Computer Security

Cryptography / 5. Introduction to Cryptography

5. Introduction to Cryptography

5.1. Disclaimer: Don’t try this at home!

In this class, we will teach you the basic building blocks of cryptography, and in particular, just
enough to get a feeling for how they work at a conceptual level. Understanding cryptography at a

conceptual level will give you good intuition for how industrial systems use cryptography in practice.

However, cryptography in practice is very tricky to get right. Actual real-world cryptographic
implementations require great attention to detail and have hundreds of possible pitfalls. For
example, private information might leak out through various side-channels, random number
generators might go wrong, and cryptographic primitives might lose all security if you use them the
wrong way. We won't have time to teach all of those details and pitfalls to you in CS 161, so you

should never implement your own cryptography using the algorithms we teach you in this class.

Instead, the cryptography we show you in this class is as much about educating you as a consumer
as educating you as an engineer. If you find yourself needing an encrypted connection between two
computers, or if you need to send an encrypted message to another person, you should use existing
well-vetted cryptographic tools. However, you will often be faced with the problem of
understanding how something is supposed to work. You might also be asked to evaluate the
difference between alternatives. For that, you will need to understand the underlying cryptographic
engineering involved. Similarly, there are sometimes applications that take advantage of
cryptographic primitives in non-cryptographic ways, so it is useful to know the primitives. You never
know when you might need a hash, an HMAC, or a block cipher for a non-security task that takes
advantage of their randomness properties.

In summary, know that we're going to teach you just enough cryptography to be dangerous, but not

enough to implement industrial-strength cryptography in practice.

5.2. Brief History of Cryptography

The word “cryptography” comes from the Latin roots crypt, meaning secret, and graphia, meaning

writing. So cryptography is quite literally the study of how to write secret messages.

Schemes for sending secret messages go back to antiquity. 2,000 years ago, Julius Caesar employed
what's today referred to as the “Caesar cypher,” which consists of permuting the alphabet by shifting
each letter forward by a fixed amount. For example, if Caesar used a shift by 3 then the message
"cryptography” would be encoded as “fubswrjudskb”. With the development of the telegraph
(electronic communication) during the 1800s, the need for encryption in military and diplomatic
communications became particularly important. The codes used during this “pen and ink” period
were relatively simple since messages had to be decoded by hand. The codes were also not very
secure, by modern standards.

The second phase of cryptography, the “mechanical era,” was the result of a German project to
create a mechanical device for encrypting messages in an unbreakable code. The resulting Enigma
machine was a remarkable feat of engineering. Even more remarkable was the massive British effort
during World War Il to break the code. The British success in breaking the Enigma code helped
influence the course of the war, shortening it by about a year, according to most experts. There were
three important factors in the breaking of the Enigma code. First, the British managed to obtain a
replica of a working Enigma machine from Poland, which had cracked a simpler version of the code.
Second, the Allies drew upon a great deal of brainpower, first with the Poles, who employed a large
contingent of mathematicians to crack the structure, and then from the British, whose project
included Alan Turing, one of the founding fathers of computer science. The third factor was the
sheer scale of the code-breaking effort. The Germans figured that the Enigma was well-nigh
uncrackable, but what they didn’t figure on was the unprecedented level of commitment the British
poured into breaking it, once codebreakers made enough initial progress to show the potential for
success. At its peak, the British codebreaking organization employed over 10,000 people, a level of
effort that vastly exceeded anything the Germans had anticipated. They also developed
electromechanical systems that could, in parallel, search an incredible number of possible keys until
the right one was found.

Modern cryptography is distinguished by its reliance on mathematics and electronic computers. It
has its early roots in the work of Claude Shannon following World War Il. The analysis of the one-
time pad (discussed in the next chapter) is due to Shannon. The early 1970s saw the introduction of
a standardized cryptosystem, DES, by the National Institute for Standards in Technology (NIST). DES
answered the growing need for digital encryption standards in banking and other businesses. The
decade starting in the late 1970s then saw an explosion of work on a computational theory of

cryptography.

5.3. Definitions

Intuitively, we can see that the Caesar cypher is not secure (try all 26 possible shifts and you'll get

the original message back), but how can we prove that it is, in fact, insecure? To formally study

cryptography, we will have to define a mathematically rigorous framework that lets us analyze the

security of various cryptographic schemes.

The rest of this section defines some important terms that will appear throughout the unit.

5.4. Definitions: Alice, Bob, Eve, and Mallory

The most basic problem in cryptography is one of ensuring the security of communications across
an insecure medium. Two recurring members of the cast of characters in cryptography are Alice and
Bob, who wish to communicate securely as though they were in the same room or were provided
with a dedicated, untappable line. However, they only have available a telephone line or an Internet
connection subject to tapping by an eavesdropping adversary, Eve. In some settings, Eve may be
replaced by an active adversary Mallory, who can tamper with communications in addition to
eavesdropping on them.

The goal is to design a scheme for scrambling the messages between Alice and Bob in such a way
that Eve has no clue about the contents of their exchange, and Mallory is unable to tamper with the
contents of their exchange without being detected. In other words, we wish to simulate the ideal

communication channel using only the available insecure channel.

5.5. Definitions: Keys
The most basic building block of any cryptographic system (or cryptosystem) is the key. The key is a

secret value that helps us secure messages. Many cryptographic algorithms and functions require a

key as input to lock or unlock some secret value.

There are two main key models in modern cryptography. In the symmetric key model, Alice and Bob
both know the value of a secret key, and must secure their communications using this shared secret
value. In the asymmetric key model, each person has a secret key and a corresponding public key.

You might remember RSA encryption from CS 70, which is an asymmetric-key encryption scheme.

5.6. Definitions: Confidentiality, Integrity, Authenticity

In cryptography, there are three main security properties that we want to achieve.

Confidentiality is the property that prevents adversaries from reading our private data. If a message
is confidential, then an attacker does not know its contents. You can think about confidentiality like
locking and unlocking a message in a lockbox. Alice uses a key to lock the message in a box and

then sends the message (in the locked box) over the insecure channel to Bob. Eve can see the locked

box, but cannot access the message inside since she does not have a key to open the box. When

Bob receives the box, he is able to unlock it using the key and retrieve the message.

Most cryptographic algorithms that guarantee confidentiality work as follows: Alice uses a key to
encrypt a message by changing it into a scrambled form that the attacker cannot read. She then
sends this encrypted message over the insecure channel to Bob. When Bob receives the encrypted
message, he uses the key to decrypt the message by changing it back into its original form. We
sometimes call the message plaintext when it is unencrypted and ciphertext when it is encrypted.
Even if the attacker can see the encrypted ciphertext, they should not be able to decrypt it back into
the corresponding plaintext—-only the intended recipient, Bob, should be able to decrypt the
message.

Integrity is the property that prevents adversaries from tampering with our private data. If a message

has integrity, then an attacker cannot change its contents without being detected.

Authenticity is the property that lets us determine who created a given message. If a message has
authenticity, then we can be sure that the message was written by the person who claims to have

written it.

You might be thinking that authenticity and integrity seem very closely related, and you would be
correct; it makes sense that before you can prove that a message came from a particular person, you
first have to prove that the message was not changed. In other words, before you can prove
authenticity, you first have to be able to prove integrity. However, these are not identical properties
and we will take a look at some edge cases as we delve further into the cryptographic unit.

You can think about cryptographic algorithms that ensure integrity and authenticity as adding a seal
on the message that is being sent. Alice uses the key to add a special seal, like a piece of tape on the
envelope, on the message. She then sends the sealed message over the unsecure channel. If Mallory
tampers with the message, she will break the tape on the envelope, and therefore break the seal.
Without the key, Mallory cannot create her own seal. When Bob receives the message, he checks

that the seal is untampered before unsealing the envelope and revealing the message.

Most cryptographic algorithms that guarantee integrity and authenticity work as follows: Alice
generates a tag or a signature on a message. She sends the message with the tag to Bob. When Bob
receives the message and the tag, he verifies that the tag is valid for the message that was sent. If
the attacker modifies the message, the tag should no longer be valid, and Bob’s verification will fail.
This will let Bob detect if the message has been altered and is no longer the original message from
Alice. The attacker should not be able to generate valid tags for their malicious messages.

A related property that we may want our cryptosystem to have is deniability. If Alice and Bob
communicate securely, Alice might want to publish a message from Bob and show it to a judge,
claiming that it came from Bob. If the cryptosystem has deniability, there is no cryptographic proof
available to guarantee that Alice’s published message came from Bob. For example, consider a case
where Alice and Bob use the same key to generate a signature on a message, and Alice publishes a
message with a valid signature. Then the judge cannot be sure that the message came from Bob-the

signature could have plausibly been created by Alice.

5.7: Overview of schemes

We will look at cryptographic primitives that provide confidentiality, integrity, and authentication in

both the symmetric-key and asymmetric-key settings.

Symmetric-key Asymmetric-key
] o Block ciphers with chaining modes Public-key encryption(e.g., El Gamal,
Confidentiality .
(e.g., AES-CBC) RSA encryption)
Integrity and L ,
MACs (e.g., AES-CBC-MACQ) Digital signatures (e.g., RSA signatures)

authentication

In symmetric-key encryption, Alice uses her secret key to encrypt a message, and Bob uses the same

secret key to decrypt the message.

In public-key encryption, Bob generates a matching public key and private key, and shares the
public key with Alice (but does not share his private key with anyone). Alice can encrypt her message
under Bob's public key, and then Bob will be able to decrypt using his private key. If these schemes
are secure, then no one except Alice and Bob should be able to learn anything about the message

Alice is sending.

In the symmetric-key setting, message authentication codes (MACs) provide integrity and
authenticity. Alice uses the shared secret key to generate a MAC on her message, and Bob uses the
same secret key to verify the MAC. If the MAC is valid, then Bob can be confident that no attacker
modified the message, and the message actually came from Alice.

In the asymmetric-key setting, public-key signatures (also known as digital signatures) provide
integrity and authenticity. Alice generates a matching public key and private key, and shares the
public key with Bob (but does not share her private key with anyone). Alice computes a digital

signature of her message using her private key, and appends the signature to her message. When

Bob receives the message and its signature, he will be able to use Alice’s public key to verify that no

one has tampered with or modified the message, and that the message actually came from Alice.

We will also look at several other cryptographic primitives. These primitives don't guarantee
confidentiality, integrity, or authenticity by themselves, but they have desirable properties that will
help us build secure cryptosystems. These primitives also have some useful applications unrelated to

cryptography.

« Cryptographic hashes provide a one way digest: They enable someone to condense a long
message into a short sequence of what appear to be random bits. Cryptographic hashes are
irreversible, so you can’t go from the resulting hash back to the original message but you can
quickly verify that a message has a given hash.

+ Many cryptographic systems and problems need a lot of random bits. To generate these we use
a pseudo random number generator, a process which takes a small amount of true randomness
and stretches it into a long sequence that should be indistinguishable from actual random data.

« Key exchange schemes (e.g. Diffie-Hellman key exchange) allow Alice and Bob to use an insecure
communication channel to agree on a shared random secret key that is subsequently used for

symmetric-key encryption.

5.8. Definitions: Kerckhoff’s Principle

Let's now examine the threat model, which in this setting involves answering the question: How
powerful are the attackers Eve and Mallory?

To consider this question, recall Kerckhoff's principle from the earlier notes about security principles:

Cryptosystems should remain secure even when the attacker knows all internal details of the
system. The key should be the only thing that must be kept secret, and the system should be
designed to make it easy to change keys that are leaked (or suspected to be leaked). If your
secrets are leaked, it is usually a lot easier to change the key than to replace every instance of the
running software. (This principle is closely related to Shannon’s Maxim: Don't rely on security
through obscurity.)

Consistent with Kerckhoff's principle, we will assume that the attacker knows the encryption and
decryption algorithms." The only information the attacker is missing is the secret key(s).

5.9. Definitions: Threat models

When analyzing the confidentiality of an encryption scheme, there are several possibilities about

how much access an eavesdropping attacker Eve has to the insecure channel:

1 Eve has managed to intercept a single encrypted message and wishes to recover the plaintext

(the original message). This is known as a ciphertext-only attack.

2 Eve has intercepted an encrypted message and also already has some partial information about
the plaintext, which helps with deducing the nature of the encryption. This case is a known
plaintext attack. In this case Eve's knowledge of the plaintext is partial, but often we instead
consider complete knowledge of one instance of plaintext.

3 Eve can capture an encrypted message from Alice to Bob and re-send the encrypted message to
Bob again. This is known as a replay attack. For example, Eve captures the encryption of the
message “Hey Bob's Automatic Payment System: pay Eve $$100$” and sends it repeatedly to Bob
so Eve gets paid multiple times. Eve might not know the decryption of the message, but she can
still send the encryption repeatedly to carry out the attack.

4 Eve can trick Alice to encrypt arbitrary messages of Eve’s choice, for which Eve can then observe
the resulting ciphertexts. (This might happen if Eve has access to the encryption system, or can
generate external events that will lead Alice to sending predictable messages in response.) At
some other point in time, Alice encrypts a message that is unknown to Eve; Eve intercepts the
encryption of Alice’s message and aims to recover the message given what Eve has observed

about previous encryptions. This case is known as a chosen-plaintext attack.

5 Eve can trick Bob into decrypting some ciphertexts. Eve would like to use this to learn the
decryption of some other ciphertext (different from the ciphertexts Eve tricked Bob into
decrypting). This case is known as a chosen-ciphertext attack.

6 A combination of the previous two cases: Eve can trick Alice into encrypting some messages of
Eve's choosing, and can trick Bob into decrypting some ciphertexts of Eve's choosing. Eve would
like to learn the decryption of some other ciphertext that was sent by Alice. (To avoid making this
case trivial, Eve is not allowed to trick Bob into decrypting the ciphertext sent by Alice.) This case
is known as a chosen-plaintext/ciphertext attack, and is the most serious threat model.

Today, we usually insist that our encryption algorithms provide security against chosen-
plaintext/ciphertext attacks, both because those attacks are practical in some settings, and because
it is in fact feasible to provide good security even against this very powerful attack model.

However, for simplicity, this class will focus primarily on security against chosen-plaintext attacks.

1 The story of the Enigma gives one possible justification for this assumption: given how widely the
Enigma was used, it was inevitable that sooner or later the Allies would get their hands on an
Enigma machine, and indeed they did.

