP register points to the bottom of the stack
○ EIP register points to the next instruction to be executed

● x86 calling convention
○ When calling a function, the old EIP (RIP) is saved on the stack
○ When calling a function, the old EBP (SFP) is saved on the stack
○ When the function returns, the old EBP and EIP are restored from the stack

91

