Computer Security

Web Security / 18. Introduction to the Web

18. Introduction to the Web

18.1. URLs

Every resource (webpage, image, PDF, etc.) on the web is identified by a URL (Uniform Resource
Locator). URLs are designed to describe exactly where to find a piece of information on the Internet.

A basic URL consists of three mandatory parts:
http://www.example.com/index.html

The first mandatory part is the protocol, located before in the URL. In the example above, the
protocol is http. The protocol tells your browser how to retrieve the resource. In this class, the only
two protocols you need to know are HTTP, which we will cover in the next section, and HTTPS, which
is a secure version of HTTP using TLS (refer to the networking unit for more details). Other protocols
include git+ssh://, which fetches a git archive over an encrypted tunnel using ssh, or ftp://, which
uses the old FTP (File Transfer Protocol) to fetch data.

The second mandatory part is the location, located after but before the next forward slash in the
URL. In the example above, the location is www.example.com. This tells your browser which web server

to contact to retrieve the resource.

Optionally, the location may contain an optional username, which is followed by an @ character if
present. For example, evanbot@uww.example.com is a location with a username evanbot . All locations
must include a computer identifier. This is usually a domain name such as www.example.com.
Sometimes the location will also include a port number, such as www.example.com:81, to distinguish
between different applications running on the same web server. We will discuss ports a bit more
when we talk about TCP during the networking section.

The third mandatory part is the path, located after the first single forward slash in the URL. In the
example above, the path is /index.html. The path tells your browser which resource on the web
server to request. The web server uses the path to determine which page or resource should be

returned to you.

One way to think about paths is to imagine a filesystem on the web server you're contacting. The

web server can use the path as a filepath to locate a specific page or resource. The path must at

n

least consist of /, which is known as the “root”" of the filesystem for the remote web site.

Optionally, there can be a ? character after the path. This indicates that you are supplying additional
arguments in the URL for the web server to process. After the » character, you can supply an
optional set of parameters separated by & characters. Each parameter is usually encoded as a key-
value pair in the format key=value. Your browser sends all this information to the web server when

fetching a URL. See the next section for more details on URL parameters.

Finally, there can be an optional anchor after the arguments, which starts with a # character. The
anchor text is not sent to the server, but is available to the web page as it runs in the browser.

The anchor is often used to tell your browser to scroll to a certain part of the webpage when loading
it. For example, try loading https://en.wikipedia.org/wiki/Dwinelle_Hall#Floor_plan and
https://en.wikipedia.org/wiki/Dwinelle_Hall#Construction and note that your browser skips to the

section of the article specified in the anchor.
In summary, a URL with all elements present may look like this:
http://evanbot@www.cs161.org:161/whoami?kl=v1&k2=v2#anchor

where http is the protocol, evanbot is the username, www.cs161.org is the computer location (domain),

161 is the port, /whoami is the path, ki-vigk2=v2 are the URL arguments, and anchor is the anchor.

Further reading: What is a URL?

18.2. HTTP

The protocol that powers the World Wide Web is the Hypertext Transfer Protocol, abbreviated as
HTTP. It is the language that clients use to communicate with servers in order to fetch resources and
issue other requests. While we will not be able to provide you with a full overview of HTTP, this
section is meant to get you familiar with several aspects of the protocol that are important to
understanding web security.

18.3. HTTP: The Request-Response Model

Fundamentally, HTTP follows a request-response model, where clients (such as browsers) must
actively start a connection to the server and issue a request, which the server then responds to. This
request can be something like “Send me a webpage” or “Change the password for my user account
to foobar.” In the first example, the server might respond with the contents of the web page, and in
the second example, the response might be something as simple as “Okay, I've changed your

password.” The exact structure of these requests will be covered in further detail in the next couple
sections.

The original version of HTTP, HTTP 1.1, is a text-based protocol, where each HTTP request and
response contains a header with some metadata about the request or response and a payload with
the actual contents of the request or response. HTTP2, a more recent version of HTTP, is a binary-

encoded protocol for efficiency, but the same concepts apply.

For all requests, the server generates and sends a response. The response includes a series of
headers and, in the payload, the body of the data requested.

18.4. HTTP: Structure of a Request

Below is a very simple HTTP request.

GET / HTTP/1.1
Host: squigler.com

Dnt: 1

The first line of the request contains the method of the request (ceT), the path of the request (/),
and the protocol version (HTTP/1.1). This is an example of a GET request. Each line after the first line
is a request header. In this example, there are two headers, the DNT header and the Host header.
There are many HTTP headers defined in the HTTP spec which are used to convey various pieces of

information, but we will only be covering a couple of them through this chapter.

Here is another HTTP request:
POST /login HTTP/1.1
Host: squigler.com
Content-Length: 40
Content-Type: application/x-url-formencoded

Dnt: 1

username=alice@foo.com&password=12345678

Here, we have a couple more headers and a different request type: the POST request.

18.5. HTTP: GET vs. POST

While there are quite a few methods for requests, the two types that we will focus on for this course
are GET requests and POST requests. GET requests are generally intended for "getting” information
from the server. POST requests are intended for sending information to the server that somehow

modifies its internal state, such as adding a comment in a forum or changing your password.

In the original HTTP model, GET requests are not supposed to change any server state. However,
modern web applications often change server state in response to GET requests in query

parameters.

Of note, only POST requests can contain a body in addition to request headers. Notice that the body
of the second example request contains the username and password that the user alice is using to
log in. While GET requests cannot have a body, it can still pass query parameters via the URL itself.

Such a request might look something like this:

GET /posts?search=security&sortby=popularity
Host: squigler.com

Dnt: 1

In this case, there are two query parameters, search and sortby, which have values of security and

popularity, respectively.

18.6. Elements of a Webpage

The HTTP protocol is designed to return arbitrary files. The response header usually specifies a
media type that tells the browser how to interpret the data in the response body.

Although the web can be used to return files of any type, much of the web is built in three
languages that provide functionality useful in web applications.

A modern web page can be thought of as a distributed application: there is a component running
on the web server and a component running in the web browser. First, the browser makes an HTTP
request to a web server. The web server performs some server-side computation and generates and
sends an HTTP response. Then, the browser performs some browser-side computation on the HTTP
response and displays the result to the user.

18.7. Elements of a Webpage: HTML

HTML (Hypertext Markup Language) lets us create structured documents with paragraphs, links,
fillable forms, and embedded images, among other features. You are not expected to know HTML

syntax for this course, but some basics are useful for some of the attacks we will cover.

Here are some examples of what HTML can do:

« Create a link to Google: Click me

+ Embed a picture in the webpage:

+ Include JavaScript in the webpage: <script>alert(1)</script>

+ Embed the CS161 webpage in the webpage: <iframe src="http://cs161.0rg"></iframe>

Frames pose a security risk, since the outer page is now including an inner page that may be from a
different, possibly malicious source. To protect against this, modern browsers enforce frame
isolation, which means the outer page cannot change the contents of the inner page, and the inner

page cannot change the contents of the outer page.

18.8. Elements of a Webpage: CSS

CSS (Cascading Style Sheets) lets us modify the appearance of an HTML page by using different
fonts, colors, and spacing, among other features. You are not expected to know CSS syntax for this
course, but you should know that CSS is as powerful as JavaScript when used maliciously. If an
attacker can force a victim to load some malicious CSS, this is functionally equivalent to the attacker

forcing the victim to load malicious JavaScript.

18.9. Elements of a Webpage: JavaScript

JavaScript is a programming language that runs in your browser. It is a very powerful language—in
general, you can assume JavaScript can arbitrarily modify any HTML or CSS on a webpage.
Webpages can include JavaScript in their HTML to allow for dynamic features such as interactive
buttons. Almost all modern webpages use JavaScript.

When a browser receives an HTML document, it first converts the HTML into an internal form called
the DOM (Document Object Model). The JavaScript is then applied on the DOM to modify how the
page is displayed to the user. The browser then renders the DOM to display the result to the user.

Because JavaScript is so powerful, modern web browsers run JavaScript in a sandbox so that any
JavaScript code loaded from a webpage cannot access sensitive data on your computer or even data

on other webpages.

Most exploits targeting the web browser itself require JavaScript, either because the vulnerability lies
in the browser's JavaScript engine, or because JavaScript is used to shape the memory layout of the
program for improving the success rate of an attack.

Almost all web browsers implement JavaScript as a Just In Time compiler, dynamically converting
JavaScript into machine code?. Many modern desktop applications (notably Slack’s desktop client)
are actually written in the Electron framework, which is effectively a cut down web browser running

JavaScript.

1 Itis called the root because the filesystem can be treated as a tree and this is where the tree

starts.

2 Trivia: Running JavaScript fast is considered so important that ARM recently introduced a
dedicated instruction, FJCVTZS (Floating-point Javascript Convert to Signed fixed-point, rounding
toward Zero), specifically to handle how JavaScript's math operates.

