

Q1 Fizzbuzz
13 Points

Homework assignments have instant feedback enabled. When
you click "Save Answer," if the answer is correct, you will see an
explanation.

You can resubmit as many times as you want until the due date.
After the due date, to avoid being marked late, do not submit
again.

This question shows you how to defeat stack canaries to exploit a
program. We recommend trying this question before doing
Project 1, Question 3.

You just finished implementing interactive fizzbuzz with a custom
error message, shown below:

void fizzbuzz (int *return code, char *error msg,
char *input) {

int x = atoi (input);
// C atoi returns an int if string can be converted
// or 0 otherwise
if (x == 0) {

*return code = OxBADCA7S5;

//it just has to be nonzero, right?

printf ("%s", error msgqg) ;
} else {
if (x $ 3 == 0){
printf("fizz");
}
if (x $ 5 == 0){

printf ("buzz") ;

if (x $ 3 !'=0 && x % 5 !=0){
printf ("sd", x);

}
printf ("\n") ;

int main () {
int return code = 0;
17

char error msg[100

char input[20];
gets (error msgqg) ;
while (has input()) {
gets (input) ;
fizzbuzz (&return code, error msg, input);

}

return return code;

Assume that this code runs with a completely random 32-bit stack
canary. The stack canary is a value placed between the saved ebp
and local variables. If the value of stack canary changes, the code
will crash before returning and prevent any malicious code from
being executed. This is potentially useful as an overflow from a
local buffer will overwrite the canary before overwriting the saved

eip.

Assume no other memory safety defenses, no exception handlers,
no callee saved registers, no compiler optimizations, and that
local variables are stored in the stack in order as they appear in
the code (for example in the nain frame recurn code Will be at a
higher memory address than input).

EvanBot believes that this code is vulnerable to a buffer overflow
attack, even with the stack canary enabled.

Q1.1
1 Point

EvanBot suggests first drawing a stack diagram. Remember to
include the stack canary in your diagram.

According to your stack diagram, which of the following are
vulnerable to being overwritten by user input as a result of the
gets calls, without causing the program to crash?

] intx

int return_code

K

char error_msg[100]

Ky

char input[20]

rip of main

rip of fizzbuzz

O g 0

None of the above

Q1.2
1 Point

EvanBot suggests finding the value of the stack canary for the
nain Stack frame before nain returns.

If we know the value of the stack canary, which of the following
are vulnerable to being overwritten by user input as a result of
the gets calls, without causing the program to crash?

] intx

int return_code

K

char error_msg[100]

Ky

char input[20]

K

rip of main

rip of fizzbuzz

O 0O

None of the above

Q1.3
1 Point

Recall that strings in C are null-terminated. When writing user
input to memory, gets automatically appends a null byte to the
end of the string. When printing out a string, princt dereferences
a pointer to the string (passed as an argument to princt) and
prints until it encounters a null byte.

Given this information, which of the following lines of code will
cause the canary to leak?

Hint: To leak the canary, the code must produce some sort of
output.

O int x = atoi (input);
@ printf ("%s", error msg);
O printf ("sd", x)

O gets (error msgqg);

O None of the above

Q1.4
1 Point

Provide an initial error msg and the first input that will reveal the
stack canary when the program is run.

Your goal is to remove all null bytes between the place where
princt Starts printing and the stack canary. Remember that
gets () automatically appends a null byte to the end of the string.

error msg = <'A' repeated times>

The first blank:

100

input = ' ', where input MUST be a number

Hint: What input causes the vulnerable line of code to run?

Q1.5
1 Point

What is the probability that this exploit works? The entire canary
value must be printed for the exploit to work.

Hint: Recall that the stack canary is four completely random bytes.

Q1.6
1 Point

Your code would not have been subject to the specific
vulnerability above if you used a different return code on error.
Which of the following return codes would have prevented the
exploit?

(] 0x900DBEEF
[] 0xDOODFACE
[OxFFFFFFFF

0xD00B1D00

Q1.7
1 Point

Give the second input that will cause a shell to spawn. You can
assume the nain function returns after this input. You have access
to following values:

e susrrcone, 65-byte set of instructions that spawns a shell.
e canzry, 4-byte value you found in the previous part

e mse uatn, 4-byte bottom (lowest) address of main stack frame,
after all local variables are initialized

* wsp r1zzBUZZ, 4-byte bottom (lowest) address of fizzbuzz stack frame,
after all local variables are initialized

If the value of the bytes don't matter for your input, please select

garbage instead of using one of the placeholders. (For example, if
you need 65 bytes of garbage, select "Bytes of garbage" and type

65 in the box instead of selecting suericope.)

Hint: It might help to refer back to the stack diagram for these
parts.

Note: If you choose one of the first four options, you may need to
put a space in the box for Gradescope to mark your answer
correct.

First, input:

@ SHELLCODE

O CANARY

O ESP_MAIN

O ESP_FIZZBUZZ

O Bytes of garbage (specify how many in the box below)

Q1.8
1 Point

Then input:

O SHELLCODE

O CANARY

O ESP_MAIN

O ESP_FIZZBUZZ

@® Bytes of garbage (specify how many in the box below)

Q1.9
1 Point

Then input:

O SHELLCODE

@ CANARY

O ESP_MAIN

O ESP_FIzzBUZZ

O Bytes of garbage (specify how many in the box below)

Q1.10
1 Point

Then input:

O SHELLCODE

O CANARY

O ESP_MAIN

O ESP_FIZZBUZZ

@® Bytes of garbage (specify how many in the box below)

Q1.1
1 Point

Then input:

O SHELLCODE

O CANARY

@ ESP_MAIN

O ESP_FIzzBUZZ

O Bytes of garbage (specify how many in the box below)

Q1.12
1 Point

Would your exploit still work if the whiie loop in main was
removed, so that multiple inputs required multiple executions of
the program?

O Yes, with no modifications

O Yes, with minor modifications

® No

Q1.13
1 Point

Would your exploit still work if non-executable pages (also known
as DEP, WAX, or the NX bit) were enabled?

O Yes, with no modifications

O Yes, with minor modifications

@® No

Q2 Printf Oracle
7 Points

Consider the following C snippet:

void oracle () {
char string[80];
fgets(string, 80, stdin);
printf (string) ;

int main () {
oracle () ;

return 0;

For all parts of this question, input is the standard input given by
the user when rgets is called. Assume there are no exception
handlers, no callee saved registers, and no variables are
optimized out.

No buffer overflow protection is enabled. This program is run on a
32-bit x86 machine.

Q2.1
1 Point

Which line of code is vulnerable?
O fgets(string, 80, stdin);

@ printf (string);

How should this line of code be fixed?
O fgets (string, sizeof (string), stdin);
O gets (string) ;

@ printf ("%s", string);

O printf ("%d", string);

Q2.2
1 Point

True or false: stack canaries will prevent an attacker from
exploiting this vulnerability.

O True
@ False

Q2.3
1 Point

Which inputs will cause the program to crash, with high
probability?

Hint: Which inputs involve dereferencing a pointer?

(] %c

O %d

%n

K

K

%s

%u

O 0O

%X

Q2.4
1 Point

Which inputs will cause the program to leak values from the
stack?

Hint: the inputs you chose in the previous part cause the program

to crash, so those won't cause the program to leak values from
the stack.

%C
%d
%n

%S

® O 0

%u

K

%X

Q2.5
1 Point

Which format type should an attacker use to read memory from
addresses outside the stack?

O %c

O %d

O %n

® %s

O %u

O %x

Q2.6
1 Point

Which format type should an attacker use to write to memory at
addresses outside the stack?

O %c
O %d
® %n
O %s
O %u
O %x

Q2.7
1 Point

Which of these inputs would cause oracie to print 100 characters
while still fitting in the 80 characters provided for input?

Hint: Take a look at ‘man 3 printt, Or the Wikipedia page on printf

format strings.

[J 'a'* 100

%100C

[J None of the above

Q3 AES-ENC
6 Points

EvanBot decides to create a new block cipher mode, called AES-
ENC (EvanBot Novel Cipher). It is defined as follows:

Ci = Ex(Ci-1) ® P,
Cy =1V

(Py, ..., P,) are the plaintext messages, E is block cipher
encryption with key K.

Q3.1
1 Point

Select the correct encryption diagram for AES-ENC.

O
%
$-P1 ?— P2 ?- P3
AES AES AES
Encryption Encryption Encryption
! ! l
C1 C2 C3
O
! §P2 %P3
AES AES AES
Encryption Encryption Encryption
) E: VE:
C1 C2 C3
®
v
d
AES AES AES
Encryption Encryption Encryption
P13 P24 P34
C1 c2 &2
O
A% —
I}) l
AES AES AES
Encryption Encryption Encryption
= i 73
P P2 c3

C1

C2

Q3.2
1 Point

Select the correct decryption diagram for AES-ENC.
O,

Vv ‘ —‘l
y 1
AES AES AES
Encryption Encryption Encryption

f—m—
P1

f—cz—
P2

f—cs
P3

IV -

! J l
AES AES AES
Encryption Encryption Encryption

C1v$ Czag c3 ;%
P1 P2
% ‘
{ 1
AES AES AES
Decryption Decryption Decryption

f——m—
P1

%s-cz—
P2

f—cs
P3

\Y] .

i Ik l
AES AES AES
Decryption Decryption Decryption
g—‘ 3— c3 4

C1 C2 P3

P

P2

Q3.3
1 Point

Is AES-ENC encryption parallelizable?
O Yes
@ No

How about decryption?

® Yes
O No

Q3.4
1 Point

As we saw (or will see) in discussion, AES-CBC is vulnerable to a
chosen plaintext attack when the IV which will be used to encrypt
the message is known in advance. Is AES-ENC vulnerable to the
same issue?

O Yes, because a specially crafted input can "cancel out" the IV.
O Yes, but not for the reason above.
@® No, because the IV passes through the AES encryption block.

O No, but not for the reason above.

Q3.5
1 Point

Suppose that Alice means to send the message (P, ..., P,) to
Bob using AES-ENC. By accident, Alice typos and encrypts

(P, P, ®1,Ps,...,P,) instead (i.e., she accidentally flips the
last bit of the second block).

Select the ciphertext block(s) that will NOT decrypt to correct
plaintext.

(] First block
Second block
(] Third block

[J Subsequent blocks

Q3.6
1 Point

Alice encrypts the message (P, . .., Ps). Unfortunately, the block
C5 of the ciphertext is lost in transmission, so that Bob receives
(Co, C4, Cs, Cy, Cs). Assuming that Bob knows that he is missing
the second ciphertext block C5, which blocks of the original
plaintext can Bob recover?

v P
O PR
OB
v P

Ps

Q4 Padding
5 Points

Recall that block ciphers can only encrypt messages of a fixed
size, which is called the block size. We know that we can use block
chaining modes (e.g. CBC mode) to deal with messages that are
longer than the block size, but they don't solve the problem of
messages whose lengths aren't an integer multiple of the block
size. So how do we make do? We add padding. For this question,
we'll assume that the block cipher we're using is AES, which uses
16-byte blocks.

Q4.1
1 Point

Consider a padding scheme that adds o's to the end of the
message until its length is a multiple of 16. For example, the
Message PANCAKES .

012345¢67
PANCAKES

would be padded to become:

01234567289 1011 12 13 14 15
PANCAKESOOO O O O O O

Can this padding scheme correctly pad and de-pad messages? (In
other words, if you pad a message and then de-pad it, will you get
the original message back?)

O Yes, for all messages

@ Yes, but not for all messages

O No

Q4.2
1 Point

Consider a padding scheme that takes the last byte of a message
and repeatedly appends copies of that byte until the message
length is a multiple of 16. For example, the message rancaxes:

01234567
PANCAKES

would be padded to become:

0123456789 1011 12 13 14 15
PANCAKESSSS S S S S S

Can this padding scheme correctly pad and de-pad messages? (In
other words, if you pad a message and then de-pad it, will you get
the original message back?)

O Yes, for all messages

@ Yes, but not for all messages

O No

Q4.3
1 Point

Consider another padding scheme: instead of padding with all o's,
the value of our pad is the number of bytes of padding that we
added. Since we need to add 8 bytes of padding, our message
rancakes Would be padded to become:

01234567829 1011 12 13 14 15
PANCAKESS888 8 8 8 8 8

Note that in if the message is a multiple of the block size, another
block with 16 1¢'s is added.

Can this padding scheme correctly pad and de-pad messages? (In
other words, if you pad a message and then de-pad it, will you get
the original message back?)

@ Yes, for all messages

O Yes, but not for all messages

O No

Q4.4
1 Point

Which of the following 16-byte messages have valid PKCS#7 (the
scheme from the previous part) padding? In other words, which
messages could we correctly de-pad?

EVANBOT999999999
[J EVANBOT123456789
EVANBOT987654321

EVANBOT987654322

Q4.5
1 Point

Suppose you are an attacker, and you intercept an unencrypted,
padded plaintext message.

Can you change the last byte to a constant value that guarantees
that the message has valid padding?

If yes, enter the constant value below (a number between 0 and
16). If no, type "No" below.

Q5 CBC Review
3 Points

Recall decryption in CBC mode. In particular, we are interested in
the decryption of a single block of plaintext — especially in the
temporary block state that occurs before the XOR:

Ciphertext C,_; Ciphertext C,
LITEPPPTTTTT]] LILEPTTTTTTTT]

l

block cipher
decryption D

/

Temporary state T,

Key ——

LITTTTTIPTTT 0]
Plaintext P,

Q5.1
1 Point

Which of these is a correct expression for 1;,?
® D(Cy)

O C,

O C-1

Q5.2
1 Point

Which of these is a correct expression for P,?

Cn_1® D(C,)
Cn—l 8% Tn
0O D(C,) @ C,

) D(Cn) @ D(Cnfl)

Q5.3
1 Point

At least one of your potential answers to the previous part should
give you an equation that relates P,, C,,_1, and T;,. Solve this
equation and find an expression for T}, in terms of P, and C,,_;.

OT,=C,®Cr-1
@Tn:Pn@Cn—l

Q6 Padding Oracles
4 Points

Next, let's introduce the concept of a padding oracle.

A padding oracle is a black-box function which takes as its input
some ciphertext c, and returns rrue if the (decrypted) ciphertext
is properly padded and ra1se otherwise. Note that the padding
oracle has access to the secret key k used for encryption and
decryption.

Assume you've intercepted a two-block ciphertext (IV, Cy, Cs),
and you have access to a padding oracle. This means you can
send the oracle arbitrary inputs, and it will decrypt your input
using k and truthfully report whether it is padded correctly.

For your convenience, here is the CBC diagram for a two-block
message.

Ciphertext C, Ciphertext C,
LITTTIPTTTTT] LLTTITTITTiTT]
C,[15] l C,[15]
Key block cipher

decryption D

/

Temporary state T,

T,[15]

LIT TP PP PPlry
: P,[15]
Plaintext P,

Q6.1
1 Point

Our goal for this question is to modify the ciphertext so that its
plaintext decryption has valid padding no matter what. One way
to do this is to modify the last byte of C7, which we will denote as
Ci[15].

Which modified value of C[15] will cause the padding oracle to
always report that the decryption has valid padding?

Hint: Use Q4.5 and Q5.2.
O ¢ [15]

O Ty[15]

O (Cy[15]

O T3[15]

O Ci[15] @1
OT15 @1

O Cy15] ® 1

® Tr[15] @ 1

Q6.2
1 Point

Let C[15] denote the modified ciphertext byte in the previous
part that always results in correct padding.

Which of these expressions evaluates to the value of P,[15], the
last byte of Py?

Hint: Start with your solution to the previous part, and use Q5.2 to
relate P,[15] to the equation you found in the previous part.

15] ® Cy[15] @
[15] @ C3[15] @
[15] @ C1[15] @
O Cq[15] @ C3[15] @
O C1[15] @ C}[15]
[15] @ C5[15]
[15] © C1[15]
[15] @ C5[15]

Q6.3
1 Point

Now let's modify the attack above to learn P,[14], the second-to-
last byte of P,. To do this, we'll modify C[14] and C1[15], the last
two bytes of Cf.

Which modified value of C[14] will cause the padding oracle to
always report that the decryption has valid padding?

Which modified value of C[15] will cause the padding oracle to
always report that the decryption has valid padding?

OTi15] @1
O Ty15] @ 1
O Ty[15] @ 2
® T5[15] & 2

Hint: The "something to think about later" part of the Q4.5 solution.

Q6.4
1 Point

Let C[14] and C[15] denote the modified ciphertext bytes in the

previous part that always results in correct padding.

Which of these expressions evaluates to the value of P[14], the
second-to-last byte of Py?

Q7 Feedback
0 Points

Optionally, feel free to include feedback. What's something we
could do to make the class better? Or, what did you find most
difficult or confusing from lectures or the rest of class, and what
would you like to see explained better? If you have feedback,
submit your comments here.

Your name will not be connected to any feedback you provide,
and anything you submit here will not affect your grade.

Homework 2

[Select each question to review feedback and grading details.

Student

Yiyun Chen

Total Points
38/ 38 pts

Question 1

Fizzbuzz

1.1

1.2

13

14

1.5

1.6

1.7

1.8

1.9

1.10

1.1

(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)
(no title)

(no title)

@® Graded

13/13 pts

1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt

1/1pt

Question 2
Printf Oracle

2.1 | (no title)
2.2 | (no title)
2.3 (no title)
2.4 (notitle)
2.5 | (no title)
2.6 (notitle)

2.7 (no title)

Question 3
AES-ENC

3.1 | (no title)
3.2 | (no title)
3.3 (notitle)
3.4 (notitle)
3.5 (no title)

3.6 (notitle)

Question 4

Padding

4.1 = (no title)
4.2 (no title)
4.3 (no title)
4.4 (no title)

4.5 (no title)

Question 5
CBC Review

51 (no title)
52 (no title)

53 (no title)

7/7 pts
1/1 pt

1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt

1/1 pt

6 /6 pts
1/1pt

1/1 pt
1/1 pt
1/1 pt
1/1 pt

1/1 pt

5/5 pts
1/1 pt

1/1 pt
1/1 pt
1/1 pt

1/1 pt

3/3pts
1/1pt

1/1 pt

1/1pt

Question 6

Padding Oracles 4/ 4 pts
6.1 | (no title) 1/1 pt
6.2 | (no title) 1/1pt
6.3 (no title) 1/1 pt
6.4 (no title) 1/1 pt
Question 7

Feedback 0/0 pts

