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4. Mitigating Memory-Safety Vulnerabilities

4.1. Use a memory-safe language

Some modern languages are designed to be intrinsically memory-safe, no matter what the
programmer does. Java, Python, Go, Rust, Swift, and many other programming languages include a
combination of compile-time and runtime checks that prevent memory errors from occurring. Using
a memory safe language is the only way to stop 100% of memory safety vulnerabilities. In an ideal
world, everyone would program in memory-safe languages and buffer overflow vulnerabilities
would no longer exist. However, because of legacy code and perceived! performance concerns,
memory-unsafe languages such as C are still prevalent today.

4.2. Writing memory-safe code

One way to ensure memory safety is to carefully reason about memory accesses in your code, by
defining pre-conditions and post-conditions for every function you write and using invariants to
prove that these conditions are satisfied. Although it is a good skill to have, this process is
painstakingly tedious and rarely used in practice, so it is no longer in scope for this class. If you'd like
to learn more, see this lecture from David Wagner: video, slides.

Another example of defending against memory safety vulnerabilities is writing memory-safe code
through defensive programming and using safe libraries. Defensive programming is very similar to
defining pre and post conditions for every written function, wherein you always add checks in your
code just in case something could go wrong. For example, you would always check that a pointer is
not null before dereferencing it, even if you are sure that the pointer is always going to be valid.
However, as mentioned earlier, this relies a lot on programmer discipline and is very tedious to
properly implement. As such, a more common method is to use safe libraries, which, in turn, use
functions that check bounds so you don’t have to. For example, using fgets instead of gets, strncpy
or strlcpy instead of strcpy, and snprintf instead of sprintf, are all steps towards making your code

slightly more safe.

4.3. Building secure software



Yet another way to defend your code is to use tools to analyze and patch insecure code. Utilizing
run-time checks that do automatic bound-checking, for example is an excellent way to help your
code stay safe. If your check fails, you can direct it towards a controlled crash, ensuring that the
attacker does not succeed. Hiring someone to look over your code for memory safety errors, though
expensive, can prove to be extremely beneficial as well. You can also probe your own system for
vulnerabilities, by subjecting your code to thorough tests. Fuzz testing, or testing with random
inputs, testing corner cases, and using tools like Valgrind (to detect memory leaks), are all excellent
ways to help test your code. Though it is pretty difficult to know whether you have tested your code

“enough” to deem it safe, there are several code-coverage tools that can help you out.

4.4. Exploit mitigations

Sometimes you might be forced to program in a memory-unsafe language, and you cannot reason
about every memory access in your code. For example, you might be asked to update an existing C
codebase that is so large that you cannot go through and reason about every memory access. In
these situations, a good strategy is to compile and run code with code hardening defenses to make
common exploits more difficult.

Code hardening defenses are mitigations: they try to make common exploits harder and cause
exploits to crash instead of succeeding, but they are not foolproof. The only way to prevent all
memory safety exploits is to use a memory-safe language. Instead, these mitigations are best
thought of as defense-in-depth: they cannot prevent all attacks, but by including many different
defenses in your code, you can prevent more attacks. Over the years, there has been a back-and-
forth arms race between security researchers developing new defenses and attackers developing
new ways to subvert those defenses.

The rest of this section goes into more detail about some commonly-used code hardening defenses,
and techniques for subverting those defenses. In many cases, using multiple mitigations produces a
synergistic effect: one mitigation on its own can be bypassed, but a combination of multiple
mitigations forces an attacker to discover multiple vulnerabilities in the target program.

4.5. Mitigation: Non-executable pages

Many common buffer overflow exploits involve the attacker writing some machine code into
memory, and then redirecting the program to execute that injected code. For example, one of the
stack smashing attacks in the previous section ( [shellcode] + [4 bytes of garbage] + [address of buf])
involves the attacker writing machine code into memory and overwriting the rip to cause the
program to execute that code.



One way to defend against this category of attacks is to make some portions of memory non-
executable. What this means is that the computer should not interpret any data in these regions as
CPU instructions. You can also think of it as not allowing the eip to ever contain the address of a

non-executable part of memory.

Modern systems separate memory into pages in order to support virtual memory (see 61C or 162 to
learn more). To defend against memory safety exploits, each page of memory is set to either be
writable or executable, but not both. If the user can write to a page in memory, then that page of
memory cannot be interpreted as machine instructions. If the program can execute a page of

memory as machine instructions, then the user cannot write to that page.

This defense stops the stack smashing attack in the previous section where the attacker wrote
machine code into memory. Because the attacker wrote machine code to a page in memory, that

page cannot be executed as machine instructions, so the attack no longer works.

This defense has several names in practice, including WAX (Write XOR Execute), DEP (Data Execution
Prevention), and the NX bit (no-execute bit).

4.6. Subverting non-executable pages: Return into libc

Non-executable pages do not stop an attacker from executing existing code in memory. Most C
programs import libraries with thousands or even million lines of instructions. All of these
instructions are marked as executable (and non-writable), since the programmer may want to call
these functions legitimately.

An attacker can exploit this by overwriting the rip with the address of a C library function. For
example, the execv function lets the attacker start executing the instructions of some other

executable.

Some of these library functions may take arguments. For example, execv takes a string with the
filename of the program to execute. Recall that in x86, arguments are passed on the stack. This
means that an attacker can carefully place the desired arguments to the library function in the right
place on the stack, so that when the library function starts to execute, it will look on the stack for
arguments and find the malicious argument placed there by the attacker. The argument is not being
run as code, so non-executable pages will not stop this attack.

4.7. Subverting non-executable pages: Return-oriented
programming



We can take this idea of returning to already-loaded code and extend it further to now execute
arbitrary code. Return-oriented programming is a technique that overwrites a chain of return
addresses starting at the RIP in order to execute a series of "ROP gadgets” which are equivalent to
the desired malicious code. Essentially, we are constructing a custom shellcode using pieces of code
that already exist in memory. Instead of executing an existing function, like we did in “Return to libc”,
with ROP you can execute your own code by simply executing different pieces of different code. For
example, imagine we want to add 4 to the value currently in the EDX register as part of a larger
program. In loaded memory, we have the following functions:

foo:

0x4005al <foo+33> mov %edx, %eax
0x4005a3 <foo+35> leave

0x4005a4 <foo+36> ret

bar:

0x400604 <bar+20> add $0x4, %eax
0x400608 <bar+24> pop %ebx
0x40060a <bar+26> leave

0x40060b <bar+27> ret

To emulate the add $ex4, %edx instruction, we could move the value in EDX to EAX using the gadget
in foo and then add 4 to EAX using the gadget in bar! If we set the first return address to exeeseesa1
and the second return address to exeeseeses, we produce the desired result. Each time we jump to
ROP gadget, we eventually execute the ret instruction and then pop the next return address off the
stack, jumping to the next gadget. We just have to keep track that our desired value is now in a
different register, and because we execute a pop %ebx instruction in bar before we return, we also
have to remember that the value in EBX has been updated after executing these gadgets—but these
are all behaviors that we can account for using standard compiler techniques. In fact, so-called "ROP
compilers” exist to take an existing vulnerable program and a desired execution flow and generate a
series of return addresses.

The general strategy for executing ROPs is to write a chain of return addresses at the RIP to achieve
the behavior that we want. Each return address should point to a gadget, which is a small set of
assembly instructions that already exist in memory and usually end in a ret instruction (note that

gadgets are not functions, they don’t need to start with a prologue or end with an epilogue!). The



gadget then executes its instructions and ends with a ret instruction, which tells the code to jump

to the next address on the stack, thus allowing us to jump to the next gadget!

If the code base is big enough, meaning that the code imports enough libraries, there are usually
enough gadgets in memory for you to be able to run any shellcode that you want. In fact, ROP
compilers exist on the Internet that will automatically generate an ROP chain for you based on a
target binary and desired malicious code! ROP has become so common that non-executable pages
are no longer a huge issue for attackers nowadays; while having writable and executable pages
makes an attacker's life easier, not a lot of effort has to be put in to subvert this defense mechanism.

4.8. Mitigation: Stack canaries

In the old days, miners would protect themselves against toxic gas buildup in the mine by bringing a
caged canary into the mine. These particularly noisy birds are also sensitive to toxic gas. If toxic gas
builds up in the mine, the canary dies first, which gives the miners a warning sign that the air is toxic
and they should evacuate immediately. The canary in the coal mine is a sacrificial animal: the miners
don't expect it to survive, but its death acts as a warning to save the lives of the miners.

We can use this same idea to prevent against buffer overflow attacks. When we call a function, the
compiler places a known dummy value, the stack canary, on the stack. This canary value is not used
by the function at all, so it should stay unchanged throughout the duration of the function. When
the function returns, the compiler checks that the canary value has not been changed. If the canary
value has changed, then just like the canary in the mine dying, this is evidence that something bad

has happened, and the program will crash before any further damage is done.

Like the canary in the coal mine, the stack canary is a sacrifical value: it has no purpose in the
function execution and nothing bad happens if it is changed, but the canary changing acts as a
warning that someone may be trying to exploit our program. This warning lets us safely crash the

program instead of allowing the exploit to succeed.

The stack canary uses the fact that many common stack smashing attacks involve overflowing a local
variable to overwrite the saved registers (sfp and rip) directly above. These attacks often write to
consecutive, increasing addresses in memory, without any gaps. In other words, if the attacker starts
writing at a buffer and wants to overwrite the rip, they must overwrite everything in between the
buffer and the rip.

The stack canary is placed directly above the local variables and directly below the saved registers
(sfp and rip):



rip

sfp

stack canary

local variables

Suppose an attacker wants to overflow a local variable to overwrite the rip on the stack, and the
vulnerability only allows the attacker to write to consecutive, increasing addresses in memory. Then
the attacker must overwrite the stack canary before overwriting the rip, since the rip is located above
the buffer in the stack.

Before the function returns and starts executing instructions at the rip, the compiler will check
whether the canary value is unchanged. If the attacker has attempted to overwrite the rip, they will
have also changed the canary value. The program will conclude that something bad is happening
and crash before the attacker can take control. Note that the stack canary detects an attack before
the function returns.

The stack canary is a random value generated at runtime. The canary is 1 word long, so it is 32 bits
long in 32-bit architectures. In Project 1, the canary is 32 completely random bits. However, in
reality, stack canaries are usually guaranteed to contain a null byte (usually as the first byte). This lets
the canary defend against string-based memory safety exploits, such as vulnerable calls to strcpy
that read or write values from the stack until they encounter a null byte. The null byte in the canary

stops the strcpy call before it can copy past the canary and affect the rip.

The canary value changes each time the program is run. If the canary was the same value each time
the program was run, then the attacker could run the program once, write down the canary value,
then run the program again and overwrite the canary with the correct value. Within a single run of
the program, the canary value is usually the same for each function on the stack.

Modern compilers automatically add stack canary checking when compiling C code. The
performance overhead from checking stack canaries is negligible, and they defend against many of
the most common exploits, so there is really no reason not to include stack canaries when

programming in a memory-unsafe language.

4.9. Subverting stack canaries



Stack canaries make buffer overflow attacks harder for an attacker, but they do not defend programs

against all buffer overflow attacks. There are many exploits that the stack canary cannot detect:

 Stack canaries can't defend against attacks outside of the stack. For example, stack canaries do

nothing to protect vulnerable heap memory.

 Stack canaries don't stop an attacker from overwriting other local variables. Consider the
authenticated example from the previous section. An attacker overflowing a buffer to overwrite

the authenticated variable never actually changes the canary value.

+  Some exploits can write to non-consecutive parts of memory. For example, format string
vulnerabilities let an attacker write directly to the rip without having to overwrite everything
between a local variable and the rip. This lets the attacker write "around" the canary and

overwrite the rip without changing the value of the canary.

Additionally, there are several techniques for defeating the stack canary. These usually involve the
attacker modifying their exploit to overwrite the canary with its original value. When the program

returns, it will see that the canary is unchanged, and the program won’t detect the exploit.

Guess the canary: On a 32-bit architecture, the stack canary usually only has 24 bits of entropy
(randomness), because one of the four bytes is always a null byte. If the attacker runs the program

with an exploit, there is a roughly 1 in 224

chance that the the value the attacker is overwriting the
canary with matches the actual canary value. Although the probability of success is low on one try,
the attacker can simply run the program 224 times and successfully exploit the program at least once

with high probability.

2% times. If

Depending on the setting, it may be easy or hard to run a program and inject an exploit
each try takes 1 second, the attacker would need to try for over 100 days before they succeed. If the
program is configured to take exponentially longer to run each time the attacker crashes it, the
attacker might never be able to try enough times to succeed. However, if the attacker can try

thousands of times per second, then the attacker will probably succeed in just a few hours.

On a 64-bit architecture, the stack canary has 56 bits of randomness, so it is significantly harder to
guess the canary value. Even at 1,000 tries per second, an attacker would need over 2 million years

on average to guess the canary!

Leak the canary: Sometimes the program has a vulnerability that allows the attacker to read parts
of memory. For example, a format string vulnerability might let the attacker print out values from
the stack. An attacker could use this vulnerability to leak the value of the canary, write it down, and
then inject an exploit that overwrites the canary with its leaked value. All of this can happen within a

single run of the program, so the canary value doesn’t change on program restart.



4.10. Mitigation: Pointer authentication

As we saw earlier, stack canaries help detect if an attacker has modified the rip or sfp pointers by
storing a secret value on the stack and checking if the secret value has been modified. As it turns
out, we can generalize this idea of using secrets on the stack to detect when an attacker modifies

any pointer on the stack.

Pointer authentication takes advantage of the fact that in a 64-bit architecture, many bits of the
address are unused. A 64-bit address space can support 264 bytes, or 18 exabytes of memory, but
we are a long way off from having a machine with this much memory. A modern CPU might support
a 4 terabyte address space, which means 42 bits are needed to address all of memory. This still

leaves 22 unused bits in every address and pointer (the top 22 bits in the address are always 0).

Consider using these unused bits to store a secret like the stack canary. Any time we need to store
an address on the stack, the CPU first replaces the 22 unused bits with some secret value, known as
the pointer authentication code, or PAC, before pushing the value on the stack. When the CPU reads
an address off the stack, it will check that the PAC is unchanged. If the PAC is unchanged, then the
CPU replaces the PAC with the original unused bits and uses the address normally. However, if the
PAC has been changed, this is a warning sign that the attacker has overwritten the address! The CPU
notices this and safely crashes the program.

As an example, suppose the rip of a function in a 64-bit system is exeeeeee1234567899 . The address
space for this architecture is 40 bits, which means the top 24 bits (3 bytes) are always 0 for every
address. Instead of pushing this address directly on the stack, the CPU will first replace the 3 unused
bytes with a PAC. For example, if the PAC is exaBcper, then the address pushed on the stack is

OxABCDEF1234567899 .

This address (with the secret value inserted) is invalid, and dereferencing it will cause the program to
crash. When the function returns and the program needs to start executing instructions at the rip,
the CPU will read this address from the stack and check that the PAC exaBcper is unchanged. If the
PAC is correct, then the CPU replaces the secret with the original unused bits to make the address

valid again. Now the CPU can start executing instructions at the original rip exee00001234567899 .

Now, an attacker trying to overwrite the rip would need to know the PAC in order to overwrite the
rip with the address of some attacker shellcode. If the attacker overwrites the PAC with an incorrect

value, the CPU will detect this and crash the program.

We can strengthen this defense even further. Since it is the CPU'’s job to add and check the PAC, we
can ask the CPU to use a different PAC for every pointer stored on the stack. However, we don't
want to store all these PACs on the CPU, so we'll use some special math to help us generate secure
PACs on the fly.



Consider a special function f(KEY, ADDRESS). The function f takes a secret key KEY and an
address ADDRESS, and outputs a PAC by performing some operation on these two inputs. This
function is deterministic, which means if we supply the same key and address twice, it will output the
same secret value twice. This function is also secure: an attacker who doesn’t know the value of KEY

cannot output secret values of their own.?

Now, instead of using the same PAC for every address, we can generate a different PAC for each
address we store in memory. Every time an address needs to be stored in memory, the CPU runs f
with the secret key and the address to generate a unique secret value. Every time an address from
memory needs to be dereferenced, the CPU runs f again with the secret key and the address to re-
generate the PAC, and checks that the generated value matches the value in memory. The CPU only
has to remember the secret key, because all the secret values can be re-generated by running f

again with the key and the address.

Using a different PAC for every address makes this defense extremely strong. An attacker who can
write to random parts of memory can defeat the stack canary, but cannot easily defeat pointer
authentication: they could try to leave the PAC untouched, but because they've changed the
address, the old secret value will no longer check out. The CPU will run f on the attacker-generated
address, and the output will be different from the old secret value (which was generated by running
f on the original address). The attacker also cannot generate the correct secret value for their
malicious address, because they don't know what the secret key is. Finally, an attacker could try to
leak some addresses and secret values from memory, but knowing the PACs doesn't help the
attacker generate a valid PAC for their chosen malicious address.

With pointer authentication enabled, an attacker is never able to overwrite pointers on the stack
(including the rip) without generating the corresponding secret for the attacker’s malicious address.
Without knowing the key, the attacker is forced to guess the correct secret value for their address.

For a 20-bit secret, the attacker has a 1 in 220 chance of success.

Another way to subvert pointer authentication is to find a separate vulnerability in the program that
allows the attacker to trick the program into creating a validated pointer. The attacker could also try
to discover the secret key stored in the CPU, or find a way to subvert the function f used to

generate the secret values.

4.11. Mitigation: Address Space Layout Randomization (ASLR)

Recall the stack smashing attacks from the previous section, where we overwrote the rip with the
address of some malicious code in memory. This required knowing the exact address of the start of



the malicious code. ASLR is a mitigation that tries to make predicting addresses in memory more
difficult.

Although we showed that C memory is traditionally arranged with the code section starting at the
lowest address and the stack section starting at the highest address, nothing is stopping us from
shifting or rearranging the memory layout. With ASLR, each time the program is run, the beginning
of each section of memory is randomly chosen. Also, if the program imports libraries, we can also

randomize the starting addresses of each library’s source code.

ASLR causes the absolute addresses of variables, saved registers (sfp and rip), and code instructions
to be different each time the program is run. This means the attacker can no longer overwrite some
part of memory (such as the rip) with a constant address. Instead, the attacker has to guess the
address of their malicious instructions. Since ASLR can shuffle all four segments of memory,
theoretically, certain attacks can be mitigated. By randomizing the stack, the attacker cannot place
shellcode on the stack without knowing the address of the stack. By randomizing the heap, the
attacker, similarly, cannot place shellcode on the heap without knowing the address of the heap.
Finally, by randomizing the code, the attacker cannot construct an ROP chain or a return-to-libc
attack without knowing the address of the code.

There are some constraints to randomizing the sections of memory. For example, segments usually
need to start at a page boundary. In other words, the starting address of each section of memory

needs to be a multiple of the page size (typically 4096 bytes in a 32-bit architecture).

Modern systems can usually implement ASLR with minimal overhead because they dynamically link

libraries at runtime, which requires each segment of memory to be relocatable.

4.12. Subverting ASLR

The two main ways to subvert ASLR are similar to the main ways to subvert the stack canary: guess
the address, or leak the address.

Guess the address: Because of the constraints on address randomization, a 32-bit system will
sometimes only have around 16 bits of entropy for address randomization. In other words, the
attacker can guess the correct address with a 1 in 210 probability, or the attacker can try the exploit
216 times and expect to succeed at least once. This is less of a problem on 64-bit systems, which
have more entropy available for address randomization.

Like guessing the stack canary, the feasibility of guessing addresses in ASLR depends on the attack
setting. For example, if each try takes 1 second, then the attacker can make 2'¢ attempts in less than



a day. However, if each try after a crash takes exponentially longer, 216 attempts may become
infeasible.

Leak the address: Sometimes the program has a vulnerability that allows the attacker to read parts
of memory. For example, a format string vulnerability might let the attacker print out values from
the stack. The stack often stores absolute addresses, such as pointers and saved registers (sfp and
rip). If the attacker can leak an absolute address, they may be able to determine the absolute

address of other parts of memory relative to the absolute address they leaked.

Note that ASLR randomizes absolute addresses by changing the start of sections of memory, but it
does not randomize the relative addresses of variables. For example, even if ASLR is enabled, the rip
will still be 4 bytes above the sfp in a function stack frame. This means that an attacker who leaks the
absolute address of the sfp could deduce the address of the rip (and possibly other values on the
stack).

4.13. Combining Mitigations

We can use multiple mitigations together to force the attacker to find multiple vulnerabilities to
exploit the program; this is a process known as synergistic protection, where one mitigation helps
strengthen another mitigation. For example, combining ASLR and non-executable pages results in
an attacker not being able to write their own shellcode, because of non-executable pages, and not
being able to use existing code in memory, because they don't know the addresses of that code
(ASLR). Thus, to defeat ASLR and non-executable pages, the attacker needs to find two
vulnerabilities. First, they need to find a way to leak memory and reveal the address location (to
defeat ASLR). Next, they need to find a way to write to memory and write an ROP chain (to defeat

non-executable pages).

1 The one real performance advantage C has over a garbage collected language like Go is a far
more deterministic behavior for memory allocation. But with languages like Rust, which are safe
but not garbage collected, this is no longer an advantage for C.

2 This function is called a MAC (message authentication code), and we will study it in more detail
in the cryptography unit.



