Diffie-Hellman Key Exchange and
Public-Key Encryption

CS 161 Spring 2024 - Lecture 9
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Public-Key Cryptography

Computer Science 161

e In public-key schemes, each person has two keys

o Public key: Known to everybody

o Private key: Only known by that person

o Keys come in pairs: every public key corresponds to one private key
e Uses number theory

o Examples: Modular arithmetic, factoring, discrete logarithm problem

o Contrast with symmetric-key cryptography (uses XORs and bit-shifts)
() Messages are numbers

o Contrast with symmetric-key cryptography (messages are bit strings)

e Benefit: No longer need to assume that Alice and Bob already share a secret

e Drawback: Much slower than symmetric-key cryptography
o Number theory calculations are much slower than XORs and bit-shifts



Diffie-Hellman Key Exchange

Textbook Chapter 10



Cryptography Roadmap

Symmetric-key Asymmetric-key

Confidentiality e RSA encryption
e ElGamal encryption

Integrity, e Digital signatures (e.g. RSA
Authentication signatures)

e Key management (certificates)
e Password management
e Public key exchange (e.g. Diffie-Hellman)



Discrete Log Problem and Diffie-Hellman Problem

e Assume everyone knows a large prime p (e.g. 2048 bits long) and a generator
g

o Don’t worry about what a generator is
Discrete logarithm problem (discrete log problem): Choose a long random

number a (e.q., 2048 bits), given g, p, g° mod p: it is computationally hard to
find a

Diffie-Hellman assumption: Choose long random numbers a and b (e.g.,

2048 bits), given g, p, g2 mod p, and g° mod p, no polynomial time attacker
can distinguish between a random value R and g mod p.

o Intuition: The best known algorithm is to first calculate a and then compute (g°)? mod p, but
this requires solving the discrete log problem, which is hard!
o  Note: Multiplying the values doesn’t work, since you get g?** mod p # g% mod p



Discrete Log Problem and Diffie-Hellman Problem

For a random large a, b, R.

g.p, g°modp, g°modp, g*modp

~ —

Indistinguishable from the perspective of a polynomial time attacker

g.p, g°modp, g’modp, R



Diffie-Hellman Key Exchange

Computer Science 161
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Ephemerality of Diffie-Hellman

Computer Science 161

e Diffie-Hellman can be used ephemerally (called Diffie-Hellman ephemeral, or
DHE)

o Ephemeral: Short-term and temporary, not permanent

o Alice and Bob discard a, b, and K = g? mod p when they’re done

o Because you need a and b to derive K, you can never derive K again!

o Sometimes K is called a session key, because it's only used for a an ephemeral session

e Benefit of DHE: Forward secrecy

Eve records everything sent over the insecure channel

Alice and Bob use DHE to agree on a key K = g% mod p

Alice and Bob use K as a symmetric key

After they’re done, discard a, b, and K

Later, Eve steals all of Alice and Bob’s secrets

Eve can’t decrypt any messages she recorded: Nobody saved a, b, or K, and her recording
only has g mod p and g° mod p!

O 0O O O O O
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Diffie-Hellman Key Exchange

Computer Science 161
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Diffie-Hellman: Man-in-the-middle attack
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Diffie-Hellman: Issues

Computer Science 161

Diffie-Hellman is not secure against a MITM adversary
DHE is an active protocol. Alice and Bob need to be online at the same time

to exchange keys
o What if Bob wants to encrypt something and send it to Alice for her to read later?

e Diffie-Hellman does not provide authentication

o You exchanged keys with someone, but Diffie-Hellman makes no guarantees about who you
exchanged keys with; it could be Mallory!
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Summary: Diffie-Hellman Key Exchange

Computer Science 161

e Algorithm:

o Alice chooses @ and sends g” mod p to Bob
o Bob chooses b and sends g° mod p to Alice
o Their shared secret is (g°)° = (¢g°)" = g°” mod p

e Diffie-Hellman provides forwards secrecy: Nothing is saved or can be
recorded that can ever recover the key

e Diffie-Hellman can be performed over other mathematical groups, such as
elliptic-curve Diffie-Hellman (ECDH)

e Issues
o  Not secure against MITM
o Both parties must be online
o Does not provide authenticity
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Public-Key Encryption

Textbook Chapter 11
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Public-Key Encryption

e Everybody can encrypt with the public key
e Only the recipient can decrypt with the private key




Public-Key Encryption: Definition
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e Three parts:

©)

©)

@)

KeyGen() — PK, SK: Generate a public/private keypair, where PK is the public key, and SK is
the private (secret) key

Enc(PK, M) — C: Encrypt a plaintext M using public key PK to produce ciphertext C

Dec(SK, C) — M: Decrypt a ciphertext C using secret key SK

e Properties

@)

Correctness: Decrypting a ciphertext should result in the message that was originally
encrypted

m  Dec(SK, Enc(PK, M)) = M for all PK, SK <« KeyGen() and M
Efficiency: Encryption/decryption should be fast
Security: Similar to IND-CPA, but Alice (the challenger) just gives Eve (the adversary) the
public key, and Eve doesn’t request encryptions, except for the pair Mo, M+

m You don’t need to worry about this game (it's called “semantic security”)
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Recall IND-CPA for symmetric key encryption
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1.

2.
3.

Eve may choose plaintexts to send to Alice and
receives their ciphertexts

Eve issues a pair of plaintexts Mo and M1 to Alice
Alice randomly chooses either Mo or M1 to encrypt

and sends the encryption back
o  Alice does not tell Eve which one was encrypted!

Eve may again choose plaintexts to send to Alice
and receives their ciphertexts
Eventually, Eve outputs a guess as to whether Alice

encrypted Mo or M1 o
W
@

An encryption scheme is IND-CPA secure if for all

polynomial time attackers Eve:
o  Eve can win with probability < 1/2 + €, where € is negligible.

Eve (adversary) Alice (challenger)
|KeyGen(): K
. > ( t)
repea
Enc(K, M)
-
Mo and M
>\
pick b
Enc(K, Mb)
-
. > ( t)
repea
Enc(K, M)
-
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Semantic security (IND-CPA for public-key encryption)

_ _ . Eve (adversary) Alice (challenger)
1. E\(e issues a pair of plaintexts Mo and M1 to lkeyGen():
Alice PK
2. Alice randomly chooses either Mo or M1 to < SK, PK
encrypt and sends the encryption back
o Alice does not tell Eve which one was encrypted!
3. Eventually, Eve outputs a guess as to Mo and M
: > |
whether Alice encrypted Mo or M1 g pick b

PN ,
m < Enc(K, Mb)

e An encryption scheme is semantically
secure if for all polynomial time attackers

Eve:
o Eve can win with probability < 1/2 + €, where € is

negligible. *Guess b=0orb=1 19




ElGamal Encryption

Textbook Chapter 11.4
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Cryptography Roadmap

Symmetric-key Asymmetric-key
Confidentiality e RSA encryption
e ElGamal encryption

Integrity, e Digital signatures (e.g. RSA
Authentication signatures)

e Key management (certificates)
e Password management
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ElGamal Encryption

e Idea: Let's modify Diffie-Hellman so it supports encrypting and decrypting
messages directly
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ElGamal Encryption: Protocol
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e KeyGen():
o Bob generates private key b and public key B = g° mod p
m Intuition: Bob is completing his half of the Diffie-Hellman exchange
e Enc(B, M):
o Alice generates a random r and computes R = g mod p
m Intuition: Alice is completing her half of the Diffie-Hellman exchange
o Alice computes M x B"mod p

m Intuition: Alice derives the shared secret and multiples her message by the secret
o Alicesends C1=R,C2=Mx B mod p
e Dec(b, C1, C2)
o Bobcomputes C2x CiP=MxB x RP=Mx g" x g’ =Mmod p
m Intuition: Bob derives the (inverse) shared secret and multiples the ciphertext by the
inverse shared secret
23



ElGamal Encryption: Security

e Recall Diffie-Hellman problem: Given g2 mod p and g° mod p, hard to recover
g?° mod p
e ElGamal sends these values over the insecure channel

o Bob’s public key: B
o Ciphertext: R, M x B mod p

e Eve can't derive g”, so she can’t recover M
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ElGamal Encryption: Issues
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e Is ElIGamal encryption semantically secure?

o No. The adversary can send Mo =0, M1 # 0
o Additional padding and other modifications are needed to make it semantically secure

e Malleability: The adversary can tamper with the message, so no integrity
o The adversary can manipulate C1’= C1, C2’=2 x C2=2 x M x g to make it look like 2 x M
was encrypted

25



RSA Encryption

Textbook Chapter 11.3
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Cryptography Roadmap

Symmetric-key Asymmetric-key
Confidentiality e RSA encryption
Integrity, e Digital signatures (e.g. RSA
Authentication signatures)

e Key management (certificates)
e Password management
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RSA Encryption: Definition

Computer Science 161

e KeyGen():
o Randomly pick two large primes, p and q
m Done by picking random numbers and then using a test to see if the number is
(probably) prime
o Compute N = pg
m Nis usually between 2048 bits and 4096 bits long
o Choose e
m  Requirement: e is relatively prime to (p - 1)(g - 1)
m Requirement:2<e<(p-1)q-1)
o Computed=¢e"'"mod (p-1)(qg-1)
m Algorithm: Extended Euclid’s algorithm (CS 70)
Public key: N and e
o Private key: d
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RSA Encryption: Definition

e Enc(e, N, M):
o  Output M°* mod N
e Dec(d, C):

o Output CY= (M®)Y mod N
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RSA Encryption: Correctness
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1. Theorem: M®® =M mod N
2. Euler’s theorem: for all positive coprime-with-N a, a*™) =1 mod N

a. @(N)is the totient function of N
b. If Nis prime, ¢(N) = N -1 (Fermat’s little theorem)
c. For asemi-prime pq, where p and q are prime, @(pq) =(p-1)(g-1)
d. This is out-of-scope CS 70 knowledge
Notice: ed =1 mod (p - 1)(g- 1) so ed =1 mod ¢(N)
This means that ed = k¢(n) + 1 for some integer k
(1) can be written as MM *1 = M mod N
MMM = M mod N
1M' = M mod N by Euler’s theorem

M=MmodN
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RSA Encryption: Security

Computer Science 161

e RSA problem: Given large N = pg and C = M®* mod N, it is hard to find M

o No harder than the factoring problem (if you can factor N, you can recover d)
e Current best solution is to factor N, but unknown whether there is an easier
way

o Factoring problem is assumed to be hard (if you don’t have a massive quantum computer, that
is)
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RSA Encryption: Issues

Is RSA encryption semantically secure?
o No. It's deterministic. No randomness was used at any point!

Sending the same message encrypted with different public keys also leaks

information
o m°® mod Na, m®* mod n», m® mod Nc
o Small m and e leaks information
m e is usually small (~16 bits) and often constant (3, 17, 65537)
Side channel: A poor implementation leaks information
o The time it takes to decrypt a message depends on the message and the private key
o This attack has been successfully used to break RSA encryption in OpenSSL

Result: We need a probabilistic padding scheme
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OAEP

e Optimal asymmetric encryption padding (OAEP): A variation of RSA that

introduces randomness
o Different from “padding” used for symmetric encryption, used to add randomness instead of
dummy bytes

e Idea: RSA can only encrypt “random-looking” numbers, so encrypt the
message with a random key

e RSA encryption is proved semantically secure assuming a stronger version of
the RSA problem and using OAEP padding
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OAEP: Padding

Computer Science 161

1.

I

ko and k1 constants defined in the standard,

and G and H are hash functions
o M can only be n - ko - k1 bits long

o G produces a (n - ko)-bit hash, and H produces a
ko-bit hash

Pad M with ko O’s

o l|dea: We should see 0’s here when unpadding, or
else someone tampered with the message

Generate a random, k1-bit string r
Compute X =M || 00...0 ® G(r)
Compute Y = re H(X)

Result: X || Y

000

k1

n-ko

%
N
S5

-

ko
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OAEP: Unpadding

1. Compute r = Y e H(X)
2. Compute M || 00...0 = X @ G(r) ' m ‘ 000 7

3. Verify that M || 00...0 actually ends in k1 Q’s n-ko-k1

o  Errorif not

n-ko0 _i

35



OAEP

Computer Science 161

Even though G and H are irreversible, we
can recover their inputs using XOR and
work backwards

This structure is called a Feistel network

o Can be used for encryption algorithms if G and H
depend on a key
m Example: DES (out of scope)

Takeaway: To fix the problems with RSA
(it's only secure encrypting random numbers
and isn’'t semantically secure), use RSA with
OAEP, abbreviated as RSA-OAEP

n-ko

D
1/

000 r
- k1 ko
=
G /)
H)—
/
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Hybrid Encryption
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e Issues with public-key encryption

o Notice: We can only encrypt small messages because of the modulo operator
o Notice: There is a lot of math, and computers are slow at math
o Result: Asymmetric doesn’t work for large messages

e Hybrid encryption: Encrypt data under a randomly generated key K using
symmetric encryption, and encrypt K using asymmetric encryption

o Benefit: Now we can encrypt large amounts of data quickly using symmetric encryption, and
we still have the security of asymmetric encryption

e Almost all cryptographic systems encrypting user data use hybrid encryption
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