CS 161 Spring 2024

Project T / Question 6: Antares

Antares (Launched 2001)

* Username: antares
« » Click to reveal password:

« Points: 10 for code, 5 for writeup

Relevant lectures: 4 - Memory Safety Vulnerabilities Il

STORY

The exchange from Deneb was shocking. You realize the Jupiter orbiter may not be what you
once thought it was. You are left with no choice but to dig deeper. Antares is a Gobian targeting
satellite that is used to provide midcourse calibrations to the royal guard's anti-spacecraft
missiles. Your job is to hack into Antares, obtain the targeting data, and with it, what Gobians
knew about the orbiter.

In this question, we're going to walk you through using a format string vulnerability to redirect
execution to malicious shellcode.

Step 0: High-Level Overview

Our high-level goal is to redirect execution to our malicious shellcode. We have an arg file, which is

loaded into the argv parameter of main, and an env file, which is piped into standard input.

For this question, we place the shellcode in arg. Your first step is to find the address of this
shellcode: do so, and then write that address down - we'll need it later.

Remember, the shellcode itself should start with excdsg326a .

Step 1: Analyze the Code

At what line is the vulnerable printf call? Set a breakpoint at the vulnerable function call, and draw a
stack diagram up to that point. Below is a template you may use to write out a text-based stack
diagram - if you request help during office hours, this is the first thing that we'll want to see!

oxee000000 [[1[1[1

0x00000000 [

0x00000000 [

1l 1l 1[1 RIP of Main

1010 10]

Step 2: Quick Format String Review

A quick reminder about how format string vulnerabilities work: when you have a line of code that

looks like print(buf), where we control buf, you can pass format string specifiers into the user-

provided input. When the CPU sees a format string identifier being used, it expects arguments

located in incrementally increasing positions above the zeroth argument to printf (&buf, denoted

arge here), seen here on the stack as arg1, arg2, etc.

[10
[1I
[1I

It
i
Il
It
1T

1l
1l
1l
1l
10

1 <-- arg2

] <-- argl

] <-- argd (&buf)

] <-- RIP of printf

] <-- SFP of printf

Imagine that printf has a pointer that initially points at arg1. Every time it sees a format string

identifier, it moves that pointer up by four, thus “consuming” the argument located at the original

location of the pointer. For example, if we set buf to '%d%d', then printf would look at arg1 for the

first '%d', and arg2 for the second '%d' . Here are a few important format string specifiers you

should be aware of:

Specifier

%C

%<k>u

%s

%n

Description
Treats the corresponding arg as a VALUE. Print it as a character.

Treats the corresponding arg as a VALUE. Prints the corresponding arg as an unsigned integer
and adds whitespace in front to display a total of k characters. For example, printf("%7u\n", 123)
prints © 123", i.e. 4 spaces before 123 and 7 total characters.

Treats the corresponding arg as a POINTER. Dereference the pointer and print the resulting
value as a string.

Treats the corresponding arg as a POINTER. Write the number of bytes that have been currently
printed (as a four-byte number) to the memory address in the corresponding arg.

Specifier Description

Treats the corresponding arg as a POINTER. Write the number of bytes that have been currently
%hn

printed (as a two-byte number) to the memory address in the corresponding arg.

We often use specifiers that read values (e.g. %c, which reads a char) to “skip” arguments on the
stack. Why? Sometimes, we want to work our way up the stack until we reach a place that we have
write-access to (e.g. a buffer), so that we can use user-crafted inputs in our format string exploits. As
such, we may find ourselves using something like %' * __, which will walk up the stack and skip
past argi, arg2, etc.

Step 3: Analyzing our Write Vector

Ok, so what do we know at this point?

T We know that (a) we want to redirect execution to shellcode by setting the RIP of calibrate to a
shellcode address. This is our end goal.

2 We can use our write vector (the %hn in printf) to write numbers to certain locations at the stack.

That's great...but how do we use such a limited write vector (*%n* or '%hn*) to write an entire
memory address? We could try to convert the memory address to an integer (e.g. exbEADBEEF =>
3735928559) and print that many bytes, and then use %n to write that number to the stack. But
printing that many bytes would crash the program! Instead, we can break up our write into two
halves, and use the '%nhn' specifier instead to write one half at a time.

For example, if we're trying to write exrrFF1234 tO exFFFF5550, We can:

1T Write ex1234 to memory address exrrrrssse, and then...

2 Write exFrrF to memory address exFFFF5552
After these writes, the stack will look like the following:
OXFFFF5550 [??][??][??][??] (original)

OXFFFF5550 [34][12][??][??] (after first '%hn' write)

OXFFFF5550 [34][12][FF][FF] (after second '%hn' write)

Step 4: Attack

See the comments in the blocks to walk through the attack. Good luck!

Deliverables

« Two scripts, egg and arg

« A writeup.

