
Computer Science 161

Diffie-Hellman Key Exchange and
Public-Key Encryption
CS 161 Spring 2024 - Lecture 9

Computer Science 161

A physical demo

Computer Science 161

Public-Key Cryptography

3

Computer Science 161

Public-Key Cryptography

4

● In public-key schemes, each person has two keys
○ Public key: Known to everybody
○ Private key: Only known by that person
○ Keys come in pairs: every public key corresponds to one private key

● Uses number theory
○ Examples: Modular arithmetic, factoring, discrete logarithm problem
○ Contrast with symmetric-key cryptography (uses XORs and bit-shifts)

● Messages are numbers
○ Contrast with symmetric-key cryptography (messages are bit strings)

● Benefit: No longer need to assume that Alice and Bob already share a secret
● Drawback: Much slower than symmetric-key cryptography

○ Number theory calculations are much slower than XORs and bit-shifts

Computer Science 161

Diffie-Hellman Key Exchange

Textbook Chapter 10
5

Computer Science 161

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

6

Computer Science 161

Discrete Log Problem and Diffie-Hellman Problem

● Assume everyone knows a large prime p (e.g. 2048 bits long) and a generator
g

○ Don’t worry about what a generator is
● Discrete logarithm problem (discrete log problem): Choose a long random

number a (e.g., 2048 bits), given g, p, ga mod p: it is computationally hard to
find a

● Diffie-Hellman assumption: Choose long random numbers a and b (e.g.,
2048 bits), given g, p, ga mod p, and gb mod p, no polynomial time attacker
can distinguish between a random value R and gab mod p.

○ Intuition: The best known algorithm is to first calculate a and then compute (gb)a mod p, but
this requires solving the discrete log problem, which is hard!

○ Note: Multiplying the values doesn’t work, since you get ga+b mod p ≠ gab mod p
7

Computer Science 161

Discrete Log Problem and Diffie-Hellman Problem

For a random large a, b, R:

g, p, ga mod p, gb mod p, gab mod p

~

g, p, ga mod p, gb mod p, R

8

Indistinguishable from the perspective of a polynomial time attacker

Computer Science 161

Diffie-Hellman Key Exchange

Alice Mallory Bob

Generate a

Calculate ga mod p

Receive gb mod p

Calculate (gb)a mod p

Generate b

Calculate gb mod p

Receive ga mod p

Calculate (ga)b mod p

ga gb

a, ga, gb ⇒ gab b, ga, gb ⇒ gabga, gb ⇒ gab

Eve

Public: g, p

Shared symmetric key is K=gab

Private key

Public key

9Shared symmetric key is K=gab

Computer Science 161

Ephemerality of Diffie-Hellman

● Diffie-Hellman can be used ephemerally (called Diffie-Hellman ephemeral, or
DHE)

○ Ephemeral: Short-term and temporary, not permanent
○ Alice and Bob discard a, b, and K = gab mod p when they’re done
○ Because you need a and b to derive K, you can never derive K again!
○ Sometimes K is called a session key, because it’s only used for a an ephemeral session

● Benefit of DHE: Forward secrecy
○ Eve records everything sent over the insecure channel
○ Alice and Bob use DHE to agree on a key K = gab mod p
○ Alice and Bob use K as a symmetric key
○ After they’re done, discard a, b, and K
○ Later, Eve steals all of Alice and Bob’s secrets
○ Eve can’t decrypt any messages she recorded: Nobody saved a, b, or K, and her recording

only has ga mod p and gb mod p!

10

Computer Science 161

Diffie-Hellman Key Exchange

Alice Mallory Bob

Generate a

Calculate ga mod p

Receive gb mod p

Calculate (gb)a mod p

Generate b

Calculate gb mod p

Receive ga mod p

Calculate (ga)b mod p

ga gb

a, ga, gb ⇒ gab b, ga, gb ⇒ gabga, gb ⇒ gab

Q: What if Mallory
can actively

change messages
(malicious
attacker)?

Public: g, p

Private key

Public key

11Shared symmetric key is K=gab Shared symmetric key is K=gab

Computer Science 161

Diffie-Hellman: Man-in-the-middle attack

Alice Bob

Generate a

Calculate ga mod p

Receive gm mod p

Calculate (gm)a mod p

Generate b

Calculate gb mod p

Receive gm mod p

Calculate (gm)b mod p

a, ga, gm ⇒ gam b, gb, gm ⇒ gbmm, gm, ga ⇒ gam

Mallory Public: g, p

Generate m

Calculate gm mod p

Receive ga mod p

Calculate (ga)m mod p

Receive gb mod p

Calculate (gb)m mod p

m, gm, gb ⇒ gbm

12

Computer Science 161

Diffie-Hellman: Issues

● Diffie-Hellman is not secure against a MITM adversary
● DHE is an active protocol: Alice and Bob need to be online at the same time

to exchange keys
○ What if Bob wants to encrypt something and send it to Alice for her to read later?

● Diffie-Hellman does not provide authentication
○ You exchanged keys with someone, but Diffie-Hellman makes no guarantees about who you

exchanged keys with; it could be Mallory!

13

Computer Science 161

Summary: Diffie-Hellman Key Exchange

● Algorithm:
○ Alice chooses a and sends ga mod p to Bob
○ Bob chooses b and sends gb mod p to Alice
○ Their shared secret is (ga)b = (gb)a = gab mod p

● Diffie-Hellman provides forwards secrecy: Nothing is saved or can be
recorded that can ever recover the key

● Diffie-Hellman can be performed over other mathematical groups, such as
elliptic-curve Diffie-Hellman (ECDH)

● Issues
○ Not secure against MITM
○ Both parties must be online
○ Does not provide authenticity

14

Computer Science 161

Public-Key Encryption

15
Textbook Chapter 11

Computer Science 161

Public-Key Encryption

● Everybody can encrypt with the public key
● Only the recipient can decrypt with the private key

16

Computer Science 161

Public-Key Encryption: Definition

● Three parts:
○ KeyGen() → PK, SK: Generate a public/private keypair, where PK is the public key, and SK is

the private (secret) key
○ Enc(PK, M) → C: Encrypt a plaintext M using public key PK to produce ciphertext C
○ Dec(SK, C) → M: Decrypt a ciphertext C using secret key SK

● Properties
○ Correctness: Decrypting a ciphertext should result in the message that was originally

encrypted
■ Dec(SK, Enc(PK, M)) = M for all PK, SK ← KeyGen() and M

○ Efficiency: Encryption/decryption should be fast
○ Security: Similar to IND-CPA, but Alice (the challenger) just gives Eve (the adversary) the

public key, and Eve doesn’t request encryptions, except for the pair M0, M1

■ You don’t need to worry about this game (it’s called “semantic security”)

17

Computer Science 161

Recall IND-CPA for symmetric key encryption

M

Enc(K, M)
(repeat)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

M

Enc(K, M)

Guess b = 0 or b = 1

(repeat)

pick b

18

1. Eve may choose plaintexts to send to Alice and
receives their ciphertexts

2. Eve issues a pair of plaintexts M0 and M1 to Alice
3. Alice randomly chooses either M0 or M1 to encrypt

and sends the encryption back
○ Alice does not tell Eve which one was encrypted!

4. Eve may again choose plaintexts to send to Alice
and receives their ciphertexts

5. Eventually, Eve outputs a guess as to whether Alice
encrypted M0 or M1

● An encryption scheme is IND-CPA secure if for all
polynomial time attackers Eve:

○ Eve can win with probability ≤ 1/2 + Ɛ, where Ɛ is negligible.

KeyGen(): K

Computer Science 161

Semantic security (IND-CPA for public-key encryption)

Alice (challenger)Eve (adversary)

M0 and M1

Enc(K, Mb)

Guess b = 0 or b = 1

pick b

19

1. Eve issues a pair of plaintexts M0 and M1 to
Alice

2. Alice randomly chooses either M0 or M1 to
encrypt and sends the encryption back

○ Alice does not tell Eve which one was encrypted!
3. Eventually, Eve outputs a guess as to

whether Alice encrypted M0 or M1

● An encryption scheme is semantically
secure if for all polynomial time attackers
Eve:

○ Eve can win with probability ≤ 1/2 + Ɛ, where Ɛ is
negligible.

KeyGen():

SK, PKPK

Computer Science 161

ElGamal Encryption

20
Textbook Chapter 11.4

Computer Science 161

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

21

Computer Science 161

ElGamal Encryption

22

● Idea: Let’s modify Diffie-Hellman so it supports encrypting and decrypting
messages directly

Computer Science 161

ElGamal Encryption: Protocol

● KeyGen():
○ Bob generates private key b and public key B = gb mod p

■ Intuition: Bob is completing his half of the Diffie-Hellman exchange
● Enc(B, M):

○ Alice generates a random r and computes R = gr mod p
■ Intuition: Alice is completing her half of the Diffie-Hellman exchange

○ Alice computes M × Br mod p
■ Intuition: Alice derives the shared secret and multiples her message by the secret

○ Alice sends C1 = R, C2 = M × Br mod p
● Dec(b, C1, C2)

○ Bob computes C2 × C1-b = M × Br × R-b = M × gbr × g-br = M mod p
■ Intuition: Bob derives the (inverse) shared secret and multiples the ciphertext by the

inverse shared secret
23

Computer Science 161

ElGamal Encryption: Security

● Recall Diffie-Hellman problem: Given ga mod p and gb mod p, hard to recover
gab mod p

● ElGamal sends these values over the insecure channel
○ Bob’s public key: B
○ Ciphertext: R, M × Br mod p

● Eve can’t derive gbr, so she can’t recover M

24

Computer Science 161

ElGamal Encryption: Issues

● Is ElGamal encryption semantically secure?
○ No. The adversary can send M0 = 0, M1 ≠ 0
○ Additional padding and other modifications are needed to make it semantically secure

● Malleability: The adversary can tamper with the message, so no integrity
○ The adversary can manipulate C1’ = C1, C2’ = 2 × C2 = 2 × M × gbr to make it look like 2 × M

was encrypted

25

Computer Science 161

RSA Encryption

26
Textbook Chapter 11.3

Computer Science 161

Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality ● One-time pads
● Block ciphers with chaining

modes (e.g. AES-CBC)

● RSA encryption
● ElGamal encryption

Integrity,
Authentication

● MACs (e.g. HMAC) ● Digital signatures (e.g. RSA
signatures)

● Hash functions
● Pseudorandom number generators
● Public key exchange (e.g. Diffie-Hellman)

● Key management (certificates)
● Password management

27

Computer Science 161

RSA Encryption: Definition

28

● KeyGen():
○ Randomly pick two large primes, p and q

■ Done by picking random numbers and then using a test to see if the number is
(probably) prime

○ Compute N = pq
■ N is usually between 2048 bits and 4096 bits long

○ Choose e
■ Requirement: e is relatively prime to (p - 1)(q - 1)
■ Requirement: 2 < e < (p - 1)(q - 1)

○ Compute d = e-1 mod (p - 1)(q - 1)
■ Algorithm: Extended Euclid’s algorithm (CS 70)

○ Public key: N and e
○ Private key: d

Computer Science 161

RSA Encryption: Definition

29

● Enc(e, N, M):
○ Output Me mod N

● Dec(d, C):
○ Output Cd = (Me)d mod N

Computer Science 161

RSA Encryption: Correctness

1. Theorem: Med ≡ M mod N
2. Euler’s theorem: for all positive coprime-with-N a, aφ(N) ≡ 1 mod N

a. φ(N) is the totient function of N
b. If N is prime, φ(N) = N - 1 (Fermat’s little theorem)
c. For a semi-prime pq, where p and q are prime, φ(pq) = (p - 1)(q - 1)
d. This is out-of-scope CS 70 knowledge

Notice: ed ≡ 1 mod (p - 1)(q - 1) so ed ≡ 1 mod φ(N)

This means that ed = kφ(n) + 1 for some integer k

(1) can be written as Mkφ(N) + 1 ≡ M mod N

Mkφ(N)M1 ≡ M mod N

1M1 ≡ M mod N by Euler’s theorem

M ≡ M mod N
30

Computer Science 161

RSA Encryption: Security

● RSA problem: Given large N = pq and C = Me mod N, it is hard to find M
○ No harder than the factoring problem (if you can factor N, you can recover d)

● Current best solution is to factor N, but unknown whether there is an easier
way

○ Factoring problem is assumed to be hard (if you don’t have a massive quantum computer, that
is)

31

Computer Science 161

● Is RSA encryption semantically secure?
○ No. It’s deterministic. No randomness was used at any point!

● Sending the same message encrypted with different public keys also leaks
information

○ mea mod Na, meb mod nb, mec mod Nc

○ Small m and e leaks information
■ e is usually small (~16 bits) and often constant (3, 17, 65537)

● Side channel: A poor implementation leaks information
○ The time it takes to decrypt a message depends on the message and the private key
○ This attack has been successfully used to break RSA encryption in OpenSSL

● Result: We need a probabilistic padding scheme

RSA Encryption: Issues

32

Computer Science 161

OAEP

● Optimal asymmetric encryption padding (OAEP): A variation of RSA that
introduces randomness

○ Different from “padding” used for symmetric encryption, used to add randomness instead of
dummy bytes

● Idea: RSA can only encrypt “random-looking” numbers, so encrypt the
message with a random key

● RSA encryption is proved semantically secure assuming a stronger version of
the RSA problem and using OAEP padding

33

Computer Science 161

OAEP: Padding

1. k0 and k1 constants defined in the standard,
and G and H are hash functions

○ M can only be n - k0 - k1 bits long
○ G produces a (n - k0)-bit hash, and H produces a

k0-bit hash
2. Pad M with k0 0’s

○ Idea: We should see 0’s here when unpadding, or
else someone tampered with the message

3. Generate a random, k1-bit string r
4. Compute X = M || 00...0 ⊕ G(r)
5. Compute Y = r ⊕ H(X)
6. Result: X || Y

34

Computer Science 161

OAEP: Unpadding

1. Compute r = Y ⊕ H(X)
2. Compute M || 00...0 = X ⊕ G(r)
3. Verify that M || 00...0 actually ends in k1 0’s

○ Error if not

35

Computer Science 161

● Even though G and H are irreversible, we
can recover their inputs using XOR and
work backwards

● This structure is called a Feistel network
○ Can be used for encryption algorithms if G and H

depend on a key
■ Example: DES (out of scope)

● Takeaway: To fix the problems with RSA
(it’s only secure encrypting random numbers
and isn’t semantically secure), use RSA with
OAEP, abbreviated as RSA-OAEP

OAEP

36

Computer Science 161

Hybrid Encryption

● Issues with public-key encryption
○ Notice: We can only encrypt small messages because of the modulo operator
○ Notice: There is a lot of math, and computers are slow at math
○ Result: Asymmetric doesn’t work for large messages

● Hybrid encryption: Encrypt data under a randomly generated key K using
symmetric encryption, and encrypt K using asymmetric encryption

○ Benefit: Now we can encrypt large amounts of data quickly using symmetric encryption, and
we still have the security of asymmetric encryption

● Almost all cryptographic systems encrypting user data use hybrid encryption

37

